

1322 Scott Street Suite 104 San Diego, CA 92106 (619) 546-8377 (619) 546-9980 FAX

March 21, 2016

Raymond Chavira Environmental Scientist/Remedial Project Manager EPA Region 9 75 Hawthorne Street; SFD-7-3 San Francisco, CA 94105-3901 (415) 947-4218

Re: 2015 Second Baseline Monitoring and Aquifer Compliance Report

Dual Site Groundwater Operable Unit, Los Angeles, California

Dear Mr. Chavira,

The 2015 Second Baseline Monitoring and Aquifer Compliance Report is submitted for your review. It presents the results of the second baseline monitoring event completed during the period September through October 2015 for the Montrose Chemical and Del Amo Superfund Sites, Dual Site Groundwater Operable Unit located in Los Angeles, California.

This second baseline event focused on the measurement of groundwater levels and the collection of groundwater samples for laboratory analysis. This report was prepared cooperatively between consultants retained by the Montrose Chemical and Del Amo Superfund Sites. The groundwater monitoring was conducted in accordance with United States Environmental Protection Agency (USEPA) approved Monitoring and Aquifer Compliance Plans (MACP) prepared by each party. In addition, data collected at other properties (i.e., Boeing, International Light Metals, and Jones Chemical, etc.) has been incorporated into this report.

Please contact Pat Gobb of NewFields or me with any questions.

Sincerely,

Jaime Dinello

Jaime Dinello *de maximis, inc.*

cc: Joe Kelly, Montrose Chemical Corporation of California-Electronic Copy

Kelly Richardson, Esq., Latham & Watkins-Electronic Copy

Carol Campagna, Shell-Electronic Copy

Willard Garrett, DTSC-Hard Copy

Tom Perina, CB&I Federal Services-Hard Copy James Perkins, CB&I Federal Services-Hard Copy

James Teo, CB&I Federal Services-Hard Copy

Montrose Chemical and Del Amo Superfund Sites, Dual Site Groundwater Operable Unit Los Angeles, California

March 2016

Prepared For: Montrose Chemical Corporation of California

AND

Shell Oil Company

Prepared By: de maximis, inc. ddms

1322 Scott St., Suite104 San Diego, California 92106 1217 Bandana Boulevard Saint Paul, Minnesota 55108

AND

NewFields AECOM

2850 Lake Vista Drive, Suite 140 130 Robin Hill Rd., Suite 100 Lewisville, TX 75067 Santa Barbara, CA 93117

TABLE OF CONTENTS

E	xecutive	e Summary	1
1	Intro	oduction	2
	1.1	Site Hydrology	4
	1.2	Description of Torrance Groundwater Remediation System	5
	1.3	Description of Monitor well Network	5
	1.4	Monitoring Objectives	6
2	Gro	undwater Elevations and Flow	7
	2.1	Water Table	7
	2.2	MBFB	8
	2.3	MBFC	8
	2.4	Gage	9
	2.5	Lynwood	9
	2.6	Vertical Gradients	9
3	Chlo	probenzene, pCBSA, and Chloroform Distribution	11
	3.1	Sampling and Analytical Methods	11
	3.2	Chlorobenzene	12
	3.2.1	Water Table	12
	3.2.2	2 MBFC	13
	3.2.3	3 Gage	13
	3.2.4	4 Lynwood	14
	3.2.5	Dense Non-Aqueous Phase Liquid (DNAPL)	14
	3.3	pCBSA	14
	3.3.1	Water Table	14
	3.3.2	2 MBFC	15
	3.3.3	3 Gage	15
	3.3.4	4 Lynwood	16
	3.4	Chloroform	16
	3.4.1	Water Table	16
	3.4.2	2 MBFC	16
	3.4.3	3 Gage	17
	3.4.4	4 Lynwood	17
4	Benz	zene Distribution	18

	4.1	Sampling and Analytical Methods	18
	4.2	Water Table	19
	4.3	MBFB	20
	4.4	MBFC	20
	4.5	Gage	21
	4.6	Lynwood	21
	4.7	NAPL	21
	4.8	Biodegradation Indicators	22
5	PCE	and TCE Distribution	26
	5.1	Sampling and Analytical Methods	26
	5.2	PCE	27
	5.2.	l Water Table	27
	5.2.2	2 MBFC	27
	5.2.3	3 Gage	27
	5.2.4	4 Lynwood	28
	5.3	TCE	28
	5.3.	l Water Table	28
	5.3.2	2 MBFB	29
	5.3.3	3 MBFC	30
	5.3.4	4 Gage	31
	5.3.5	5 Lynwood	31
5	TBA	A Distribution	32
	6.1	Sampling and Analytical Methods	32
	6.2	Water Table	32
	6.3	MBFB	33
	6.4	MBFC	33
	6.5	Gage	33
	6.6	Lynwood	33
7	Qua	lity Assurance/Quality Control	34
	7.1	Montrose	34
	7.2	Del Amo	35
3	Reco	ommendations	37
	8.1	Montrose Monitoring Network	37
	8.2	Del Amo Monitoring Network	37

9	Reference	es	38
LI	ST OF TAB	LES	
	Table 1	Groundwater Level Measurements and Elevations	
	Table 2	Summary of Key VOC Laboratory Results	
	Table 3	Summary of pCBSA Laboratory Results	
	Table 4	Summary of QA/QC Sample Laboratory Results	
LI	ST OF FIGU	JRES	
	Figure 1	Site Location Map	
	Figure 2	Torrance Groundwater Remediation System Infrastructure Map	
	Figure 3	Groundwater Elevation Map, Water Table	
	Figure 4	Groundwater Elevation Map, MBFB	
	Figure 5	Groundwater Elevation Map, MBFC	
	Figure 6	Groundwater Elevation Map, Gage	
	Figure 7	Groundwater Elevation Map, Lynwood	
	Figure 8	Dissolved Chlorobenzene Distribution, Water Table	
	Figure 9	Dissolved Chlorobenzene Distribution, MBFC	
	Figure 10	Dissolved Chlorobenzene Distribution, Gage	
	Figure 11	Dissolved Chlorobenzene Distribution, Lynwood	
	Figure 12	Dissolved pCBSA Distribution, Water Table	
	Figure 13	Dissolved pCBSA Distribution, MBFC	
	Figure 14	Dissolved pCBSA Distribution, Gage	
	Figure 15	Dissolved pCBSA Distribution, Lynwood	
	Figure 16	Dissolved Chloroform Distribution, Water Table	
	Figure 17	Dissolved Chloroform Distribution, MBFC	
	Figure 18	Dissolved Chloroform Distribution, Gage	
	Figure 19	Dissolved Chloroform Distribution, Lynwood	
	Figure 20	Dissolved Benzene Distribution, Water Table	
	Figure 21	Dissolved Benzene Distribution, MBFB	
	Figure 22	Dissolved Benzene Distribution, MBFC	
	Figure 23	Dissolved Benzene Distribution, Gage	
	Figure 24	Dissolved Benzene Distribution, Lynwood	
	Figure 25	Dissolved TBA Distribution, Water Table	
	Figure 26	Dissolved TBA Distribution, MBFB	
	Figure 27	Dissolved TBA Distribution, MBFC	
	Figure 28	Dissolved TBA Distribution, Gage	
	Figure 29	Dissolved TBA Distribution, Lynwood	
	Figure 30	Dissolved PCE Distribution, Water Table	
	Figure 31	Dissolved PCE Distribution, MBFC	
	Figure 32	Dissolved PCE Distribution, Gage	
	Figure 33	Dissolved PCE Distribution, Lynwood	
	Figure 34	Dissolved TCE Distribution, Water Table	
	Figure 35	Dissolved TCE Distribution, MBFB	

Figure 36 Dissolved TCE Distribution, MBFC
Figure 37 Dissolved TCE Distribution, Gage
Figure 38 Dissolved TCE Distribution, Lynwood

LIST OF APPENDICES

Appendix A Field Sampling Logs Appendix B Waste Management Appendix C Historic Water Level Summary Table Appendix D (Not Used) Appendix E Chlorobenzene, pCBSA, and Chloroform Graphs Appendix F Benzene Graphs Appendix G Benzene Biodegradation Analysis Appendix H PCE and TCE Graphs Appendix I Data Validation. Appendix J Laboratory Reports (compact disc for hard copy reports)

ACRONYMS AND ABBREVIATIONS

bgs Below ground surface

CO₂ Carbon dioxide

COC Constituent of concern

DDT Dichlorodiphenyltrichloroethane
DNAPL Dense Non-Aqueous Phase Liquid

DO Dissolved oxygen

EDD Electronic Data Deliverable

Fe³⁺ Ferric iron ft Feet

Gage Gage Aquifer gpm Gallons per minute

ILMInternational Light MetalsISGSIn-Situ Groundwater StandardsJCIJones Chemical Incorporated

LCS/LCD Laboratory control sample/laboratory control sample duplicate

Lynwood Aquifer

MS/MSD Matrix Spike/Matrix Spike Duplicate
MACP Monitoring and Aquifer Compliance Plan
MACR Monitoring and Aquifer Compliance Report

MBFB Middle Bellflower B Sand MBFC Middle Bellflower C Sand

Mn⁴⁺ Manganese IV

Montrose Chemical Corporation of California

MSL Mean Sea Level

NAPL Non-aqueous Phase Liquid NAVD North American Vertical Datum NGVD National Geodetic Vertical Datum

NPL National Priorities List

NO₃ Nitrate

ORP Oxygen reduction potential

pCBSA Para-Chlorobenzene Sulfonic Acid

PCE Tetrachloroethene

QA/QC Quality Assurance/Quality Control

ROD Record of Decision

RPD Relative percent difference

Site Dual Site Groundwater Operable Unit

SO₄²- Sulfate

TBA Tert-butyl alcohol TCE Trichloroethene

TGRS Torrance Groundwater Remediation System

TI Technical Impracticability

μg/L Micrograms per liter

ACRONYMS AND ABBREVIATIONS

USEPA United States Environmental Protection Agency

UBF Upper Bellflower Aquitard VOC Volatile Organic Compound

EXECUTIVE SUMMARY

This Monitoring and Aquifer Compliance Report (MACR) presents the results of the Second Baseline Groundwater Monitoring Event completed in September through October 2015 for the Montrose Chemical and Del Amo Superfund Sites, Dual Site Groundwater Operable Unit located in Los Angeles, California (hereafter referred to as "the Dual Site", Figure 1). The groundwater monitoring event was conducted in accordance with United States Environmental Protection Agency (USEPA) approved Monitoring and Aquifer Compliance Plans (MACP) prepared by each party.

This Second Baseline Groundwater Monitoring Event focused on the measurement of groundwater levels and the collection of groundwater samples for laboratory analysis. This report was prepared cooperatively between consultants retained by the Montrose Chemical and Del Amo Superfund Sites. In addition, data collected by others at other properties (e.g., Boeing, International Light Metals, and Jones Chemical, etc.) have been incorporated into this report.

The horizontal and vertical hydraulic gradients remain generally consistent with the prior baseline monitoring event in 2014. Although concentrations increased or decreased in some wells, the overall extent of Dual Site chemicals are generally consistent with the prior baseline event conducted in 2014.

1 INTRODUCTION

This Monitoring and Aquifer Compliance Report (MACR) presents the results of the Second Baseline Groundwater Monitoring Event completed in September through October 2015 for the Montrose Chemical and Del Amo Superfund Sites, Dual Site Groundwater Operable Unit located in Los Angeles, California (hereafter referred to as "the Dual Site", Figure 1). The groundwater monitoring was conducted at the direction of United States Environmental Protection Agency (USEPA), and in accordance with the USEPA approved Monitoring and Aquifer Compliance Plans (MACP) prepared by each party (AECOM, 2014) (URS, 2014).

The 2015-Second Baseline Groundwater Monitoring Event focused on the measurement of groundwater levels and the collection of groundwater samples for laboratory analysis. This report was prepared cooperatively between consultants retained by the Montrose Chemical and Del Amo Superfund Sites. In addition, data collected by others at other properties (e.g., Boeing, International Light Metals, and Jones Chemical, etc.) have been incorporated into this report.

This report was jointly prepared by Montrose and Del Amo at the direction of the USEPA. Montrose and Shell are each responsible only for the data they individually collected, and any statements regarding Del Amo or Montrose constituents of concern (COC) are attributable only to, respectively, Del Amo or Montrose. Nor does Montrose or Del Amo by virtue of publishing this joint MACR necessarily agree with all interpretations made by the other party. Data provided by third parties has not been validated, but is presented for informational purposes only, per direction by the USEPA. Interpretation of data presented by either Montrose or Del Amo was done independently, and by virtue of publishing this joint MACR, and may not express the views of the other party.

The Dual Site Groundwater Operable Unit consists of the groundwater portions of the Montrose Amo Superfund Sites. Montrose manufactured technical and grade dichlorodiphenyltrichloroethane (DDT) at their facility from 1947 to 1982. Chlorobenzene and para-chlorobenzene sulfonic acid (pCBSA) are the principal groundwater COC associated with the Montrose facility. The Del Amo facility was constructed in 1942 by the U.S. Government in support of World War II activities (i.e., rubber production), operated until 1972 when it ceased operations and was sold to a land development company. Benzene is the principal groundwater COC associated with the Del Amo facility. The USEPA issued a Record of Decision (ROD) in March 1999 (USEPA, 1999) for a joint groundwater remedy that included remedial actions for both facilities.

The Dual Site is located in an industrialized area within the City of Los Angeles (Harbor Gateway) and is surrounded by other environmental sites that have contributed to the groundwater impacts in the vicinity of the Dual Site. The locations of these other environmental

sites in relation to the Dual Site are also shown on Figure 1. These other sites include, but are not limited, to the list below, along with their associated principal COCs.

- The former Boeing C-6 Facility: this site is located north of the Montrose Property. The groundwater beneath this facility is impacted with chlorinated volatile organic compounds (VOC), primarily trichloroethene (TCE).
- The PACCAR and American Polystyrene Sites: these sites are located between the Boeing and Del Amo facilities. The groundwater beneath these facilities is impacted with chlorinated VOCs, primarily TCE.
- The former ILM facility: this site is located northwest of the Montrose Property. The groundwater beneath this facility is impacted with chlorinated VOCs, primarily TCE.
- The Jones Chemical, Inc. (JCI) facility: this site is located south of the Montrose Property. The groundwater beneath this facility is impacted with chlorinated VOCs, primarily tetrachloroethene (PCE) and TCE.

Data provided by third parties has not been validated, but is presented for informational purposes only, per direction by the USEPA.

Monitor wells that were included in the 2015 Second Baseline Groundwater Monitoring Event (wells that are associated with the Dual Site and the other environmental sites) are listed in Table 1, with the corresponding water levels measured during this event. Field logs from the sampling event are provided in Appendix A. Waste management records are provided in Appendix B.

The hydrology of the Site is presented in Section 1.1 below; water levels within each hydrologic unit are presented in Figures 3 through 7. Historic water levels for the Site are presented in Appendix C.

The principal COCs for the Dual Site and the other environmental sites, as noted above, are chlorobenzene, pCBSA, chloroform, benzene, TCE, and PCE. The other COC being monitored at the Dual Site is tert-butyl alcohol (TBA). These COCs, with the corresponding concentrations measured during this event, are listed in Table 2 (VOCs) and Table 3 (pCBSA). Quality Control and Quality Assurance (QA/QC) data for the analytical sampling portion of this event are presented in Table 4. Historic concentrations of these COCs and other pertinent compounds are provided by access to the project portal.

The 1999 Dual Site ROD established a pump and treat groundwater remedy for the Site. This is termed the Torrance Groundwater Remediation System (TGRS), described in Section 1.2 and depicted in Figure 2.

Also in the 1999 Dual Site ROD, USEPA designated a technical impracticability zone (TI-Waiver Zone; also referred to as the containment zone) due to the overlapping chlorobenzene

and benzene non-aqueous phase liquid (NAPL) zones where remediation of groundwater to insitu groundwater standards (ISGS) is not achievable. In the vicinity of the Site, the TI-Waiver Zone was based on the known extent of the benzene plume at the time the 1999 Dual Site ROD was written. The extent of the TI-Waiver zone in the upper Bellflower aquitard, Bellflower sand and Gage Aquifer are shown on the plume concentration contour figures, Figures 8 through 38.

1.1 Site Hydrology

The subsurface in the vicinity of the Site includes the Bellflower Aquitard and the underlying Gage and Lynwood aquifers. The water-bearing units of the Bellflower Aquitard are the Upper Bellflower (UBF), Middle Bellflower B Sand (MBFB), and the Middle Bellflower C Sand (MBFC). The hydrologic units associated with the Dual Site Operable Unit are briefly summarized below (from shallowest to deepest):

Water Table:

The uppermost water-bearing unit at the Dual Site is the UBF. The UBF is saturated at both the Montrose and Del Amo sites but unsaturated at the ILM and Boeing sites. At the Montrose site, the UBF occurs from approximately 60 to 95 feet bgs and is characterized by interbedded layers of fine-grained sand and silt/clay, and from approximately 95 to 105 feet bgs, is predominantly composed of silty sand. At the Del Amo site, the UBF is not as thick and is underlain by the Middle Bellflower B Sand (MBFB) within this depth interval. The MBFB is the uppermost water-bearing unit at the ILM and Boeing sites. Water Table figures in this report contain data from both the UBF and MBFB wells, where appropriate. The MBFB is confined at the Del Amo site, and thus, the MBFB is not a component of the Water Table underlying the Del Amo site.

Middle Bellflower B Sand (MBFB):

The MBFB is a fine-grained sand with minor muddy layers and laminations. This unit is present within the western portion of the Del Amo site and has an average thickness of approximately 15 feet. The aquitard underlying the MBFB tapers out toward the central portion of the Del Amo site, where the MBFB and MBFC merge and occur as one water-bearing unit over a significant portion of the Del Amo site. The MBFB is between 20 and 30 feet thick and unconfined at the ILM and Boeing sites.

<u>Middle Bellflower C Sand (MBFC):</u> The MBFC directly underlies the UBF/MBFB and typically occurs from approximately 105 to 130 feet bgs. The MBFC is predominantly composed of fine-grained sand with increasing grain size towards the bottom of the unit. The MBFC is a confined aquifer with water levels only slightly deeper than in the UBF.

<u>Gage Aquifer (Gage)</u>: The Gage Aquifer underlies the MBFC and typically occurs from approximately 140 to 200 feet bgs. The Lower Bellflower Aquitard separates the two aquifer units. The Gage is predominantly composed of fine-grained sand with decreasing grain size

towards the bottom of the unit and is relatively homogeneous at the Site. The Gage is a confined aquifer unit with water levels typically 1 to 2 feet deeper than in the MBFC.

<u>Lynwood Aquifer (Lynwood)</u>: The Lynwood Aquifer underlies the Gage and typically occurs beginning at a depth of approximately 230 feet bgs. The Gage-Lynwood Aquitard separates the two aquifer units. The upper portion of the Lynwood is predominantly composed of fine to medium-grained sand, while underlying portions are predominantly composed of well-graded sands, gravelly sands, and sandy gravels. The Lynwood is a confined aquifer with water levels approximately 10 feet deeper than in the Gage.

1.2 Description of Torrance Groundwater Remediation System

Pursuant to the requirements of the ROD, the groundwater remedy for the Site involves pumping, treating, and re-injecting as close as feasible to 700 gallons per minute (gpm) of groundwater from three water-bearing zones as follows:

- Water Table extraction from two wells: UBA-EW-1 and UBA-EW-3.
- MBFC extraction from five wells: BF-EW-1 through BF-EW-5.
- Gage extraction occurs from four wells: G-EW-1 through G-EW-4.

Groundwater extracted from the above-referenced 11 wells will be conveyed through underground pipelines to the Montrose Property for treatment. At the Montrose Property, the groundwater will be treated using a combination of advanced oxidation (HiPOxTM), air stripping, and carbon adsorption to remove dissolved VOCs and pCBSA as needed to comply with the reinjection and ISGS as established in the ROD. The treated groundwater will be pumped through additional conveyance pipelines to seven Gage Aquifer injection wells located along the western and eastern flanks of the chlorobenzene plume including G-IW-1 through G-IW-7. The location of the groundwater extraction/injection well network and associated conveyance pipelines is provided in Figure 2. The TGRS is expected to operate an estimated 30 to 50 years to reduce chlorobenzene concentrations to below the ISGS in water-bearing units outside the TI Waiver Zone extent. Phase 2 functional testing of the TGRS performed in November 2015 demonstrated that the TGRS can meet ISGS and injection standards. USEPA has delayed startup of the TGRS pending completion of an anti-degradation analysis.

1.3 Description of Monitor well Network

There is an extensive monitor well network present in the vicinity of the Dual Site, concentrated on the Montrose, Del Amo, Boeing C-6, and ILM sites. A smaller number of groundwater monitor wells is present at the JCI, PACCAR, and American Polystyrene sites. Monitor wells included in the Second Baseline Groundwater Monitoring Event are listed in Table 1.

Routine groundwater monitoring is not currently conducted at the PACCAR and American Polystyrene sites. (Note: at the request of USEPA, some limited historical data from the PACCAR and American Polystyrene sites are used in the PCE and TCE water-table isoconcentration maps, shown as "Amoco/Trico" data. This is described more within the PCE and TCE discussions, later in the report.) As part of this 2015 sampling, JCI conducted sampling of three wells at their property. Additionally, the remedial investigations at certain sites, including JCI, PACCAR and American Polystyrene sites are not yet complete. The combined monitor well network from all Responsible Parties and surrounding facilities is extensive (more than 330 wells) and provides a comprehensive set of data for characterizing groundwater impacts and monitoring remedy progress at the Dual Site.

1.4 Monitoring Objectives

The overall objective of the monitoring program is to collect reliable and sufficient groundwater data for monitoring remedy performance and demonstrating compliance with the objectives established in the ROD (USEPA, 1999). The ROD established a series of monitoring program objectives specific to hydraulic containment, plume reduction, and pCBSA monitoring as detailed in the respective MACPs (AECOM, 2014) (URS, 2014).

2 GROUNDWATER ELEVATIONS AND FLOW

Between September and October 2015, groundwater levels were collected from 339 wells. The number of wells gauged by unit is described below:

- 151 water table wells, consisting of 40 Montrose wells, 46 Del Amo monitor wells, 39 Boeing monitor wells, 23 ILM monitor wells, and 3 JCI monitor wells
- 12 MBFB wells, all of which are Del Amo monitor wells
- 97 MBFC wells, consisting of 42 Montrose wells, 15 Del Amo monitor wells, 30 Boeing monitor wells, and 10 ILM monitor wells
- 73 Gage Aquifer wells, which includes 48 Montrose wells, 10 Del Amo Superfund monitor wells, 6 Boeing monitor wells, and 9 ILM monitor wells
- 6 Lynwood Aquifer wells

Groundwater levels were measured from the surveyed top of casing. Depth to groundwater measurements were converted to groundwater elevations relative to mean sea level (MSL) using surveyed elevations for fixed measuring points at each monitoring location. Groundwater levels and elevations for all gauged wells are provided in Table 1. Montrose top-of-casing elevations are based on the National Geodetic Vertical Datum (NGVD) 29. The surveyed top of casing elevations for the wells owned by Boeing, ILM, and JCI are based on the North American Vertical Datum (NAVD) 88. The difference in the two survey datum points is approximately 2.45 feet. Consequently, the groundwater elevations reported for the Boeing, ILM, and JCI wells were corrected by subtracting 2.45 feet. The elevations shown in Table 1 and the figures are the corrected values for NGVD 29. For the discussion below, especially as it relates to ranges in water levels, the focus is on the Dual Site Monitor wells.

TGRS extraction wells were not operating within 48-hours of the gauging event. However, seven Boeing extraction wells (EWB003, MW0005, WCC-07S, EWC003, EWC005, EWG001 and EWG002) were operating; this causes a localized depression around EWB003 and MW005, shown on water table and MBFC groundwater elevation maps.

2.1 Water Table

The depth to groundwater in the Dual Site Water Table monitor wells ranged from 29.52 (PZL0007) to 65.02 feet (ft) (MW-8). Groundwater elevations ranged from +1.69 feet mean sea level (MSL) at PZL0019 to -20.76 ft MSL at SWL0042. Groundwater elevations are provided in Table 1 and mapped in Figure 3. The localized affect from the operating Boeing extraction wells EWB003 and MW005, north of the Montrose property, is shown on Figure 3.

The horizontal hydraulic gradient in the Water Table across the Dual Site is relatively small at approximately 0.00192 ft/ft in a generally southerly direction. This is an increase compared to 0.0002 ft/ft measured in 2014, and 0.0003 ft/ft measured in 2012.

Groundwater elevations in Dual Site Water Table wells have risen by approximately 0.25 ft since the groundwater event in 2014, from an average elevation of -9.83 ft MSL to an average of -9.58 ft MSL in 2015.

2.2 MBFB

The depth to groundwater in the Dual Site MBFB monitor wells ranged from 35.69 (SWL0019) to 53.70 feet (SWL0032). Groundwater elevations ranged from -10.16 ft MSL at SWL0047 to -12.03 ft MSL at SWL0032. Groundwater elevations are provided in Table 1 and mapped in Figure 4.

The horizontal hydraulic gradient in the MBFB across the Dual Site is relatively small at approximately 0.0004 ft/ft in a generally southeasterly direction. This is generally consistent with 0.0005 ft/ft measured in 2014, and 0.0003 ft/ft measured in 2012.

Groundwater elevations in Dual Site MBFB wells have decreased by approximately 0.11 ft since the groundwater event in 2014, from an average elevation of –10.97 ft MSL to an average of –11.07 ft MSL in 2015.

2.3 MBFC

The depth to groundwater in the Dual Site MBFC monitor wells ranged from 33.54 (BF-15) to 65.78 ft (BF-34). Groundwater elevations ranged from -9.59 ft MSL at SMW0013 to -13.45 ft MSL at BF-36. Groundwater elevations in the MBFC are provided in Table 1 and mapped in Figure 5. The localized affect from the operating Boeing extraction wells EWB003 and MW005, north of the Montrose property, is shown on Figure 5.

The horizontal hydraulic gradient in the MBFC downgradient from the Dual Site is approximately 0.0003 to 0.0004 ft/ft in a south/southeasterly direction. The hydraulic gradient increases slightly to the southeast (i.e., from 0.0004 to 0.0005 ft/ft). The horizontal gradient is consistent with the gradient previously measured in 2012 and 2014.

Groundwater elevations in the Dual Site MBFC monitor wells have risen by approximately 0.22 ft since the groundwater event in 2014, from an average elevation of -11.09 ft MSL to an average of -10.87 ft MSL in 2015.

2.4 Gage

The depth to groundwater in the Dual Site Gage monitor wells ranged from 34.33 ft (G-08) to 66.05 ft (G-20). Groundwater elevations ranged from -10.19 ft MSL at G-30 to -16.8 ft MSL at G-32. Groundwater elevations in the Gage Aquifer are provided in Table 1 and mapped in Figure 6.

The horizontal hydraulic gradient in the Gage Aquifer downgradient from the Dual Site is approximately 0.0003 to 0.0004 ft/ft in a southeast/easterly direction. This horizontal gradient is consistent with the gradient previously measured in 2014 and 2012.

Groundwater elevations in the Dual Site Gage monitor wells have risen by approximately 0.35 ft since the groundwater event in 2014, from an average of -12.32 ft MSL to an average of -11.97 ft MSL in 2015.

2.5 Lynwood

The depth to groundwater in the Dual Site Lynwood monitor wells ranged from 60.13 ft (L-03) to 68.25 ft (L-07). Groundwater elevations ranged from -19.56 ft MSL at LW-01 to -19.85 ft MSL at LW-02. Groundwater elevations in the Lynwood Aquifer are provided in Table 1 and mapped in Figure 7.

The horizontal hydraulic gradient in the Lynwood Aquifer at the Dual Site is approximately 0.0001 ft/ft in a northeasterly direction. This horizontal hydraulic gradient is identical to the gradient previously measured in 2014 and 2012.

Groundwater elevations in the Site Lynwood monitor wells have risen by approximately 1.75 ft since the monitoring event in 2014, from an average of -21.46 ft MSL to an average of -19.71 ft MSL in 2015.

2.6 Vertical Gradients

The vertical hydraulic gradient between aquifer units was calculated by dividing the difference in groundwater elevations with the difference in screened intervals at paired or co-located wells. The vertical hydraulic gradients between aquifer units at the site are downward and increase with increasing depth as follows:

Water Table to confined MBFB underlying the Del Amo property:

The vertical hydraulic gradient between Water Table and MBFB is downward at approximately 0.085 ft/ft, ranging between approximately 0.038 and 0.094 ft/ft. The vertical head difference between water elevations is approximately 0.75 to 2.55 ft.

<u>UBF to MBFC</u>: The vertical hydraulic gradient between the UBF and MBFC is downward and averages approximately 0.013 ft/ft, ranging between approximately 0.001 and 0.030 ft/ft. The vertical head difference between water elevations is approximately 0.07 to 0.56 ft, which is consistent with the head difference reported previously (i.e., 0.1 to 0.6 feet in 2014).

MBFC to Gage: The vertical hydraulic gradient between the MBFC and Gage Aquifer is downward and averages approximately 0.032 ft/ft, ranging between approximately 0.010 and 0.056 ft/ft. The vertical head difference between water elevations ranges between approximately 0.2 and 1.24 ft, which is within the range previously measured (i.e., 0.56 to 1.24 feet in 2014).

Gage to Lynwood: The vertical hydraulic gradient between the Gage and Lynwood Aquifers is downward and averages approximately 0.20 ft/ft, ranging between approximately 0.136 and 0.343 ft/ft. The vertical head difference between water elevations ranges between approximately 8.3 and 10 ft, which is on the lower range of head differences previously reported (i.e., between approximately 10 and 11 feet in 2006, 2012, and in 2014).

3 CHLOROBENZENE, PCBSA, AND CHLOROFORM DISTRIBUTION

During the 2015 Second Baseline Groundwater Monitoring Event, 284 wells were sampled at the Dual Site and at the JCI, ILM, and Boeing properties; all samples were analyzed for VOCs and 138 samples were analyzed for pCBSA.

TGRS extraction wells were also sampled during 2015, but separately from the baseline event. These data are included in this report to assist in describing the conditions at the Site prior to the startup of the TGRS. TGRS extraction wells were sampled between February 2015 and November 2015. These data are included with the baseline data in Tables 1 and 2, and on the isoconcentration figures.

A summary of sampling methods is provided in Section 3.1. The sampling results for chlorobenzene, pCBSA, and chloroform, per hydrographic unit, are presented in sections 3.2 through 3.4, respectively.

The concentrations of chlorobenzene and chloroform are summarized in Table 2. The pCBSA concentrations are summarized in Table 3. Isoconcentration maps of chlorobenzene, pCBSA, and chloroform, per hydrographic unit, are provided as Figures 8 through 19. As a reminder, the UBF as defined at the Montrose, ILM, and Boeing Sites is hydrogeologically consistent with the MBFB; together these are termed in this report as the "water table", as it relates to these specific sites. Therefore, for the three COCs of this section (Section 3), there is no separately contoured concentration map for the MBFB.

As described in the ROD, "Chlorobenzene plume refers to the entire distribution of chlorobenzene in groundwater at the Joint Site, and all other contaminants that are commingled with the chlorobenzene. Benzene, TCE, PCE, and a variety of other contaminants are present within the chlorobenzene plume. The chlorobenzene plume is present in the MBFB Sand (note that the UBF is generally not saturated in the area where the chlorobenzene plume occurs), the MBFC Sand, the Lower Bellflower Aquitard (LBF), the Gage Aquifer, the Gage-Lynwood Aquitard, and the Lynwood Aquifer, based on data collected in the remedial investigation."

Montrose is responsible only for the data they individually collected, and any statements regarding Montrose COCs described in this section are attributable only to Montrose.

3.1 Sampling and Analytical Methods

Groundwater samples were collected using low flow sampling methods per the AECOM 2014 MACP, and in compliance with established USEPA protocols (USEPA, 1996). A low flow bladder pump, dedicated tubing, and a compressed nitrogen cylinder were used to collect groundwater samples from the middle of the well screen. The pump was positioned in the middle of the well screen, and the well purged at a low flow between 100 and 400 milliliters per minute.

The water level in the well was gauged to verify no or minimal drawdown during purging. The purge times for wells sampled in accordance with the AECOM 2014 MACP, were generally from a minimum of 20 minutes, ranging up to close to one hour. With the exception of well MW-23, the drawdown during low flow purging was generally close to zero and significantly less than 0.33 ft. In rare instances (e.g., MW-23 and MW-01), turbidity measurements did not reach the targeted 20 Nephelometric turbidity units prior to sampling. Additional refinements and improvements will be made to the field sampling protocols as the MACP program progresses. Groundwater data generated during well purging were recorded on a field purge log, which are presented in **Appendix A**.

Before and after each well, the stainless steel components were decontaminated utilizing a standard triple rinse method and non-phosphate detergent, and the disposable bladder and tubing were replaced. Only distilled water was utilized during decontamination procedures; Site water was not used during any portion of the field operations. Decontamination and purge water was pumped to the TGRS for processing.

Following purging, groundwater samples were collected directly from the pump tubing using laboratory-supplied sample containers which were filled with no void or trapped air space. Sample containers were labeled, packed in coolers, and transferred to a courier to be transported to Eurofins CalScience Environmental Laboratory under proper chain-of-custody procedures.

3.2 Chlorobenzene

3.2.1 Water Table

A total of 139 Water Table wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chlorobenzene by USEPA Method 8260B from wells screened in the Water Table. Monitor well MW-2, located within the DNAPL impacted area, is included for the purposes of characterizing the dissolved chlorobenzene concentration.

Chlorobenzene concentrations in the Water Table varied from 0.28 (J) micrograms per liter (μ g/L) at MW-10, to 230,000 μ g/L at MW-2. Concentrations that exceeded the ISGS of 70 μ g/L were detected. Chlorobenzene results from Water Table samples are provided in Table 2 and mapped in Figure 8. UBF extraction well data collected throughout 2015 are also presented in Table 2 and Figure 8.

Chlorobenzene concentrations in the Water Table were generally consistent with historical results. Concentrations in SWL0049 have continued to decline back within historical ranges. Distribution of chlorobenzene in the Water Table remains relatively unchanged from the 2014 baseline groundwater monitoring event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.2.2 MBFC

A total of 83 MBFC wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chlorobenzene by USEPA Method 8260B.

Chlorobenzene concentrations in the MBFC varied from 0.25 (J) μ g/L at BF-05 to 72,000 μ g/L at BF-09. Concentrations exceeding the ISGS of 70 μ g/L were detected. Chlorobenzene results from MBFC samples are provided in Table 2 and mapped on Figure 9. MBFC extraction well data collected throughout 2015 are also presented in Table 2 and Figure 9.

Chlorobenzene concentrations in the MBFC were generally consistent with historical results with the exception of results from BF-11, which for the second consecutive year showed a chlorobenzene concentration significantly below the historical range of 100 to 8,800 μ g/L. The 2014 result was 6.1 μ g/L and the 2015 result is 1.5 μ g/L.

The overall distribution of Chlorobenzene in the MBFC remains relatively unchanged from the 2014 baseline Groundwater Monitoring Event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.2.3 Gage

A total of 56 Gage wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chlorobenzene by USEPA Method 8260B.

Concentrations in the Gage Aquifer varied from 0.63 (J) $\mu g/L$ at G-28 to 8,100 $\mu g/L$ at G-02. Concentrations exceeding the ISGS of 70 $\mu g/L$ were detected. Chlorobenzene results from Gage samples are provided in Table 2 and are mapped in Figure 10. Data from Gage extraction well samples collected throughout 2015 are also presented in Table 2 and Figure 10.

Chlorobenzene concentrations in the Gage monitor wells were generally consistent with historical results. Well G-25 contained 1,600 μ g/L in the October 2015 sample; historically chlorobenzene had ranged from 30 to 910 μ g/L. With the exception of the affect of G-25 toward the west, the overall distribution of Chlorobenzene in the Gage remains relatively unchanged from the 2014 Baseline Groundwater Monitoring event. Concentration-versus-time graphs of select wells are presented in Appendix E. Monitor well G-25 will be recommended for confirmation sampling.

3.2.4 Lynwood

Chlorobenzene was detected in five of the six samples collected from Lynwood monitor wells that were analyzed for chlorobenzene by USEPA Method 8260B. Each detected concentration was below the ISGS. Concentrations in the Lynwood aquifer were generally consistent with historical results and the results from the 2014 Baseline Groundwater Monitoring Event. The overall distribution of chlorobenzene in the Lynwood remains relatively unchanged from the prior groundwater monitoring events. Results from Lynwood samples are provided in Table 2 and are mapped in Figure 11.

3.2.5 Dense Non-Aqueous Phase Liquid (DNAPL)

A DNAPL composed of chlorobenzene and DDT is present at the Montrose site within the UBF. Based on samples collected between 1998 and 2009, the DNAPL is composed of approximately 50 percent chlorobenzene, 50 percent DDT, and less than 1% other chemicals including chloroform, 1,4-dichlorobenzene, methyl ethyl ketone, and pCBSA (AECOM, 2013). DNAPL has been definitively detected in the unsaturated zone and saturated UBF, predominantly at depths ranging from approximately 75 to 95 ft bgs. The majority of the observed DNAPL is perched on low permeability silt layers within the UBF.

The possible presence of DNAPL in the saturated UBF occurs over an area of approximately 160,000 square feet and is most predominant within the former Central Process Area (CPA) at the Montrose site. DNAPL extends east of the former CPA due to migration along the top of low permeability silt layers in the down-slope direction. DNAPL has historically been recovered from seven UBF wells at the Montrose site including MW-2, UBT-1 through UBT-3, UBE-1, UBE-4, and UBE-5. Mobile DNAPL continues to passively accumulate in several of these wells at the Montrose site and is periodically purged. MW-2 is the only UBF monitor well within the DNAPL-impacted area that was sampled during the Second Baseline Groundwater Monitoring Event and serves to characterize this source area.

Other than dissolved-phase concentrations exceeding 1 percent of the solubility limit, there is no direct evidence that DNAPL is present in the underlying MBFC. No DNAPL has been observed accumulating in any MBFC wells, and the presence of chlorobenzene in the MBFC at concentrations greater than 1 percent of the solubility limit can be attributed to vertically downward hydraulic groundwater gradients between the UBF and MBFC.

3.3 pCBSA

3.3.1 Water Table

Samples were collected from 45 Water Table wells for analysis by modified USEPA Method 314.0 for pCBSA pCBSA was detected at concentrations that ranged between 3.5 μ g/L (J) at

MW-22, and 670,000 μ g/L at MW-1. (The concentration of pCBSA at UBA-EW-1 was most recently measured in November 2015 to be 530,000 μ g/L, and has ranged up to 630,000 μ g/L, as measured in March 2015.) pCBSA results from Water Table wells are provided in Table 3and are mapped on Figure 12. UBF extraction well data are also provided in Table 2 and on Figure 12.

pCBSA concentrations in the Water Table were generally consistent with historical results. The overall distribution of pCBSA in the water table remains relatively unchanged from the 2014 baseline monitoring event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.3.2 MBFC

Samples were collected from 45 MBFC wells for analysis by modified USEPA Method 314.0 for pCBSA. Concentrations in MBFC monitor wells varied from 4.3 μ g/L (J) at SWL0013 to 380,000 μ g/L (H) at BF-09. pCBSA results from MBFC samples are provided in Table 3, and are mapped on Figure 13. MBFC extraction-well data are also provided in Table 3 and on Figure 13

pCBSA concentrations in the MBFC were generally consistent with historical results with the exception of BF-01; the pCBSA concentration of 2,000 μ g/L is above the historical range (<50 μ g/L in 2004, 2005, and 2104). BF-01 will be recommended for confirmation sampling. With the exception of BF-01, the overall distribution of pCBSA in the MBFC remains relatively consistent with historical results. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.3.3 Gage

Samples were collected from 42 Gage monitor wells for analysis by modified USEPA Method 314.0 for pCBSA. Concentrations in the Gage monitor wells varied from $<5 \mu g/L$ at several wells to 37,000 $\mu g/L$ at SWL0034. pCBSA results from Gage samples are provided in Table 3 and are mapped on Figure 14. Gage extraction-well data are also provided in Table 3 and on Figure 14.

pCBSA concentrations in the Gage Aquifer were generally consistent with historical results with the exception of LG-01, with a concentration of 170 μ g/L, which is significantly below the historical range (11,000 – 26,000 μ g/L between 2004 and 2014). LG-01 will be recommended for confirmation sampling. With the exception of LG-01, the overall distribution of pCBSA in the Gage remains relatively with historical results. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.3.4 Lynwood

Samples were collected from all six Lynwood Aquifer monitor wells and analyzed for pCBSA by USEPA Method 314.0 Modified. pCBSA concentrations in the Lynwood Aquifer varied from $<\!5~\mu g/L$ at two wells to 220 $\mu g/L$ at LW-4. pCBSA results are provided in Table 3 and Lynwood concentrations are mapped on Figure 15. pCBSA concentrations in the Lynwood Aquifer were generally consistent with historical results.

3.4 Chloroform

3.4.1 Water Table

A total of 139 Water Table wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chloroform by USEPA Method 8260B. Chloroform concentrations in the Water Table varied from 0.26 (J) μ g/L at MWB013, to 50,000 μ g/L at UBA-EW-1. Concentrations exceeding the ISGS of 100 μ g/L were detected. Chloroform results from Water Table wells are provided in Table 2 and are mapped in Figure 16, including data from water-table extraction wells collected throughout 2015.

Chloroform concentrations in the water table were generally consistent with historical results. Distribution of chloroform in the water table remains relatively unchanged from the 2014 Baseline Groundwater Monitoring Event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.4.2 **MBFC**

A total of 83 MBFC wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chloroform by USEPA Method 8260B. Chloroform concentrations in the MBFC varied from 0.41 (J) μ g/L at MWC028, to 4,900 μ g/L at BF-09. Concentrations exceeding the ISGS of 100 μ g/L were detected. Chloroform results from MBFC wells are provided in Table 2 and mapped in Figure 17, including data from MBFC extraction wells collected throughout 2015.

Chloroform concentrations in the MBFC were generally consistent with historical results with the exception of BF-09, which was measured to contain 4,900 μ g/L compared to 930 in 2014 and 260 in 2008. Distribution of chloroform in the MBFC remains relatively unchanged from the 2014 Baseline Groundwater Monitoring Event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.4.3 Gage

A total of 56 Gage wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for chloroform by USEPA Method 8260B. Chloroform concentrations in the Gage varied from < 1.0 (U) μ g/L at multiple wells to a detected high of 1.9 μ g/L at G-31. No samples contained concentrations that exceeded the ISGS of 100 μ g/. Chloroform results from Gage wells, including extraction wells, are provided in Table 2 and are mapped in Figure 18.

Chloroform concentrations in the Gage were generally consistent with historical results. Distribution of chloroform in the Gage remains relatively unchanged from the 2014 Baseline Groundwater Monitoring Event. Concentration-versus-time graphs of select wells are presented in Appendix E.

3.4.4 Lynwood

Chloroform was not detected above the reporting limit of 1.0 μ g/L in any of the six Lynwood wells. Concentrations in the Lynwood aquifer were generally consistent with historical results and the results from the 2014 Baseline Groundwater Monitoring Event. The overall distribution of chloroform in the Lynwood remains relatively unchanged from the prior groundwater monitoring events. Results are provided in Table 2 and Lynwood concentrations are mapped in Figure 19.

4 BENZENE DISTRIBUTION

The distribution of dissolved benzene for the different hydrostratigraphic units is provided in Figures 20 through 24.

As described in the ROD, "Benzene plume refers to the portion of the distribution of benzene in groundwater at the Joint Site that is not commingled with chlorobenzene. Put another way, the benzene plume is that benzene within the Joint Site that lies outside the chlorobenzene plume. The benzene plume occurs in the Upper Bellflower, the MBFB Sand, the MBFC Sand, and may occur in the LBF, based on data collected in the remedial investigation. Benzene that is commingled with chlorobenzene is not considered to be part of the benzene plume, but is instead part of the chlorobenzene plume. The benzene plume includes ethyl benzene and naphthalene, among other contaminants."

Different colored isoconcentration lines have been used to illustrate benzene distribution, both within and outside of the Dual Site. Blue isoconcentration lines represent benzene concentrations within the benzene plume, green isoconcentration lines represent benzene concentrations within the chlorobenzene plume, and brown isoconcentration lines represent a benzene plume not within the Dual Site.

Del Amo is responsible only for the data they individually collected, and any statements regarding Del Amo COCs discussed in this section are attributable only to Del Amo.

4.1 Sampling and Analytical Methods

Groundwater samples were collected using low flow sampling methods per the 2014 URS MACP, and in compliance with established USEPA protocols (USEPA, 1996). A low flow bladder pump, dedicated tubing, and a compressed nitrogen cylinder were used to collect groundwater samples from the middle of the well screen. The pump was positioned in the middle of the well screen, and the well purged at a low flow between 100 and 400 milliliters per minute. The water level in the well was gauged to verify no or minimal drawdown during purging.

Before and after each well, the stainless steel components were decontaminated utilizing a standard triple rinse method and non-phosphate detergent, and the disposable bladder and tubing were replaced. Only distilled water was utilized during decontamination procedures; Site water was not used during any portion of the field operations. Groundwater data generated during well purging were recorded on a field purge log, which are presented in Appendix A.

Purge water was stored in a temporary tank located at the Waste Pit OU pending waste profiling to determine appropriate off-site disposal. The purge water was subsequently transported by

American Integrated Services as hazardous waste to Evoqua Water Technologies in Vernon, California for treatment and recycling. The waste disposal manifest is provided in Appendix B. Following purging, groundwater samples were collected directly from the pump tubing using laboratory-supplied sample containers which were filled with no void or trapped air space. Sample containers were labeled, packed in coolers, and transferred to a courier to be transported to Eurofins CalScience Environmental Laboratory under proper chain-of-custody procedures. Samples were analyzed for benzene by USEPA method 8260.

4.2 Water Table

The Water Table dissolved benzene distribution and individual well concentration data are presented on Figure 20. The maximum benzene concentration was 470,000 μ g/L in well PZL0020 at the Del Amo site.

A statistical analysis was performed on benzene concentrations vs. time for wells (within the benzene plume) with multiple detections throughout the period of record, and included in the Second Baseline Groundwater Monitoring Event. A Mann-Kendall analysis was completed on data for wells in each aquifer to determine if there was a statistically significant trend. The Mann-Kendall p-values for each benzene dataset are summarized in Appendix F. If the p-value is less than 0.05, the estimated trend is a statistically significant fit to the data. A p-value greater than 0.05 suggests that the fit is not statistically significant. Wells within the Water Table with a statistically significant increasing or decreasing trend for benzene are indicated in the table below. For all other wells, the trend was either not statistically significant or there was insufficient data for analysis.

Benzene (Water Table) Statistically Significant Trends						
Well Name	Trend	Well Name	Trend			
PZL0001	Decreasing	SWL0044	Decreasing			
PZL0006	Decreasing	SWL0046	Decreasing			
PZL0011	Decreasing	SWL0051	Decreasing			
PZL0013	Decreasing	SWL0057	Decreasing			
PZL0016	Decreasing	MW-01	Decreasing			
PZL0024	Decreasing	MW-02HD	Decreasing			
PZL0025	Decreasing	MW-03HD	Decreasing			
SWL0003	Decreasing	MW-04HD	Decreasing			
SWL0004	Decreasing	MW-05	Decreasing			
SWL0005	Decreasing	MW-06	Decreasing			
SWL0008	Decreasing	MW-09	Decreasing			
SWL0016	Decreasing	MW-10	Decreasing			
SWL0017	Decreasing	MW-21	Decreasing			
SWL0024	Decreasing	MW-27	Decreasing			
SWL0038	Decreasing					

Historical data spreadsheets, concentration plots (for wells included in the Second Baseline Groundwater Monitoring Event) with linear time-series trend estimates (green line) and corresponding 95% confidence intervals (green dashed lines), and results pertaining to the Mann-Kendall trend test are provided in Appendix F for benzene.

4.3 MBFB

The MBFB dissolved benzene distribution and individual well concentration data are presented on Figure 21. Benzene was detected in MBFB wells at concentrations of up to 140,000 μ g/L, with the maximum concentration occurring in well SWL0048 at the Del Amo site.

A Mann-Kendall analysis was completed, as described in Section 4.1, to identify MBFB wells (included in the Second Baseline Groundwater Monitoring Event) with benzene concentration trends. The results of the analysis are summarized in the table below and associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix F.

Benzene (MBFB)						
Statistically Significant Trends						
Well Name	Trend	Well Name	Trend			
SWL0003	Decreasing	MW-09	Decreasing			
SWL0004	Decreasing	MW-10	Decreasing			
SWL0041	Decreasing	MW-11	Decreasing			
SWL0048	Increasing	MW-12	Decreasing			
SWL0049	Decreasing	MW-13	Decreasing			
MW-01	Decreasing	MW-21	Decreasing			
MW-05	Decreasing	MW-27	Decreasing			
MW-06	Decreasing	SWL0060	Increasing			

4.4 MBFC

The MBFC benzene distribution and individual well concentration data are presented on Figure 22. Benzene was detected in MBFC wells at concentrations of up to 240 μ g/L. The maximum concentration was detected in well SWL0060, which is completed in the MBFB/MBFC, which are merged in this area.

A Mann-Kendall analysis was completed, as described in Section 4.1, to identify MBFC wells (included in the Second Baseline Groundwater Monitoring Event) with benzene concentration

trends. The results of the analysis are summarized in the table below and associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix F.

Benzene (MBFC) Statistically Significant Trends				
Well Name	Trend			
SWL0054	Decreasing			
SWL0055	Decreasing			
SWL0058	Decreasing			
SWL0060	Increasing			
BF-13	Decreasing			

4.5 Gage

The Gage Aquifer benzene distribution and individual well concentration data are presented on Figure 23. Benzene was detected at concentrations of up to 41 μ g/L at SWL0063.

A Mann-Kendall analysis was completed, as described in Section 4.1, to identify Gage wells (included in the Second Baseline Groundwater Monitoring Event) with benzene concentration trends. The results of the analysis are summarized in the table below and associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix F.

Benzene (Gage)				
Statistically Significant				
Trends				
Well Name	Trend			
G-04	Decreasing			
G-13	Decreasing			

4.6 Lynwood

Benzene was analyzed in six Lynwood wells, as indicated on Figure 24. Benzene was not detected in any of these wells.

4.7 NAPL

NAPL was detected in MBFB well SWL0032 near the western Del Amo site boundary with a thickness of 2.15 feet during the Second Baseline Groundwater Monitoring Event. Historical data indicates this NAPL is composed almost entirely of benzene. NAPL was additionally detected at Water Table well PZL0019 at the Del Amo Waste Pits during the recent monitoring

event, exhibiting a thickness of 13.94 feet, although the actual thickness of the NAPL was difficult to measure due to the viscous nature of the material. Approximately 3.7 gallons of NAPL and water were purged from well PZL0019 during the 2015 event. Analytical results from 2014 indicate this NAPL is consistent with other historical analytical results for waste pit samples.

NAPL containing benzene has historically also been present in Water Table wells MW-20 and SWL0001, which are both located in close proximity to well SWL0032 (discussed previously) near the western boundary of the Del Amo site. Wells MW-20 and SWL0001 were not gauged or sampled during the Second Baseline Groundwater Monitoring Event.

4.8 Biodegradation Indicators

An analysis of biodegradation indicators was completed for the Second Baseline Groundwater Monitoring Event. The analysis was completed using data from four Water Table transects (Figure G-6) and one MBFB transect (Figure G-7).

Degradation of dissolved hydrocarbons can be facilitated by numerous degradation mechanisms, with one mechanism including certain species of microorganisms indigenous to the subsurface. These microbes obtain energy by metabolizing and breaking down hydrocarbons that have been introduced into the environment. The microbes extract energy by facilitating the transfer of electrons from the hydrocarbon (an electron donor) to oxidized elements in the environment that are electron acceptors. Common electron acceptors in the saturated zone include dissolved oxygen (DO), nitrate (NO₃⁻), manganese IV (Mn⁴⁺), ferric iron (Fe³⁺), sulfate (SO₄²⁻), and carbon dioxide (CO₂). Thus, depleted concentrations of these elements and compounds in hydrocarbon-impacted areas serve as indicators of biodegradation. In some cases, it can be more convenient and/or accurate to measure increased concentrations of the byproducts of the chemical oxidation process rather than decreased concentrations of the electron acceptors. For example, instead of measuring decreases in the concentrations of Fe³⁺ or CO₂, increases in concentrations of ferrous iron (Fe²⁺) and methane can be measured, which are equally valid biodegradation indicators. Additionally, elevated levels of alkalinity can be used as a general indicator of biodegradation.

Specific environmental conditions dictate which (if any) biodegradation pathways are active, and not all electron acceptors are necessarily present at a site. In general, microorganisms will utilize the most energetically favorable electron acceptors available. DO is typically utilized first since aerobic respiration is the most energetically favorable metabolic pathway. After DO is depleted, microorganisms begin metabolizing hydrocarbons through anaerobic pathways that utilize (in order of preference) NO₃-, Mn⁴⁺, Fe³⁺, SO₄²⁻, and CO₂.

Biodegradation indicator analyses completed for the Second Baseline Groundwater Monitoring Event included tests for DO, ORP, CO₂, methane, NO₃, SO₄²⁻, Fe²⁺, and total alkalinity. DO is

used in evaluating aerobic biodegradation. The laboratory analyses for nitrate, ferrous iron, sulfate, and methane are used in evaluating anaerobic biodegradation pathways. ORP provides a single measurement that reflects the overall tendency of the environment to support aerobic or anaerobic degradation pathways. The analyses for total alkalinity and c CO_2 can be used to evaluate either aerobic or anaerobic biodegradation pathways.

Locations for which biodegradation indicator analyses were completed included 13 Water Table wells along four transects and six MBFB wells along one transect, as indicated on Figures G-6 and G-7 in Appendix G, respectively. These transects generally provide data at locations upgradient of the dissolved benzene plume, within the dissolved benzene plume, at the downgradient fringe of the dissolved benzene plume, and down-gradient and/or cross-gradient of the dissolved benzene plume. Biodegradation indicator data are included in Table G-1 and graphs presenting the data relative to the transect lines and position of the wells relative to the plumes are presented in Figures G-1 through G-5.

A simplified summary of the biodegradation data is presented in the table below, wherein each of the indicators is identified with respect to the expected mid-plume value (where high benzene concentrations are present) relative to the values outside of the plume. An "X" denotes a strong indication (where the expected change is observed at all locations), and an "O" denotes a weaker indication (where the expected change is observed at some locations). A dash (-) indicates the data are not indicative of biodegradation for that pathway. "INS" indicates that the data is not sufficient to make a determination.

Biodegradation		Mid-plume	Transect Occurrences				
Process	Indicator	Biodegradation Indication	WT-1	WT-2	WT-3	WT-4	MBFB-1
	Oxygen Concentration	Reduced	О	X	О	X	X
Aerobic	Carbon Dioxide Concentration	Increased	О	X		0	X
	Ferrous Iron Concentration	Increased	X	X	О	X	О
Anaerobic	Methane Concentration	Increased	X	О	X	О	О
Allacionic	Nitrate Concentration	Decreased	X	INS	INS	X	INS
	Sulfate Concentration	Decreased	X	X	О	О	О
Overall	ORP value	Reduced	X	X	X	X	X
(Aerobic and Anaerobic)	Alkalinity	Increased	X	X	О	X	X

Conclusions

The following conclusions are reached regarding the dissolved benzene plume distribution from the Second Baseline Groundwater Monitoring Event:

• Water Table:

- Benzene detections associated with the Del Amo site are entirely within the TI-Waiver Zone
- o Based on Mann-Kendall trend test, 29 Del Amo wells were identified with a statistically significant decreasing benzene concentration trend and no wells were identified with a statistically significant increasing benzene concentration trend; confirming that the benzene plume is decreasing.

MBFB:

- Benzene detections associated with the Del Amo site are entirely within the TI-Waiver Zone.
- Based on the Mann-Kendall trend test, 14 Del Amo wells were identified with a statistically significant decreasing benzene concentration trend and two wells were identified with a statistically significant increasing benzene concentration trend; confirming that the benzene plume is decreasing.

MBFC:

- Benzene detections associated with the Del Amo site are entirely within the TI-Waiver Zone, with the exception of the concentrations detected in SWL0060, which is completed in the MBFB/MBFC, which are merged in this area.
- O Based on the Mann-Kendall trend test, four Del Amo wells were identified with a statistically significant decreasing benzene concentration trend and two wells were identified with a statistically significant increasing benzene concentration trend; confirming that the benzene plume is decreasing.

Gage:

- The only detected benzene concentration on the Del Amo site is located outside of the TI-Waiver Zone.
- Based on the Mann-Kendall trend test, two Del Amo wells were identified with a statistically significant decreasing benzene concentration trend and no wells were identified with a statistically significant increasing benzene concentration trend; confirming that the benzene plume is decreasing.

• Lynwood:

o Benzene was not detected in Lynwood wells.

• NAPL:

- o Detected in MBFB well SWL0032 and Water Table well PZL0019.
- Historically detected in Water Table wells MW-20 and SWL0001, which are both located in close proximity to well SWL0032.

• Biodegradation Indicators:

- There is an overall indication that both aerobic and anaerobic biodegradation processes are occurring.
- o Results confirm that the monitored intrinsic biodegradation remedial approach identified in the ROD is appropriate.

5 PCE AND TCE DISTRIBUTION

During the 2015-Second Baseline Monitoring Event, 299 wells were sampled for PCE and TCE; the concentrations are summarized in Table 2. Isoconcentration maps of PCE and TCE are provided as Figures 30 through 38. The sampling methods are described in section 5.1, and results are presented for PCE and TCE by water-bearing unit in sections 5.2 and 5.3, respectively.

Pursuant to direction from USEPA, Montrose and Del Amo have been provided data to allow for generation of TCE and PCE figures. This was done specifically for this Second Baseline Groundwater Monitoring Event report and is not part of Montrose or Del Amo ongoing responsibility for MACR reporting. This includes historical data from the PACCAR and American Polystyrene sites, shown as "Amoco/Trico" data on the water-table maps for PCE and TCE. The Amoco/Trico data are not included in Table 2 as they are significantly outside the timeframe of this baseline sampling and are presented only to help shape the estimated contours.

As defined in the ROD, the "TCE and TCE plume. The term TCE, when used in this ROD, unless otherwise noted, represents a series of chlorinated solvents, including TCE, PCE, DCE, TCA, and any isomers of these compounds in groundwater at the Joint Site. The term TCE plume refers to the portions of the distributions of any such contaminants in groundwater at the Joint Site that are not commingled with the chlorobenzene plume. The TCE plume occurs in the UBF, the MBFB Sand, and the MBFC Sand, and may occur in the LBF, based on data collected during the remedial investigation. The TCE plume in the Upper Bellflower and MBFB Sand is commingled with and contained within the benzene plume; the TCE plume in the MBFC Sand lies under the benzene plume in the MBFB Sand and north of the benzene plume in the MBFC Sand (See Figure 7-4). TCE (chlorinated solvent) contamination outside the chlorobenzene plume which may exist in the Gage Aquifer is addressed separately and not as part of the TCE plume but is part of the chlorobenzene plume."

5.1 Sampling and Analytical Methods

The methods for sampling and analysis of groundwater samples collected by Montrose and Del Amo are described above in Sections 3.1 and 4.1, respectively. It is anticipated that the methods used by other parties (e.g., ILM, Boeing, etc.) would be in accordance with their respective approved plans.

5.2 PCE

5.2.1 Water Table

A total of 139 water table wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for PCE by USEPA Method 8260B from wells screened in the water table. PCE concentrations in the water table varied from 0.26 (J) μ g/L at WCC_05s, to 8,200 μ g/L at MW-06. Historically, concentrations as high as 12,000 μ g/L were detected at the PACCAR site in 2003 at well XMW-05T. Concentrations exceeding the ISGS of 5 μ g/L were detected. PCE results from Water Table wells, including extraction wells, are provided in Table 2, and are mapped on Figure 30. Figure 30 also shows historical Amoco/Trico PCE data.

PCE concentrations and the distribution of PCE in the water table remain relatively unchanged from the 2014 Baseline Groundwater Monitoring Even and historic ranges. Concentration versus time graphs for select wells are presented in Appendix H.

5.2.2 MBFC

A total of 83 MBFC wells were sampled during the 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for PCE by USEPA Method 8260B. PCE concentrations in the MBFC varied from 0.35 (J) μ g/L at IWC004 to 35 μ g/L at SWL0054. Concentrations exceeding the ISGS of 5 μ g/L were detected. PCE results from MBFC wells, including extraction wells, are provided in Table 2 and are mapped on Figure 31.

PCE concentrations and the overall distribution of PCE in the MBFC remains relatively unchanged from the 2014 Baseline Groundwater Monitoring Event and historic ranges. Concentration versus time graphs for select wells are presented in Appendix H.

5.2.3 Gage

A total of 56 Gage wells were sampled during 2015 Second Baseline Groundwater Monitoring Event. Samples were collected and analyzed for PCE by USEPA Method 8260B. Two samples were observed to contain detectable concentrations of PCE: MWG004 with 0.25 (J) μ g/L and SWL0066 with 0.62 (J) μ g/L PCE, neither of which exceed the ISGS of 5 μ g/L. PCE results are provided in Table 2 and Gage concentrations are mapped in Figure 32. Concentration versus time graphs for select wells are presented in Appendix H.

5.2.4 Lynwood

PCE was not detected in any of the six Lynwood monitor wells sampled. This is generally consistent with historical results and the results from the 2014 Baseline Groundwater Monitoring Event. Results are provided in Table 2 and Lynwood concentrations are mapped in Figure 33.

Conclusions

The following conclusions are made with respect to PCE:

- The principal PCE plumes in the Water Table are centered at the ILM, Jones, PACCAR, and Amoco sites, extending onto the Montrose/Del Amo sites.
- PCE is limited in distribution in the MBFC and Gage Aquifer.
- PCE was not detected in Lynwood Aquifer samples.

5.3 TCE

5.3.1 Water Table

The Water Table TCE distribution and individual well concentration data are presented on Figure 34 and indicate the principal plume areas to be centered on the ILM, Boeing, Jones, PACCAR and Amoco sites. The maximum TCE concentration from the Second Baseline Groundwater Monitoring Event of 9,600 µg/L occurs at well IRZMW001A at the Boeing site, although historically, concentrations of up to 46,000 µg/L have occurred at the PACCAR property (PACCAR well XMW-05T, January 2003). Historical detections at the PACCAR property have been taken into consideration in the depiction of the TCE plume in Figure 34, as PACCAR did not participate in the Second Baseline Groundwater Monitoring Event.

A graph of TCE concentrations through time for those wells with TCE detections is presented in Appendix H. A Mann-Kendall analysis was completed, as described in Section 4.1, on data for wells included in the Second Baseline Groundwater Monitoring Event, to identify Water Table wells with TCE concentration trends. Wells within the Water Table with a statistically significant increasing or decreasing trend are indicated in the table below. Associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix H. Comprehensive data for the ILM, Boeing, Jones, PACCAR and Amoco sites are not included in the dual site database and therefore have not been evaluated for concentration trends.

TCE (Water Table) Statistically Significant Trends								
Well Name	Trends	Well Name	Trends					
PZL0006	Decreasing	SWL0051	Decreasing					
PZL0016	Decreasing	XMW-01	Increasing					
SWL0007	Decreasing	XMW-05	Decreasing					
SWL0008	Decreasing	XMW-06	Increasing					
SWL0009	Decreasing	XMW-11	Decreasing					
SWL0016	Decreasing	XMW-12	Decreasing					
SWL0021	Decreasing	XMW-14	Decreasing					
SWL0028	Decreasing	XMW-19	Decreasing					
SWL0042	Decreasing	XP-02	Increasing					
SWL0049	Increasing							

5.3.2 MBFB

The MBFB TCE distribution and individual well concentration data are presented on Figure 35. The MBFB distribution is similar to the Water Table except for the absence of minor plume areas in the vicinity of the southern portion of the Del Amo site. Maximum TCE concentrations occur at the Boeing site, and based on historical data, at the AMOCO and PACCAR properties. Historic detections at the PACCAR property have been taken into consideration in the depiction of the TCE plume in Figure 35, as PACCAR did not participate in the Second Baseline Groundwater Monitoring Event.

A graph of TCE concentrations through time for those wells with TCE detections is presented in Appendix H. A Mann-Kendall analysis was completed, as described in Section 4.1, for data on wells included in the Second Baseline Groundwater Monitoring Event to identify wells with TCE concentration trends, the results of which are summarized below. Associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix H. Comprehensive data for the ILM, Boeing, and Jones sites are not included in the dual site database and therefore have not been evaluated for concentration trends.

TCE (MBFB)							
Statistically Significant Trends							
Well Name	Trend						
SWL0029	Increasing						
SWL0037	Increasing						
SWL0049	Increasing						
XMW-01	Increasing						
XMW-05	Decreasing						
XMW-06	Increasing						
XMW-11	Decreasing						
XMW-12	Decreasing						
XMW-14	Decreasing						
XMW-19	Decreasing						
XP-02	Increasing						

5.3.3 MBFC

The MBFC TCE distribution and individual well concentration data are presented on Figure 36. As indicated, the principal plume areas are centered on the ILM and Boeing sites, with these plumes merging and extending downgradient to the southeast beyond the Montrose property. The maximum TCE concentration of 2,000 μ g/L occurs at wells MWC024 and BF-35 at the Boeing site. A lesser TCE plume area is present in the western portion of the Del Amo site in the vicinity of well SWL0054 (980 μ g/L).

A graph of TCE concentrations through time for those wells with TCE detections is presented in Appendix H. A Mann-Kendall analysis was completed, as described in Section 4.1, for data on wells included in the Second Baseline Groundwater Monitoring Event to identify wells with TCE concentration trends, the results of which are summarized below. Associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix H. Comprehensive ILM and Boeing site data have not been incorporated into the dual site database and were therefore not analyzed for trends.

TCE (MBFC)						
Statistically Significant Trends						
Well Name Trend						
SWL0030	Increasing					
SWL0058	Increasing					
XBF-03	Increasing					
XBF-04	Decreasing					
XBF-15	Decreasing					

5.3.4 Gage

The Gage Aquifer TCE distribution and individual well concentration data are presented on Figure 37. The principal plume area begins at the ILM site to the northwest, extending through the Boeing, PACCAR and Amoco sites, and onto the Del Amo site.

A graph of TCE concentrations through time for those wells with TCE detections is presented in Appendix H. A Mann-Kendall analysis was completed, as described in Section 4.1, for data on wells included in the Second Baseline Groundwater Monitoring Event, to identify wells with TCE concentration trends, the results of which are summarized below. Associated historical data spreadsheets, concentration trend plots, and results are provided in Appendix H. Comprehensive ILM and Boeing site data have not been incorporated into the dual site database and were therefore not analyzed for trends.

5.3.5 Lynwood

TCE was analyzed in samples from six Lynwood monitor wells, as indicated on Figure 38. TCE was not detected in any of the samples.

Conclusions

The following conclusions are made with respect to TCE:

- The principal TCE plumes in the Water Table, MBFB, MBFC and Gage Aquifer are centered at the ILM, Boeing, Jones, PACCAR and Amoco sites, extending onto the Montrose/Del Amo sites.
- TCE is not known to be present in the Lynwood Aquifer.
- Based on the Mann-Kendall trend test:
 - o Fifteen wells were identified with a statistically significant decreasing TCE concentration trend and four wells were identified with a statistically significant increasing TCE concentration trend in the Water Table.
 - o Five wells were identified with a statistically significant decreasing TCE concentration trend and six wells were identified with a statistically significant increasing TCE concentration trend in the MBFB.
 - Two wells were identified with a statistically significant decreasing TCE concentration trend and three wells were identified with a statistically significant increasing TCE concentration trend in the MBFC.
 - No wells were identified with a statistically significant decreasing TCE concentration trend and two wells were identified with a statistically significant increasing TCE concentration trend in the Gage Aquifer.

6 TBA DISTRIBUTION

Pursuant to direction from USEPA, TBA results and figures have been incorporated into the Second Baseline Groundwater Monitoring Report; however, TBA is not an identified COC of Montrose or Del Amo,

6.1 Sampling and Analytical Methods

Groundwater samples were collected using low flow sampling methods per the URS 2014 MACP, and in compliance with established USEPA protocols (USEPA, 1996). A low flow bladder pump, dedicated tubing, and a compressed nitrogen cylinder were used to collect groundwater samples from the middle of the well screen. The pump was positioned in the middle of the well screen, and the well purged at a low flow between 100 and 400 milliliters per minute. The water level in the well was gauged to verify no or minimal drawdown during purging.

Before and after each well, the stainless steel components were decontaminated utilizing a standard triple rinse method and non-phosphate detergent, and the disposable bladder and tubing were replaced. Only distilled water was utilized during decontamination procedures; Site water was not used during any portion of the field operations. Groundwater data generated during well purging were recorded on a field purge log, which are presented in Appendix A.

Purge water was stored in a temporary tank located at the Waste Pit OU pending waste profiling to determine appropriate off-site disposal. The purge water was subsequently transported by American Integrated Services as hazardous waste to Evoqua Water Technologies in Vernon, California for treatment and recycling. The waste disposal manifest is provided in Appendix B.

Following purging, groundwater samples were collected directly from the pump tubing using laboratory-supplied sample containers which were filled with no void or trapped air space. Sample containers were labeled, packed in coolers, and transferred to a courier to be transported to Eurofins CalScience Environmental Laboratory under proper chain-of-custody procedures. Samples were analyzed for TBA by USEPA Method 8260B.

6.2 Water Table

The Water Table TBA distribution and individual well concentration data are presented on Figure 25. The maximum TBA concentration of 49,000 μ g/L occurs at well PZL0026. The maximum concentration of TBA detected in a TGRS extraction well (including MBFC and Gage extractions wells) was 290 μ g/L at UBA-EW-1, as measured in November 2015. Mann-Kendall concentration trend analyses were not completed due to the limited number of sampling events with TBA data.

6.3 MBFB

The MBFB TBA distribution and individual well concentration data are presented on Figure 26. The principal TBA plume areas are similar to the Water Table, with the maximum concentration of $200,000~\mu g/L$, occurring at well SWL0060. This well is completed in the MBFB/MBFC, which are merged in this area as described previously. Mann-Kendall concentration trend analyses were not completed due to the limited number of sampling events with TBA data.

6.4 MBFC

The MBFB TBA distribution and individual well concentration data are presented on Figure 27. The maximum concentration of 200,000 µg/L occurs at SWL0060, which is completed in the MBFB/MBFC, which are merged in this area. Mann-Kendall concentration trend analyses were not completed due to the limited number of sampling events with TBA data.

6.5 Gage

The Gage Aquifer TBA distribution and individual well concentration data are presented on Figure 28. Detections of TBA are limited to well G-03, with an estimated concentration of 4.8 µg/L. Mann-Kendall concentration trend analyses were not completed due to the limited number of sampling events with TBA data.

6.6 Lynwood

Groundwater samples from six Lynwood Aquifer wells analyzed for TBA, as indicated on Figure 29. TBA was not present at detectable concentrations in of the samples analyzed.

Conclusions

The following conclusions are drawn with respect to TBA:

- TBA has been detected in the Water Table, MBFB, MBFC, and Gage Aquifer.
- The maximum TBA concentration of 200,000 μg/L occurs at well SWL0060, which is completed in the merged MBFB/MBFC

7 QUALITY ASSURANCE/QUALITY CONTROL

QA/QC samples were collected to monitor the effectiveness of the decontamination procedures and to identify any field or laboratory conditions that may have affected sample integrity in accordance with each party's respective MACP (URS, 2014).

7.1 Montrose

- Trip Blanks Forty seven laboratory-prepared trip blank samples were collected; one sample transported with each cooler containing more than one groundwater sample submitted and analyzed for VOCs by USEPA Method 8260B and pCBSA by USEPA Method 314.0 Modified. The trip blanks were analyzed by the same analytical methodologies as the primary samples.
- Equipment Blanks Fourteen equipment blanks were collected to test for potential cross-contamination from the sampling equipment; an equipment blank was collected daily when sampling with a non-dedicated pump. Laboratory certified water was poured across the decontaminated sampling pump and collected in laboratory-supplied containers. Each equipment blank sample was analyzed for VOCs by USEPA Method 8260B and pCBSA by USEPA Method 314.0 Modified. The equipment blanks were analyzed by the same analytical methodologies as the primary samples.
- Duplicate Samples— Duplicate VOC samples were collected from 17 wells; duplicate
 pCBSA samples were collected from 15 wells. The duplicate set of sample containers
 was filled immediately following the collection of the corresponding unique sample.
 Each duplicate sample was handled and analyzed in an identical fashion as the unique
 samples.

A full data package was provided to support the Level IV review performed on 10% of the sample data. A Level IV review includes a verification and validation based on completeness and compliance checks of sample receipt conditions, both sample-related and instrument-related QC results, and recalculation checks.

A Level III was performed on the remaining 90% of the data. A Level III includes a verification and validation based on completeness and compliance checks of sample receipt conditions and QC results such as method blanks, laboratory control sample/laboratory control duplicate (LCS/LCSD), matrix spike/matrix spike duplicate (MS/MSD), and field duplicates only.

The laboratory provided analytical data in both hard copy and electronic data deliverable (EDD) format. During this event, all results were valid and usable; several results were qualified as estimated or below reporting limits, and one sample was qualified as outside hold time. A copy

of the Data Quality Assessment and Data Validation Report is provided in Appendix I. Laboratory reports are provided in Appendix J (by compact disk).

7.2 Del Amo

- **Trip Blanks** -Trip blank samples were laboratory-prepared vials of organic-free water that remained with the primary sample containers during transit to and from the site, and during sampling to allow evaluation of cross-contamination. The trip samples were not opened at any time during the field investigation. The trip blanks were analyzed for the same constituents and by the same method (USEPA Method 8260) as for the corresponding primary samples. All compounds were below detection limits in each trip blank sample, indicating that no cross contamination occurred.
- Equipment Blanks The equipment blanks consisted of laboratory provided, organic-free water that was poured over a cleaned, non-dedicated pump into sample vials. Analysis of these samples permits evaluation of potential cross-contamination between sampling locations. The equipment blanks were analyzed for the same constituents and by the same method (USEPA Method 8260) as for the corresponding primary samples. All compounds were below detection limits in each of the equipment blanks, indicating that no cross contamination occurred.
- Field Duplicates Duplicate samples are collected at the same time and location as corresponding primary samples and are used to evaluate the reproducibility of the laboratory analyses. The duplicate samples were analyzed for VOCs by the same method (USEPA Method 8260) as for the primary samples. Duplicate samples were collected for locations SWL0002, SWL0017, SWL0021, SWL0041, SWL0042, SWL0065, MW-04HD, and XP-03. Comparison of the primary and duplicate sample results for these locations is provided in a table in Appendix M. As indicated in the table, the relative percent differences (RPDs) between the primary and duplicate sample concentrations are all below the 50% criteria for acceptance without qualification.
- Matrix Spike/Matrix Spike Duplicates The objective of the MS/MSD analyses is to evaluate the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The laboratory prepared and analyzed MS/MSD samples at the proper frequency for all applicable analyses. Project specific MS/MSDs were performed for USEPA 300.0 and SM 3500-FeB analyses. MS/MSD recoveries and RPDs between the MS/MSD results were evaluated against statistically determined acceptance ranges. For MS/MSD recoveries that were outside control criteria, all applicable sample results were qualified as estimated ("J") and listed in Table 1 of Appendix I.

2015 BASELINE MONITORING AND AQUIFER COMPLIANCE REPORT

• Conclusions - Based on the trip blank, equipment blank, field duplicate and MS/MSD results described above and other criteria described in the Data Validation Memorandum presented in Appendix I, the data presented in this report for Del Amo wells are judged adequate for their intended purpose.

8 RECOMMENDATIONS

8.1 Montrose Monitoring Network

Resampling of select wells is recommended to verify 2015 results that were anomalous. Two pCBSA results from the 2015 sampling event were inconsistent with historic ranges: BF-01 at 2,000 μ g/L (historically less than 50 μ g/L between 2004 and 2014) and LG-01 at 170 μ g/L (historically between 11,000 and 26,000 μ g/L between 2004 and 2014). It is recommended that both these monitor wells be resampled to verify the results.

It is also recommended that BF-11 and G-25 be re-sampled to verify the chlorobenzene concentration at these locations. In 2014, the BF-11 chlorobenzene concentration decreased three orders of magnitude from 5,600 μ g/L to six μ g/L chlorobenzene. The 2015 result was consistent at 1.5 μ g/L. However, this datum remains anomalous with surrounding well data, and this monitoring location is near TGRS extraction well BF-EW4. Therefore, resampling prior to start-up is recommended. Well G-25 should also be resampled as it contained 1,600 μ g/L chlorobenzene in the October 2015 sample; whereas historically it has ranged from 30 to 910 μ g/L. Resampling for verification will be conducted in 2016 prior to initiating full-scale operation of the TGRS.

It is further recommended that all TGRS extraction wells be sampled prior to the startup of the system for additional baseline information. Sampling of the TGRS extraction wells is being scheduled as part of additional functional testing. These select monitor wells and extraction wells will be sampled following the protocols used during the 2015 Second Baseline Groundwater Monitoring Event and in accordance with the 2014 AECOM MACP. USEPA will be notified in advance of this sampling.

Annual monitoring as established in the approved 2014 AECOM MACP is scheduled for September 2016. It is recommended that operation of Boeing extraction wells be suspended for 48 hours prior to the next water-gauging event.

8.2 Del Amo Monitoring Network

Recommendations are limited to the continued monitoring of the Del Amo monitoring network wells in accordance with the 2014 URS MACP.

9 REFERENCES

AECOM, 2013 Final DNAPL Feasibility Study, Montrose Superfund Site, 20201 S. Normandie Avenue, Los Angeles, California, September 27.

AECOM, 2014 Groundwater Monitoring and Aquifer Compliance Plan, Montrose Site, Torrance, California, July 23.

URS, 2014 Groundwater Monitoring and Aquifer Compliance Plan, Dual Site Groundwater Operable Unit, Montrose Chemical and Del Amo Superfund Sites, Los Angeles, California. September 5.

USEPA, 1996 Low-Flow (Minimal Drawdown) Ground-Water Sample Collection, Ground Water Issue, April 1996, Robert W. Puls and Michael J. Barcelona, EPA/540/S-95/504.

USEPA, 1999 Record of Decision for Dual Site Groundwater Operable Unit, Montrose Chemical and Del Amo Superfund Sites, Volume I: Declaration and Decision Summary, March.

USEPA, 2014a Approval of Montrose Portion of Monitoring and Aquifer Compliance Plan letter, Montrose and Del Amo Superfund Sites, August 19.

USEPA, 2014b Approval of Montrose Proposed Change in Remedial Design Well Field letter, Montrose and Del Amo Superfund Sites, December 17.USEPA, 2014

TABLES

Table 1

Groundwater Level Measurements and Elevations

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
UBF/Water Table Mon	strose Owned Wells				(1.001)		
MBFB-EW-1	9/1/2015	1766640.49	6470927.14	62-77	47.8	37.75	-10.05
MBFB-OW-1	9/1/2015	1767110.00	6468135.00	80-96	64.24	54.71	-9.53
MW-01	9/1/2015	1767001.00	6470666.00	63-73	52.78	42.77	-10.01
MW-02	9/1/2015	1767404.48	6470208.77	66.7-76.7	58.85	48.73	-10.12
MW-03	9/1/2015	1767425.00	6469733.00	64.4-74.4	57.43	47.41	-10.02
MW-04	9/1/2015	1767673.80	6470117.66	64.9-74.9	56.86	46.69	-10.17
MW-05	9/1/2015	1767602.00	6470682.00	61.5-72.5	56.83	46.57	-10.26
MW-06	9/1/2015	1766905.50	6470194.12	65-80	55.63	45.68	-9.95
MW-07	9/1/2015	1766892.38	6469626.05	65-80	57.39	47.42	-9.97
MW-08	9/1/2015	1767938.19	6469397.50	65-80	65.02	55.29	-9.73
MW-09	9/1/2015	1767934.01	6470361.53	66-81	61.57	50.47	-11.10
MW-10	9/1/2015	1768042.00	6470937.00	62-77	54.33	43.2	-11.13
MW-11	9/29/2015	1767320.00	6470889.00	62-77	52.81	42.69	-10.12
MW-12	9/1/2015	1767319.00	6471289.00	61-76	50.3	40.17	-10.13
MW-13	9/1/2015	1766908.00	6471218.00	62-77	52.55	42.34	-10.21
MW-14	9/1/2015	1766629.06	6470929.24	58-73	53.21	43.02	-10.19
MW-16	9/1/2015	1765848.00	6469761.00	59-76	51.24	41.31	-9.93
MW-17	9/1/2015	1766685.00	6469336.00	65-81	58.08	48.18	-9.90
MW-19	9/1/2015	1768527.06	6470660.51 6471985.00	63-79	56.59 46.81	46.65	-9.94 -10.25
MW-21 MW-22	9/1/2015 9/1/2015	1767907.00 1765594.00	6471985.00	54-70 57-73	46.81 51.96	36.56 41.85	-10.25 -10.11
MW-23	9/1/2015	1765594.00	6470230.00	60-75	45.94	36.35	-10.11 -9.59
MW-24	9/1/2015	1765641.00	6472078.00	49-64	32.69	22.4	-10.29
MW-25	9/1/2015	1764840.00	6471681.00	56-71	42.89	31.98	-10.91
MW-26	9/1/2015	1765603.00	6470880.00	59-74	49.21	39.17	-10.04
MW-27	9/1/2015	1768047.00	6471344.00	59-75	50.72	40.56	-10.16
MW-29	9/1/2015	1766922.00	6471830.00	57-73	49.04	38.81	-10.23
MW-30	9/1/2015	1766267.00	6471695.00	54-70	47.49	37.59	-9.90
MW-31	9/1/2015	1767149.00	6469128.00	64.5-79.5	64.57	54.67	-9.90
UBA-EW-1	9/1/2015	1767031.53	6470466.32	53-93	47.6	38.07	-9.53
UBA-EW-3	9/1/2015	1766342.28	6470864.34	50-80	NM	33.93	NM
UBE-01	9/1/2015	1767467.00	6470255.00	61-91	59.52	49.35	-10.17
UBE-02	9/1/2015	1767535.00	6470398.00	72-82	55.77	45.78	-9.99
UBE-03	9/1/2015	1767304.00	6470373.00	68-88	55.19	44.86	-10.33
UBE-04	9/1/2015	1767629.00	6470371.00	62-92	56.59	46.56	-10.03
UBE-05	9/1/2015	1767347.47	6470514.15	75-85	57.64	47.42	-10.22
UBI-01	9/1/2015	1767598.00	6470093.00	44-89	56.41	46.47	-9.94
UBI-02	9/1/2015	1767666.00	6470165.00	44.5-89.5	56.59	46.69	-9.90
UBT-01	9/1/2015	1767444.00	6470232.00	60-91	59.32	49.05	-10.27
UBT-02	9/1/2015	1767437.00	6470246.00	50-91	59.47	49.19	-10.28
UBT-03	9/1/2015	1767473.00	6470262.00	60-91	59.56	49.31	-10.25
BL-10A	9/1/2015	1760072 79	6469297.23	65-80	64.78	EE 24	-9.44
BL-10A BL-11A	9/1/2015	1769072.78 1767973.75	6469178.24	65-80	64.78	55.34 55.31	-9.44 -9.11
BL-11A	9/1/2015	1768197.81	6469027.92	64-79	64.68	55.25	-9.43
BL-13A	9/1/2015	1767263.93	6469461.80	60-80	62.85	52.92	-9.93
BL-14A	10/5/2015	1767752.16	6468471.80	55-80	63.16	54.25	-8.91
BL-3	9/1/2015	1768750.60	6468960.12	61.5-81.5	65.62	56.43	-9.19
BL-9A	9/1/2015	1769937.01	6469294.59	65-80	61.68	52.68	-9.00
ILMP-1	9/1/2015	1769674.38	6468892.43	60.5-80.5	64.33	55.19	-9.14
ILMP-10	9/1/2015	1768484.99	6467810.58	61-76	65.89	57.58	-8.31
ILMP-12	9/1/2015	1770914.27	6468118.79	65-80	65.66	56.94	-8.72
ILMP-16A	9/1/2015	1768955.89	6468352.11	67-87	62.23	52.68	-9.55
ILMP-17	9/1/2015	1769188.17	6468487.30	65-85	64.37	54.92	-9.45
ILMP-20	9/1/2015	1769484.08	6468893.73	58-78	64.45	55.36	-9.09
ILMP-22	9/1/2015	1768358.36	6468337.77	67-87	63.84	54.38	-9.46
ILMP-24	9/1/2015	1770502.47	6468243.92	65-75	63.91	55.59	-8.32
ILMP-26A	9/1/2015	1769539.51	6468436.85	51-76	65.56	56.72	-8.84
ILMP-2	9/1/2015	1770283.96	6467783.29	61-71	64.86	57.9	-6.96
ILMP-3	9/1/2015	1770903.70	6467828.98	57-72	63.13	54.95	-8.18
ILMP-5	9/1/2015	1770437.31	6468893.08	59-79	64.88	56.41	-8.47
ILM_P-6B	9/1/2015	1769128.34	6468892.59	60-80	65.19	55.87	-9.32
ILM P-7	9/1/2015	1768387.02	6468881.59	62.5-82.5	63.3	53.86	-9.44
ILM P-9B	9/1/2015	1769529.53	6467788.17	56-76	65.81	57.76	-8.05

Dual Site Groundwater Operable Unit Los Angeles, California

U ,
2015 Baseline MACR
Date Created: 3/17/2016

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
UBF/Water Table Del	Amo Owned Wells						
MW-01HD	9/1/2015	1766819.36	6474174.02	40-60	39.9	30.86	-9.04
MW-02HD	9/1/2015	1766816.04	6474270.02	40-60	39.43	30.6	-8.83
MW-03HD	9/1/2015	1766724.07	6474259.71	40-60	38.96	29.69	-9.27
MW-04HD	9/1/2015	1766677.38	6474164.55	51-61	40.36	30.25	-10.11
PZL0001	9/1/2015	1766647.00	6474812.00	50-60	33.41	24.63	-8.78
PZL0006	11/6/2015	1768396.00	6472738.00	49-69	44.05	34.55	-9.50
PZL0007	9/1/2015	1767933.00	6474786.00	47-62	29.52	19.5	-10.02
PZL0009	9/1/2015	1768811.00	6472297.00	54-69	50.27	40.82	-9.45
PZL0010	9/1/2015	1768861.00	6473319.00	49.5-69.5	44.3	34.84	-9.46
PZL0011	9/1/2015	1767668.00	6474433.00	35-55	31.33	23.61	-7.72
PZL0012	9/1/2015	1767298.00	6474124.00	37.2-57.2	38.02	29.69	-8.33
PZL0013	9/1/2015	1766866.00	6474133.00	41-61	41.02	31.94	-9.08
PZL0014	9/1/2015	1769549.00	6472078.00	51-66	43.83	35.26	-8.57
PZL0016	9/1/2015	1768908.00	6471506.00	47-67	47.35	37.52	-9.83
PZL0018	9/1/2015	1766934.00	6472903.00	48-68	44.13	34.3	-9.83
PZL0019	9/1/2015	1766813.00	6472189.00	46.7-66.7	50.36	40.9	1.69
PZL0020	9/1/2015	1766681.00	6472348.00	47-67	46.53	36.87	-9.66
PZL0022	9/1/2015	1766626.00	6473048.00	42-61.7	44.02	34.4	-9.62
PZL0024	9/1/2015	1766627.00	6472818.00	44.4-64.4	46.03	36.65	-9.38
PZL0025	9/1/2015	1766637.00	6472096.00	43.5-63.5	48.58	38.68	-9.90
PZL0026	9/1/2015	1766978.00	6474447.00	33-53	37.51	28.69	-8.82
SWL0002	9/1/2015	1768404.00	6471585.00	52-77	49.71	39.82	-9.89
SWL0003	9/1/2015	1768531.00	6471609.00	50-77	50.87	40.98	-9.89
SWL0004	9/1/2015	1768374.00	6471694.00	53-80	51.64	41.87	-9.77
SWL0005	9/1/2015	1766526.00	6473389.00	38.6-61.5	38.82	28.95	-9.87
SWL0006	9/1/2015	1766124.00	6472439.00	43.5-59.5	36.88	26.5	-10.38
SWL0007	9/1/2015	1769884.00	6471523.00	50.4-71.2	50.34	41.11	-9.23
SWL0008	9/1/2015	1766566.00	6472338.00	41.4-62	42.04	32.36	-9.68
SWL0009	9/1/2015	1767137.00	6475377.00	37.3-58.3	30.18	22.57	-7.61
SWL0015	9/1/2015	1765963.00	6474546.00	33-54	34.63	23.91	-10.72
SWL0016	9/1/2015	1767811.00	6473034.00	40.8-62	42.85	33.21	-9.64
SWL0017	9/1/2015	1768832.00	6473078.00	47-68.5	45.9	36.54	-9.36
SWL0021	9/1/2015	1766180.00	6474228.00	46.5-62.1	39.27	28.52	-10.75
SWL0024	9/1/2015	1766517.00	6474511.00	45-61.5	36.66	27.57	-9.09
SWL0024	9/1/2015	1765081.00	6473742.00	34-54.8	30.98	22.35	-8.63
SWL0038	9/1/2015	1769863.00	6471800.00	49.5-70.5	47.53	38.64	-8.89
SWL0042	9/1/2015	1765567.00	6474700.00	34.3-55	45.06	24.3	-20.76
SWL0044	9/1/2015	1766866.00	6472744.00	45.5-65	47.33	37.76	-9.57
SWL0046	9/1/2015	1767995.00	6474120.00	37.8-57.8	36.9	28.9	-8.00
SWL0049	9/1/2015	1766314.00	6470999.00	42-62.3	42.74	32.5	-10.24
SWL0051	9/1/2015	1766321.00	6472472.00	35-55	37.8	28.15	-9.65
SWL0057	9/1/2015	1765605.00	6473091.00	38.5-58.5	37.81	28.31	-9.50
SWL0059	9/1/2015	1769240.00	6471580.00	37-41	51.91	42.19	-9.72
SWL0068	9/1/2015	1767504.34	6474527.50	UNK	30.5	24.71	-5.79
XP-02	9/1/2015	1766983.36	6472662.49	UNK	45.82	35.33	-10.49
XP-03	9/1/2015	1766525.96	6473382.02	UNK	40.2	29.01	-11.19

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR

2015 Baseline MACR Date Created: 3/17/2016

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
UBF/Water Table Boo	eing Owned Wells	•					
AW0051UB	9/1/2015	1769856.00	6470381.00	68.5-88.5	60.75	53.144	-10.06
AW0055UB	9/1/2015	1769863.00	6470304.00	69-89	61.13	53.54	-10.04
AW0074UB	9/1/2015	1769759.00	6470365.00	70-90	60.41	52.73	-10.13
DAC-P1	9/1/2015	1769774.00	6468953.00	60-90	61.75	55.13	-9.07
EWB002	9/1/2015	1769773.00	6470279.00	60-90	61.21	53.74	-9.92
EWB003	9/1/2015	1768711.00	6470060.00	65-95	61.08	51.19	-12.34
IRZMW001A	9/1/2015	1768988.00	6469844.00	65-75	64.92	56.77	-10.60
IRZMW001B	9/1/2015	1768988.00	6469844.00	80-90	64.9	56.7	-10.65
IRZMW004	9/1/2015	1768610.00	6470051.00	65-90	61.22	53.06	-10.61
IRZMW005	9/1/2015	1768708.00	6470038.00	65-90	61.17	52.77	-10.85
IWB001	9/1/2015	1770359.00	6470218.00	65-95	58.89	51.63	-9.71
IWB002	9/1/2015	1770146.00	6470521.00	65-95	59.09	51.78	-9.76
MW0005	9/1/2015	1769063.00	6470232.00	65-85	59.5	50.09	-11.86
MWB003	9/1/2015	1769474.00	6470193.00	65-90	64.76	56.95	-10.26
MWB006	9/1/2015	1770051.00	6470251.00	65-90	61.09	53.9	-9.64
MWB007	9/1/2015	1770213.00	6470211.00	60-90	58.48	51.39	-9.54
MWB012	9/1/2015	1769019.00	6470035.00	64.5-84.5	60.45	52.43	-10.47
MWB013	9/1/2015	1769396.00	6469592.00	65-85	62.55	55.33	-9.67
MWB014	9/1/2015	1768387.00	6470280.00	65-85	59.52	51.69	-10.28
MWB019	9/1/2015	1768093.00	6469970.00	65-85	62.94	55.18	-10.21
MWB020	9/1/2015	1770863.00	6470396.00	59.5-89.5	57.43	51.07	-8.81
MWB027	9/1/2015	1769934.00	6469948.00	67.5-87.5	64.29	57.14	-9.60
MWB028	9/1/2015	1769475.00	6470106.00	65-90	64.65	56.84	-10.26
MWB029	9/1/2015	1768081.00	6470186.00	60-90	64.47	56.576	-10.34
MWB030	9/1/2015	1770060.00	6470721.00	55-90	59.52	52.283	-9.69
TMW_04	9/1/2015	1769116.00	6470254.00	58-78	59.54	51.39	-10.60
TMW_06	9/1/2015	1768718.00	6470299.00	67-87	59.72	51.72	-10.45
TMW_07	9/1/2015	1769483.00	6470318.00	65-85	61.82	53.96	-10.31
TMW_08	9/1/2015	1769594.00	6470329.00	61-81	61.78	53.98	-10.25
TMW_10	9/1/2015	1768951.00	6470723.00	60.5-80.5	57.62	49.92	-10.15
TMW_11	9/1/2015	1768204.00	6470721.00	58-78	57.53	49.85	-10.13
TMW_14	9/1/2015	1768199.00	6469550.00	65-85	66.7	58.91	-10.24
TMW_15	9/1/2015	1768950.00	6469555.00	62-87	65.29	57.65	-10.09
WCC_03S	9/1/2015	1770021.00	6470367.00	69-89	60.22	52.8	-9.87
WCC_04S	9/1/2015	1769857.00	6470499.00	70.5-90.5	60.04	52.23	-10.26
WCC_05S	9/1/2015	1769779.00	6470722.00	61-91	60.31	52.82	-9.94
WCC_07S	9/1/2015	1769695.00	6470505.00	60-90	61.21	50.51	-13.15
WCC_09S	9/1/2015	1769409.00	6470683.00	60-90	62.72	54.96	-10.21
WCC_12S	9/1/2015	1769496.00	6470506.00	60-90	59.41	51.32	-10.54
UBF/Water Table Jon	es Owned Wells	-		•	•		•
JMWD-01	9/1/2015	1767181.00	6470026.00	55.5-65.5	58.63	48.33	-10.30
JMWD-02	9/1/2015	1767038.00	6470196.00	54-69	56.56	46.1	-10.46
JMWD-03	9/1/2015	1766996.00	6469738.00	53-68	56.71	46.18	-10.53
Water Table/MBFC M	Iontrose Owned Wells				•		
BF-32A	9/1/2015	1765704.00	6468400.00	65-115	60.13	50.81	-9.32
BF-33	9/1/2015	1763047.00	6468187.00	60-100	46.16	35.98	-10.18

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR

2015 Baseline MACR Date Created: 3/17/2016

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
MBFC Montrose Owne	ed Wells	I		1			
BF-01	9/1/2015	1767595.00	6469828.00	113.5-124	58.34	48.33	-10.01
BF-02	9/1/2015	1767169.00	6470194.00	114-124.5	59.63	49.5	-10.13
BF-03	9/1/2015	1767476.00	6470476.00	113.5-124	58.6	48.27	-10.33
BF-04	10/1/2015	1767210.00	6470493.00	112-123	57.77	47.64	-10.13
BF-05	9/1/2015	1767331.00	6471298.00	122-132	49.74	39.37	-10.37
BF-06	9/1/2015	1766907.00	6471204.00	115-125	52.13	41.6	-10.53
BF-07	9/1/2015	1766630.00	6470947.00	106-116	53.01	42.59	-10.42
BF-09	9/1/2015	1767441.00	6470241.00	107-128	59.01	48.69	-10.32
BF-10	9/9/2015	1765562.00	6473091.00	120-130	39.92	28.67	-11.25
BF-11	9/1/2015	1763515.00	6472386.00	104-124	45.3	33.66	-11.64
BF-12	9/1/2015	1764101.88	6473358.00	110-120	34.22	22.2	-12.02
BF-13	9/1/2015	1766579.00	6473187.00	117-137	40.53	29.55	-10.98
BF-14	9/1/2015	1765763.00	6472054.00	111-121	47.14	36.3	-10.84
BF-15	9/1/2015	1765641.00	6471441.00	98-113	33.54	22.82	-10.72
BF-16	9/1/2015	1763462.00	6471861.00	103-124	46.77	35.31	-11.46
BF-17	9/1/2015	1763817.00	6473002.00	100-120	34.6	22.67	-11.93
BF-19	9/1/2015	1768047.00	6471331.00	128-133	50.67	40.44	-10.23
BF-20	9/1/2015	1766707.00	6469336.00	110-129	58.5	48.33	-10.17
BF-21	9/1/2015	1764785.00	6470681.00	96-121	50.34	39.67	-10.67
BF-22	9/1/2015	1763265.06	6471470.14	87-117	45.68	34.29	-11.39
BF-23	9/1/2015	1766107.00	6472440.00	101-116	36.81	25.93	-10.88
BF-24	9/1/2015	1764492.85	6472165.23	96-121	42.43	31.18	-11.25
BF-25	9/1/2015	1762676.00	6473358.00	94-104	35.92	23.7	-12.22
BF-26	9/1/2015	1762188.00	6473651.00	90-105	48.03	35.48	-12.55
BF-27	9/1/2015	1762196.00	6473094.00	101-121	36.89	24.18	-12.71
BF-28	9/1/2015	1762866.00	6474077.00	95-110	46.3	33.84	-12.46
BF-29	9/1/2015	1764267.85	6470038.39	100-120	50.36	39.62	-10.74
BF-30	9/1/2015	1762875.00	6470962.00	82-113	35.88	24.58	-11.30
BF-31	9/1/2015	1763812.03	6469369.85	105-135	48.18	37.55	-10.63
BF-34	9/1/2015	1767699.00	6469469.00	106-126	65.78	55.54	-10.03
BF-35	9/1/2015	1768012.00	6470273.00	105.5-126	60.75	50.34	-10.41
BF-36	9/1/2015	1762458.00	6475580.00	111-126	48.1	34.65	-13.45
BF-EW-1	9/1/2015	1766650.00	6470901.72	85-93	46.5	36.14	-10.36
BF-EW-2	9/1/2015	1764201.28	6470901.72	69.1-125	34.8	23.27	-10.36
BF-EW-3	9/1/2015	1764981.87	6471337.25	60-120	30	19.12	-10.88
BF-EW-4	9/1/2015	1763305.65	6472464.82	66-126	40.2	28.42	-11.78
BF-EW-5	9/1/2015	1767019.17	6470443.11	108-128	48.2	38.24	-9.96
BF-IW-1		1767145.00		106.9-125	64.92		-9.79
BF-IW-1	9/9/2015 9/9/2015	1767145.00	6468136.00 6473751.00	61.5-144	64.92 NM	55.13 21.43	-9.79 NM
BF-IW-2 BF-OW-1	9/1/2015	1765087.00	6468135.00	110-122	64.58	54.63	-9.95
BF-OW-1	9/1/2015	1767110.00		70-120	40.36	29.32	-9.95 -11.04
BF-OW-4	9/1/2015	1764310.00	6472153.00 6470639.00	98-118	40.36 52.01	41.2	-11.04
LBF-OW-2	9/9/2015	1764290.00	6470639.00	134-136	52.01 NM	41.8	-10.81 NM
LBF-OW-3	9/1/2015	1764310.00	6472153.00	135-137	41.48	29.34	-12.14
		1764310.00	64/2153.00	135-137	41.48	29.34	-12.14
BFC ILM Owned Wel	9/1/2015	1769072.91	6469290.03	100 110	64.00	EE 1F	0.72
BL-10B				109-119 109-119	64.88 65.28	55.15 55.29	-9.73 -9.99
BL-11B	9/1/2015 9/1/2015	1767981.29 1768187.13	6469177.96			55.29	-9.99
BL-12B			6469033.17	104-114	65.02		
BL-13BD	9/1/2015	1767273.58	6469461.52	120-130	63.06	52.89	-10.17
BL-14B	10/5/2015	1767752.45	6468462.12	113.5-133.5	64.57	54.21	-10.36
BL-9B	9/1/2015	1769936.84	6469302.24	109-119	62.22	52.86	-9.36
ILMP-12B	9/1/2015	1770882.14	6468117.08	120-135	66.04	56.96	-9.08
ILMP-16C	9/1/2015	1768948.03	6468362.26	103-118	61.75	52.24	-9.51
ILMP-26B	9/1/2015	1769539.87	6468427.74	123-133	66.03	56.3	-9.73
ILM P-27B	9/1/2015	1772297.78	6468059.25	92.5-112.5	60.46	52.23	-8.23

Table 1

Groundwater Level Measurements and Elevations

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
MBFC Del Amo Owne	d Wells	- I		l .	I I		I
SWL0010	9/1/2015	1767145.00	6475377.00	100-116.5	33.66	22.61	-11.05
SWL0013	9/1/2015	1766959.00	6473586.00	131.8-147.6	43.05	33.46	-9.59
SWL0018	9/1/2015	1766968.00	6472889.00	122-139	44.05	34.12	-9.93
SWL0027	9/1/2015	1765076.00	6473730.00	119.3-135	33.67	22.07	-11.60
SWL0033	9/1/2015	1766277.00	6472042.00	124.3-140	46.28	35.72	-10.56
SWL0035	9/1/2015	1767801.00	6473054.00	121-136	42.54	32.41	-10.13
SWL0040	9/1/2015	1766626.00	6473036.00	118.5-135	44.81	33.78	-11.03
SWL0053	9/1/2015	1766235.00	6473455.00	118.3-127.8	33.79	23.19	-10.60
SWL0054	9/1/2015	1767829.00	6471852.00	120.2-129.7	50.35	39.92	-10.43
SWL0055	9/1/2015	1766636.00	6472496.00	120.3-129.8	47.84	37.15	-10.69
SWL0058	9/1/2015	1767037.00	6472007.00	118.1-127.7	51.07	40.67	-10.40
SWL0060	9/1/2015	1767190.00	6474740.00	90-93	35.93	24.91	-11.02
SWL0061	9/1/2015	1768418.57	6471530.10	115-120	51.04	40.64	-10.40
SWL0064	9/1/2015	1767756.98	6471514.94	114.2-129.2	49.39	39.47	-9.92
SWL0065	9/1/2015	1767778.94	6472234.26	115-130	46.4	36.65	-9.75
MBFC Boeing Owned		4760400 00	6470700 00	00.121	62.55	F4.27	40.00
CMW001	9/1/2015	1768183.00	6470700.00	99-124	62.55	54.37	-10.63
CMW002	9/1/2015	1767936.00	6470554.00	99-124	60.81	52.81	-10.45
CMW026	9/1/2015	1768603.00	6470279.00	92-117	59.73 60.52	51.53 52.59	-10.65 -10.38
EWC001	9/1/2015	1769706.00	6470359.00	97-122			
EWC003	9/1/2015 9/1/2015	1769344.00 1768822.00	6470619.00	102-122	71.98 59.79	52.44 51.51	-21.99 -10.73
EWC004 EWC005	9/1/2015	1768822.00	6470271.00 6470106.00	95-120	87.03	51.25	-38.23
EWC006	9/1/2015	1769033.50	6470106.00	105-135 UNK	63.41	54.78	-36.23
IRZCMW001	9/1/2015	1768660.00	6470092.00	92-117	59.97	51.74	-11.08
IRZCMW001	9/1/2015	1768410.00	6470218.00	96-121	63.76	55.6	-10.61
IRZCMW003	9/1/2015	1768593.00	6470298.00	92-117	59.92	51.69	-10.68
IWC001	9/1/2015	1768453.00	6470121.00	95-115	61.18	53.05	-10.58
IWC003	9/1/2015	1769377.00	6469593.00	110-120	62.92	55.46	-9.91
IWC004	9/1/2015	1768420.00	6469591.00	107-142	64.05	56.04	-10.46
MWC004	9/1/2015	1769491.00	6470486.00	96-116	60.41	51.86	-11.00
MWC006	9/1/2015	1770037.00	6470252.00	95-115	61.09	54.03	-9.51
MWC007	9/1/2015	1770172.00	6470172.00	97-117	58.79	51.57	-9.67
MWC009	9/1/2015	1769365.00	6470658.00	101-121	63.75	53.99	-12.21
MWC011	9/1/2015	1769749.00	6470263.00	94-114	61.61	54.03	-10.03
MWC015	9/1/2015	1768821.00	6470304.00	100-125	60.64	51.51	-11.58
MWC016	9/1/2015	1768720.00	6469987.00	102.5-127.5	60.87	52.61	-10.71
MWC017	9/1/2015	1768093.00	6469979.00	100-125	63.17	55.16	-10.46
MWC021	9/1/2015	1768939.00	6470705.00	97-122	62.74	54.53	-10.66
MWC022	9/1/2015	1769986.00	6470454.00	97-117	59.19	51.6	-10.04
MWC023	9/1/2015	1769802.00	6470428.00	97-117	59.19	51.43	-10.21
MWC024	9/1/2015	1768409.00	6470266.00	96-121	59.77	51.64	-10.58
MWC025	9/1/2015	1769776.00	6470530.00	114-124	60.64	52.6	-10.49
MWC026	9/1/2015	1769629.00	6470696.00	110-120	60.09	51.75	-10.79
MWC027	9/1/2015	1769139.00	6470707.00	105-120	63.16	54.302	-11.31
MWC028	9/1/2015	1769030.50	6470816.00	UNK	58.13	49.53	-11.05
MBFB Del Amo Owne		•					
G-01WC	9/1/2015	1766324.96	6473073.34	80-90	37.8	26.85	-10.95
G-02WC	9/1/2015	1765677.10	6472414.16	82-92	44.8	33.94	-10.86
SWL0011	10/7/2015	1766958.00	6473573.00	92-108.6	42.98	33.56	-9.42
SWL0019	9/1/2015	1765959.00	6474533.00	73.1-89.6	35.69	23.79	-11.90
SWL0023	9/1/2015	1766519.00	6474497.00	88.5-103.8	39.22	27.58	-11.64
SWL0032	9/1/2015	1768384.00	6471747.00	79-89	53.72	41.67	-10.33
SWL0037	9/1/2015	1767815.00	6473046.00	82-98.5	43.5	33.11	-10.39
SWL0041	9/1/2015	1766625.00	6473061.00	77-92.75	45.06	34.11	-10.95
SWL0047	9/1/2015	1768136.00	6472355.00	82-92	46.22	36.04	-10.18
SWL0048	9/1/2015	1767341.00	6472582.00	83-93	47.62	36.31	-11.31
SWL0050	9/1/2015	1766635.00	6472483.00	72.5-82	48.06	37.4	-10.66
SWL0056	9/1/2015	1765592.00	6473091.00	75-85	39.94	28.54	-11.40

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR

2015 Baseline MACR
Date Created: 3/17/2016

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
Gage Aquifer Montre	ose Owned Wells	· L	I.	I.	<u>l</u>		
G-01	9/1/2015	1767684.00	6470098.00	140.5-161	57.59	46.66	-10.93
G-02	9/1/2015	1767089.00	6470672.00	155-175.5	54.77	43.26	-11.51
G-03	9/1/2015	1767169.00	6470156.00	145.5-166	60.55	49.7	-10.85
G-04	9/1/2015	1767332.00	6471311.00	154-194	51.33	39.7	-11.63
G-05	9/1/2015	1766906.00	6471186.00	151-190	53.16	41.71	-11.45
G-06	9/1/2015	1766628.94	6470964.24	149-190	53.91	42.53	-11.38
G-08	9/1/2015	1765641.00	6471451.00	140-180	34.33	22.52	-11.81
G-09	9/9/2015	1765576.00	6473091.00	171-213	41.33	28.58	-12.75
G-12	10/1/2015	1766143.00	6472428.00	158-198	38.13	25.85	-12.28
G-13	9/1/2015	1765787.00	6472055.00	157-197	48.23	36.09	-12.14
G-14	9/1/2015	1768041.00	6471293.00	155-195	52.09	40.62	-11.47
G-15	9/1/2015	1766709.00	6469946.00	142-182	59.64	48.71	-10.93
G-16	9/1/2015	1765630.00	6471050.00	145-185	48.94	37.1	-11.84
G-17	9/1/2015	1766923.00	6472314.00	172-212	48.18	35.95	-12.23
G-18	9/1/2015	1764836.00	6473238.00	161-201	34.49	21.7	-12.79
G-19A	9/1/2015	1764936.00	6472417.00	160-200	47.7	35.23	-12.47
G-20	9/1/2015	1767698.00	6469488.00	155-175	66.05	55.33	-10.72
G-21	9/1/2015	1768012.00	6470519.00	149-169	58.9	47.67	-11.23
G-22	9/1/2015	1763886.00	6473268.00	152-192	36.74	24.22	-12.52
G-23	9/1/2015	1763657.00	6472398.00	148-178	47.19	34.83	-12.36
G-24	9/1/2015	1764757.00	6470681.00	138.3-178.3	51.93	40.4	-11.53
G-25	9/1/2015	1765603.00	6469340.00	124-163.5	56.59	46.06	-10.53
G-26	9/1/2015	1763544.00	6470301.00	132-172	46.73	35.72	-11.01
G-27	9/1/2015	1762885.00	6471795.00	124-164	36.39	24.52	-11.87
G-28	9/1/2015	1762189.00	6473638.00	148-188	48.51	35.54	-12.97
G-29	9/1/2015	1762931.00	6474905.00	157-197	49.74	35.42	-14.32
G-30	9/9/2015	1763761.00	6468585.00	135-165	55.15	44.96	-10.19
G-31	9/9/2015	1760760.00	6476041.00	145-175	52.69	36.6	-16.09
G-32	9/1/2015	1762108.00	6476388.00	160-190	49.48	32.68	-16.80
G-33	9/1/2015	1765698.00	6468401.00	143-173	60.61	50.14	-10.47
G-34	9/1/2015	1760638.00	6473574.00	147-187	52.47	39.44	-13.03
G-35	9/1/2015	1763463.00	6473727.90	150-190	44.38	32.07	-12.31
G-EW-1	9/1/2015	1766669.83	6470892.99	144-154	47.6	35.89	-11.71
G-EW-2	9/1/2015	1763875.89	6473280.74	146.7-176.7	31.6	19.42	-12.18
G-EW-3	9/1/2015	1764291.03	6470595.17	135-173	47.2	36.3	-10.90
G-EW-4	9/1/2015	1765619.65	6472157.26	160-200	NM	33.19	-10.90 NM
G-IW-1	9/1/2015	1767186.41	6468136.55	138-163.5	60.2	49.8	-10.40
G-IW-2	9/1/2015	1766760.90	6473364.59	173-214	41	28.18	-12.82
G-IW-3	9/1/2015	1767693.65	6468014.77	144.02-194.02	57.2	46.76	-10.44
G-IW-4	9/1/2015	1766816.89	6473296.55	175-215	41.6	28.6	-13.00
G-IW-5	9/1/2015	1766643.27	6473398.45	170-210	40.8	27.24	-13.56
G-IW-6	9/1/2015	1766579.00	6473197.00	177-217	38.4	25.17	-13.23
G-IW-7	9/1/2015	1767503.52	6468137.54	140-195	60.1	49.61	-10.49
G-0W-1	9/1/2015	1767110.00	6468135.00	140-195	64.94	54.8	-10.49
G-OW-3	9/1/2015	1764310.00	6472153.00	145-155	41.54	29.32	-10.14
G-OW-4	9/1/2015	1764290.00	6470639.00	138-173	52.38	41.2	-12.22
LG-01	9/1/2015	1767038.00	6470673.00	188.5-209	54.24	43.26	-10.98
LG-01 LG-02	9/1/2015	17673319.00	6470380.00	185-205	55.6	44.61	-10.99

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR

Date Created: 3/17/2016

Well	Date	Northing	Easting	Screened Interval (Feet bgs)	Depth to Water from Reference Elevation (Feet)	Reference Elevation (Feet MSL)	Water Level Elevation (Feet MSL)
Gage Aquifer ILM Ow	ned Wells			•			1
BL-10C	9/1/2015	1769073.01	6469281.89	145-155	65.71	55.28	-10.43
BL-11C	9/1/2015	1767989.00	6469178.62	145-155	65.71	55.28	-10.43
BL-12C	9/1/2015	1768176.82	6469037.57	145-155	66	55.44	-10.56
BL-13C	9/1/2015	1767249.00	6469539.00	154-164	63.96	53.26	-10.70
BL-14C	10/5/2015	1767750.21	6468461.89	149.5-164.5	64.93	54.41	-10.52
BL-9C	9/1/2015	1769952.43	6469399.81	156.5-171.5	63.88	53.68	-10.20
ILMP-12C	9/1/2015	1770881.51	6468108.67	167.5-182.5	66.6	56.98	-9.62
ILMP-1C	9/1/2015	1769681.05	6468895.83	156.5-171.5	65.56	55.43	-10.13
ILMP-26C	9/1/2015	1769537.71	6468421.44	157-172	66.34	56.35	-9.99
Gage Aquifer Del Amo	Owned Wells	-					
SWL0020	9/1/2015	1765953.00	6474518.00	180.6-196.4	37.43	23.73	-13.70
SWL0022	9/1/2015	1766959.00	6473599.00	179.5-195.3	45.26	32.23	-13.03
SWL0025	9/1/2015	1767155.00	6475377.00	195-210.8	35.62	22.34	-13.28
SWL0026	9/1/2015	1765085.00	6473735.00	159.8-175.5	35.49	22.47	-13.02
SWL0034	9/1/2015	1766291.00	6472041.00	160-175.8	47.37	35.49	-11.88
SWL0036	9/1/2015	1767789.00	6473037.00	178-194	45.58	32.54	-13.04
SWL0063	9/1/2015	1767683.28	6472309.21	172.7-187	50.72	38.54	-12.18
SWL0066	9/1/2015	1767826.13	6471832.98	172-187	52.32	40.29	-12.03
Gage Aquifer Boeing	Owned Wells	•		•			
EWG001	9/1/2015	1769344.00	6470688.00	155-195	112.49	52.8	-62.14
EWG002	9/1/2015	1768403.00	6470705.00	165-200	65.7	52.67	-15.48
MWG001	9/1/2015	1769149.00	6470706.00	156-186	62.89	54.13	-11.21
MWG002	9/1/2015	1768452.00	6470705.00	162-192	64.37	54.78	-12.04
MWG003	9/1/2015	1768915.00	6470056.00	154.5-184.5	61.54	53.079	-10.91
MWG004	9/1/2015	1768389.00	6470230.00	155-185	60.77	52.04	-11.18
Lynwood Aquifer Moi	ntrose Owned Wells	*					•
LW-01	9/1/2015	1767335.00	6470378.00	230-250	64.58	45.02	-19.56
LW-02	9/1/2015	1766917.04	6471244.21	232-252	61.92	42.07	-19.85
LW-03	9/1/2015	1768041.00	6471311.00	238-259	60.13	40.33	-19.80
LW-04	9/1/2015	1766623.24	6470873.22	225-245	62.34	42.64	-19.70
LW-05	9/1/2015	1767687.77	6470127.71	230-250	66	46.25	-19.75
LW-06	9/1/2015	1767580.00	6470682.00	235-255	66.28	46.57	-19.71
LW-07	9/1/2015	1767188.00	6470176.00	230-250	68.25	48.68	-19.57

Notes

bgs = below ground surface

msl = mean sea level TOC = Top of Casing

UNK = Data Unknonw and/or Unavailable

Horizontal Datum: CA State Plane Zone V: North American Datum 1983 Vertical Datum: National Geodetic Vertical Datum of 1929 (NGVD29)

				e.	[etrachloroethene			ohol	aue
			Ethylbenzene	Chlorobenzene	oroet	Ē		tert-Butyl Alcohol	Trichloroethene
			lb en	robe	achli	Chloroform	Benzene	But	lorc
		Sample Date	Ethy	Chlo	Tetr	chlc	Ben;	tert-	Trick
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Well	Sample ID	CAS ISGS	700 700	108-90-7 70	127-18-4 5	67-66-3 100	71-43-2 1	75-65-0	79-01-6 5
	Nontrose- Owned Wells	.000				100			
MBFB-EW-1	MBFB-EW-0100-20151102	11/2/2015 11:40	310	10000	170	12 J	1900	200 U	120
MBFB-EW-1 MBFB-OW-1	MBFB-EW-01-20151102 MBFB-OW-01-N-20150826	11/2/2015 11:35 8/26/2015 11:43	320 470	11000 63 J	180 100 U	12 J 230	2000 8600	200 U	130 100 U
MW-01	MW-01-20150928	9/28/2015 10:20	15 J	91000	550	20000	2100	190 J	81
MW-02	MW-0200-20150930	9/30/2015 12:05	1000 U	210000	1000 UJ	33000	280 J	10000 U	1000 U
MW-02 MW-03	MW-02-20150930 MW-03-N-20150825	9/30/2015 12:05 8/25/2015 14:08	2000 U 2.0 U	230000 B 2.0 U	2000 UJ 160	30000 270	1000 U 0.42 J	20000 U	2000 U 180
MW-04	MW-04-20150928	9/28/2015 11:30	25 U	3700	58	400	8.7 J	250 U	930
MW-05	MW-0500-20150928	9/28/2015 12:45	10 U	18	83	990	5.0 U	100 U	4.9 J
MW-05	MW-05-20150928	9/28/2015 12:45	5.0 U	18 B	120	860	2.5 U	50 U	2.7 J
MW-06 MW-07	MW-6-20151002 MW-07-N-20150826	10/2/2015 10:55 8/26/2015 13:29	50 U 1400	50 U	8200 200 U	850 370	25 U 17000	500 U	260 200 U
MW-08	MW-08-N-20150826	8/26/2015 11:10	1.0 U	0.32 J	1.0 U	1.1	0.50 U		3.8
MW-09	MW-09-20150929	9/29/2015 8:25	1.0 U	2.3	29	2900	0.50 U	10 U	3.4
MW-10 MW-11	MW-10-20150928	9/28/2015 15:00	1.0 U	0.28 J	2.3	7.1	0.50 U	10 U	7.5
MW-12	MW-11-20150929 MW-12-20150928	9/29/2015 8:05 9/28/2015 13:55	2.0 U	790 1100 B	38 10 U	2.0 U 10 U	0.89 J 5.3	20 U 100 U	10 U
MW-13	MW-13-20151002	10/2/2015 12:00	9.4 J	3000	25 U	25 U	810	220 J	230
MW-14	GWS02544	10/1/2015 0:00	840	170	10 U	10 U	7500		13
MW-16 MW-17	MW-16-20151002 MW-17-N-20150826	10/2/2015 9:10 8/26/2015 12:38	2.5 U 1.0 U	0.66 J 3.7	5.1 UJ 1.0 U	1.3 J 1.0 U	1.2 U 0.62	25 U	140 1.0 U
MW-19	MW-19-20150929	9/29/2015 10:05	1.0 U	1.0 U	1.00	89	0.50 U	10 U	2.1
MW-21	GWS02598	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.82		0.40 J
MW-22	MW-22-20150930	9/30/2015 13:25	1.0 U	1 U	0.84 J	21	0.50 U	10 U	8.4
MW-23 MW-24	MW-23-20150928 MW-24-20150928	9/28/2015 14:00 9/28/2015 10:40	1.0 U	1 U 1.0 U	0.40 J 1.0 U	1.6 1.5	0.50 U 0.50 U	10 U	1.0 U
MW-25	MW-25-20151007	10/7/2015 10:40	1.0 U	2.2	1.0 UJ	1.0 U	4.9	5.8 J	1.0 U
MW-26	MW-26-20150928	9/28/2015 11:30	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
MW-27	GWS02545	9/30/2015 0:00	1.0 U	1.0 U	0.85 J	1.0 U	0.50 U		17
MW-28	GWS02546	10/2/2015 0:00	200 U	200 U	200 U	200 U	28000		200 U 200 U
MW-29 MW-30	GWS02547 MW-30-20150928	10/2/2015 0:00 9/28/2015 14:05	200 U 1.0 U	200 U 1.1 U	200 U 1.0 U	200 U 1.0 U	32000 0.50 U	10 U	1.0 U
MW-31	MW-31-N-20150825	8/25/2015 11:41	1.0 U	2.4	1.7	3.8	1.4		1.0 U
UBA-EW-1	UBA-EW-1_20151120	11/20/2015 14:05		140000	300	46000			
UBA-EW-3	UBA-EW-3-20150312	3/12/2015 14:09		4500	3500	10 U			
BL-10A	.M- Owned Wells BL-10A-N-20150828	8/28/2015 9:08	1.0 U	1.0 U	1.0 U	1.6	0.50 U		16
BL-11A	BL-11A-N-20150903	9/3/2015 10:14	0.19 J	1.0 U	1.0 U	0.95 J	0.50 U		230
BL-12A	BL-12A-N-20150828	8/28/2015 10:55	10 U	10 U	10 U	5.2 J	5.0 U		1200
BL-13A	BL-13A-N-20150825	8/25/2015 12:03	1.0 U	0.32 J	47	3.3	0.76		5.7
BL-14A BL-3	BL-14A-N-20151005 BL-03-N-20180828	10/5/2015 10:13 8/28/2015 12:18	1.0 U 5.0 U	1.0 U 5.0 U	0.41 J 8.6	1.2 5.0 U	0.50 U 2.5 U		51 530
BL-9A	BL-09A-N-20150902	9/2/2015 10:59	1.0 U	1.0 U	1.0 U	4.9	0.50 U		110
ILM_P-1	P-01-N-20150828	8/28/2015 13:40	25 U	25 U	11 J	25 U	12 U		4600
ILMP-10 ILM P-12	P-10-N-20150827 P-12-N-20150831	8/27/2015 9:21	1.0 U	1.0 U	1.0 U 5.0 U	1.0 U 44	0.50 U		2800
ILMP-12 ILM P-16A	P-12-N-20150831 P-16A-FD-20150827	8/31/2015 11:36 8/27/2015 12:50	5.0 U 5.0 U	5.0 U 5.0 U	17	2.5 J	2.5 U 2.5 U		440
ILMP-16A	P-16A-N-20150827	8/27/2015 12:50	2.5 U	2.5 U	17	2.0 J	1.2 U		430
ILMP-17	P-17-N-20150827	8/27/2015 14:03	25 U	25 U	470	13 J	12 U		2600
ILMP-20 ILM P-22	P-20-N-20150831 P-22-N-20150827	8/31/2015 9:08 8/27/2015 13:03	1.0 U	1.0 U	13 28	13 11	0.98 5.0 U		6500 2000
ILM_P-24	P-24-N-20150902	9/2/2015 12:40	1.0 U	1.0 U	0.65 J	1.4	0.50 U		38
ILM_P-26A	P-26A-FD-20150828	8/28/2015 13:42	10 U	10 U	300	6.2 J	5.0 U		1600
ILMP-26A	P-26A-N-20150828	8/28/2015 13:42	10 U	10 U	310	6.4 J	5.0 U		1700
ILM_P-3 ILM P-5	P-03-N-20150903 P-05-N-20150831	9/3/2015 9:27 8/31/2015 12:13	1.0 U 0.22 J	1.0 U 1.0 U	1.0 U	0.52 J 1.0 U	0.50 U 0.48 J		91 13
ILM P-6B	P-06B-N-20150828	8/28/2015 12:13	5.0 U	5.0 U	6.3	2.9 J	2.5 U		800
ILM_P-7	P-07-N-20150828	8/28/2015 12:01	10 U	10 U	11	16	5.0 U		1700
ILM_P-9B	P-09B-N-20150831	8/31/2015 12:44	1.0 U	1.0 U	0.53 J	1.6	0.50 U		120
ILMP-2 ILM P-27A	P-02-N-20150902 P-27A-N-20150902	9/2/2015 8:35 9/2/2015 10:43	2.0 U	2.0 U 1.0 U	2.0 U 1.0 U	2.0 U 1.0 U	1.0 U 0.50 U		2.0 U 1.0 U
	el Amo- Owned Wells	3/2/2013 10.43	1.0 0	1.00	1.00	1.00	0.50 0		1.00
PZL0001	GWS02503	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	14	1.0 U
PZL0006	GWS02504	10/2/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
PZL0007	GWS02505	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U

				1					
					Tetrachloroethene			lod	a
			Je	ene	eth	_		lco.	hen
			nzei	enz	lorc	orm	a)	Αŀ	oetl
			/lbe	rob	ach	rofe	zen	tert-Butyl Alcohol	Trichloroethene
		Sample Date	Ethylbenzene	Chlorobenzene	Tetr	Chloroform	Benzene	tert	l ic
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		CAS	100-41-4	108-90-7	127-18-4	67-66-3	71-43-2	75-65-0	79-01-6
Well	Sample ID	ISGS	700	70	5	100	1		5
	el Amo- Owned Wells, continued	0/00/0045 0 00			4.011	40			
PZL0009 PZL0010	GWS02506 GWS02507	9/30/2015 0:00	0.94 J 1.0 U	0.27 J 1.0 U	1.0 U	1.0 U 1	9.1 0.50 U		5.9 1.0 U
PZL0010 PZL0011	GWS02507	9/30/2015 0:00 10/1/2015 0:00	42	5.0 U	5.0 U	5.0 U	460	960	5.0 U
PZL0012	GWS02509	10/2/2015 0:00	10 U	10 U	10 U	10 U	5.0 U	6700	10 U
PZL0013	GWS02510	10/2/2015 0:00	5000 U	5000 U	5000 U	5000 U	450000		5000 U
PZL0014	GWS02511	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	0.49 J	0.50 U		1.0 U
PZL0016	GWS02512	10/2/2015 0:00	10 U	10 U	300	8.6 J	5.0 U		380
PZL0018	GWS02513	10/1/2015 0:00	1.0 U	1.0 U	1.3	1.0 U	0.50 U		1.0 U
PZL0020	GWS02515	10/2/2015 0:00	16000	5000 U	5000 U	5000 U	470000	50000 U	5000 U
PZL0022 PZL0024	GWS02516 GWS02517	10/1/2015 0:00 10/2/2015 0:00	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	0.50 U 0.50 U		1.0 U
PZL0024 PZL0025	GWS02517	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
PZL0026	GWS02519	9/30/2015 0:00	50 U	14 J	50 U	50 U	44	49000	50 U
SWL0002	GWS02520	10/5/2015 0:00	1.0 U	1.0 U	200	0.65 J	1.3		57
SWL0003	GWS02602	10/6/2015 0:00	0.30 J	2.0 U	87	2.0 U	4.7		150
SWL0004	GWS02522	10/1/2015 0:00	500 U	500 U	500 U	500 U	49000		500 U
SWL0005	GWS02523	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0006 SWL0007	GWS02524 GWS02525	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U 1.5
SWL0007	GWS02525	10/2/2015 0:00 9/30/2015 0:00	1.0 U 0.16 J	1.0 U	1.0 U	1.0 U	0.9 3.9	27	2.4
SWL0009	GWS02527	10/1/2015 0:00	1.0 U	1.0 U	10	1.0 U	0.50 U		7.7
SWL0015	GWS02594	10/2/2015 0:00	0.23 J	11	1.0 U	1.0 U	2.9	22	1.0 U
SWL0016	GWS02528	10/2/2015 0:00	1.0 U	1.0 U	8.5	1.0 U	0.50 U		0.97 J
SWL0017	GWS02529	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0021	GWS02530	10/2/2015 0:00	1.0 U	14	1.0 U	1.0 U	0.47 J	460	1.8
SWL0024	GWS02531	10/2/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		14
SWL0038	GWS02533	10/2/2015 0:00 10/5/2015 0:00	1.0 U	1.0 U 2.1	1.0 U	1.0 U	0.50 U 1.3		1.0 U
SWL0042 SWL0044	GWS02534 GWS02535	10/5/2015 0:00	0.14 J 0.52 J	1.0 U	0.60 J 1.0 U	1.0 U	3.2	45	4.8 1.0 U
SWL0046	GWS02536	10/2/2015 0:00	1.0 U	1.0 U	0.60 J	1.0 U	0.50 U		1.0 U
SWL0049	SWL004900-20150928	9/28/2015 15:55	5.0 U	2100	7.4	5.0 U	6.2	71	53
SWL0049	SWL0049-20150928	9/28/2015 15:40	5.0 U	1800	7.5	5.0 U	6	61	52
SWL0051	GWS02595	10/2/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		7.2
SWL0057	GWS02537	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0059 SWL0068	GWS02538	10/2/2015 0:00 10/2/2015 0:00	10 U 4300	10 U 2000 U	280 2000 U	15 2000 U	4.0 J 170000	22000	1800 2000 U
GW-07A	GWS02539 GWS02596	10/2/2015 0:00	1.0 U	0.38 J	0.39 J	1.0 U	0.50 U	32000 10 U	1
MW-01HD	GWS02540	10/1/2015 0:00	5.0 U	5.0 U	5.0 U	5.0 U	100		5.0 U
MW-02HD	GWS02541	10/2/2015 0:00	10 U	10 U	10 U	10 U	5.0 U		8.8 J
MW-03HD	GWS02542	10/2/2015 0:00	20 U	20 U	20 U	20 U	10 U		20 U
MW-04HD	GWS02543	10/2/2015 0:00	2500 U	2500 U	2500 U	2500 U	350000		2500 U
XP-02	GWS02563	10/2/2015 0:00	1.0 U	1.0 U	1.8	1.0 U	0.46 J		1.7
XP-03	GWS02564 oeing- Owned Wells	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
AW0051UB	AW0051UB WG20150902 01	9/2/2015 9:33	4.0 U	4.0 U	4.0 U	12	14	100 U	1900
AW0055UB	AW0055UB WG20150902 01	9/2/2015 11:19	3.5 J	10 U	10 U	10 U	33	250 U	15
AW0074UB	AW0074UB_WG20150902_01	9/2/2015 10:26	10 U	10 U	10 U	5.1 J	3.4 J	250 U	2300
DAC-P1	DAC-P1_WG20150902_01	9/2/2015 13:18	25 U	25 U	25 U	24 J	13 U	630 U	7700
EWB002	EWB002_WG20150902_01	9/2/2015 8:21	5.4	1.0 U	1.0 U	1.0 U	34	65	1.7
EWB003	EWB003_WG20150901_01	9/1/2015 14:00	4.0 U	4.0 U	3.5 J	7.5	2.0 U	100 U	1600
IRZMW001A IRZMW001B	IRZMW001A_WG20150904_01	9/4/2015 11:10 9/4/2015 10:26	20 U	20 U	20 U	20 U	10 U	500 U	9600
IRZMW001B	IRZMW001B_WG20150904_01 IRZMW004 WG20150904 01	9/4/2015 10:26	2.0 U 4.0 U	2.0 U 4.0 U	2.0 U 27	2.0 U 22	1.0 U 2.0 U	50 U 100 U	520 1600
IRZMW004	IRZMW004_WG20150904_01	9/4/2015 9:12	4.0 U	4.0 U	30	23	2.0 U	100 U	1700
IWB001	IWB001_WG20150904_01	9/4/2015 8:30	1.0 U	1.0 U	1.0 U	0.69 J	0.50 U	25 U	120
IWB002	IWB002_WG20150904_01	9/4/2015 10:16	4.0 U	4.0 U	4.0 U	2.5 J	2.0 U	100 U	960
MW0005	MW0005_WG20150901_01	9/1/2015 13:31	2.0 U	2.0 U	1.9 J	15	1.0 U	50 U	760
MWB003	MWB003_WG20150904_01	9/4/2015 11:20	20 U	20 U	20 U	13 J	10 U	500 U	2900
MWB006	MWB006_WG20150902_01	9/2/2015 14:26	500 U	500 U	500 U	500 U	250 U	13000 U	500 U
MWB007 MWB012	MWB007_WG20150904_01	9/4/2015 11:08	10 U	10 U	10 U	3.8 J	5.0 U	250 U	1600
MWB012 MWB013	MWB012_WG20150904_01 MWB013 WG20150902 01	9/4/2015 8:15 9/2/2015 14:03	2.0 U 1.0 U	2.0 U 1.0 U	0.93 J 1.0 U	0.61 J 0.26 J	1.0 U 0.50 U	50 U 25 U	740 2.8
MWB014	MWB013_WG20150902_01	9/3/2015 14:09	2.0 U	2.0 U	0.85 J	540	1.0 U	50 U	37

					Tetrachloroethene			اور	a u
			9	Chlorobenzene	eth			tert-Butyl Alcohol	Trichloroethene
			ızer	enz	oro	r.		₹ .)eth
			Ethylbenzene	ę.	lg.	Chloroform	Benzene	But	<u>o</u>
		Sample Date	thy	Plo	etra	hloi	enz	-t-	흔
		Sample Date Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ıg/L
		CAS	100-41-4	108-90-7	127-18-4	67-66-3	71-43-2	75-65-0	79-01-6
Well	Sample ID	ISGS	700	70	5	100	1		5
Water Table E	Boeing- Owned Wells, continued				•				
MWB020	MWB020WG20150903_01	9/3/2015 13:46	1.0 U	1.0 U	1.0 U	0.56 J	0.50 U	25 U	3.6
MWB027	MWB027_WG20150902_01	9/2/2015 9:29	4.0 U	4.0 U	8.9	4.7	2.0 U	100 U	1000
MWB027	MWB027_WG20150902_02	9/2/2015 9:29	4.0 U	2.9 J	11	5.5	2.0 U	100 U	1100
MWB028	MWB028_WG20150903_01	9/3/2015 8:45	1.0 U	1.0 U	11	2.9	0.50 U	25 U	360
MWB029	MWB029_WG20150902_01 MWB030 WG20150902 01	9/2/2015 9:58	10 U	10 U	160	3100	5.0 U	250 U 25 U	130
MWB030 TMW 06	TMW 06 WG20150902_01	9/2/2015 13:11 9/3/2015 10:01	1.0 U	1.0 U 1.0 U	1.0 U 0.72 J	96	0.50 U 0.50 U	25 U	5.3 22
TMW 07	TMW 07 WG20150903 01	9/3/2015 14:31	1.0 U	1.0 U	1.0 U	0.62 J	0.50 U	25 U	75
TMW 08	TMW 08 WG20150902 01	9/2/2015 11:23	2.0 U	2.0 U	0.77 J	1.5 J	1.0 U	50 U	350
TMW_10	TMW_10_WG20150903_01	9/3/2015 10:14	1.0 U	1.0 U	1.4	0.58 J	0.50 U	25 U	13
TMW_11	TMW_11_WG20150903_01	9/3/2015 11:21	1.0 U	1.0 U	3	80	0.50 U	25 U	1.4
TMW_14	TMW_14_WG20150902_01	9/2/2015 11:16	1.0 U	1.0 U	0.41 J	3.2	0.50 U	25 U	1.5
TMW_15	TMW_15_WG20150902_01	9/2/2015 13:13	1.0 U	1.0 U	0.41 J	1.5	0.50 U	25 U	16
WCC_03S	WCC_03S_WG20150902_01	9/2/2015 13:52	50 U	50 U	50 U	50 U	130	1300 U	260
WCC_04S	WCC_04S_WG20150904_01	9/4/2015 10:22	5.0 U	5.0 U	5.0 U	5.9	2.5 U	130 U	780
WCC_05S WCC_07S	WCC_05S_WG20150903_01 WCC 07S WG20150901 01	9/3/2015 11:07 9/1/2015 8:30	1.0 U 2.0 U	1.0 U 2.0 U	0.26 J 0.55 J	0.48 J 1.7 J	0.50 U 1.7	25 U 50 U	1.2 430
WCC_073	WCC_073_WG20130901_01 WCC_07S_WG20150901_02	9/1/2015 8:03	2.0 U	2.0 U	2.0 U	1.7 J	1.7	50 U	470
WCC_075	WCC 09S WG20150903 01	9/3/2015 12:54	1.0 U	1.0 U	1.0 U	3.4	0.50 U	25 U	1.4
WCC 12S	WCC 12S WG20150903 01	9/3/2015 8:15	1.0 U	1.0 U	1.0 U	2.5	0.50 U	25 U	3.5
Water Table J	ones- Owned Wells								
JMWD-01	JMWD-01	9/1/2015 10:45	10 U	510	1300 J	320	5.0 U		900
JMWD-02	JMWD-02	9/1/2015 11:12	20 U	20 J	R	3600	12		710
JMWD-03	DUP-1	9/1/2015 9:38	200	53	2400 J	11 J	320		120
JMWD-03	JMWD-03	9/1/2015 9:28	210	55	2400 J	13 J	310		130
Water Table/ BF-32A	MBFC Montrose- Owned Wells BF-32A-20150930	0/20/2015 0:05	1.0 U	1.0 U	10111	0.63 J	0.5011	10 U	1.0 U
BF-32A BF-33	BF-33-20150930	9/30/2015 8:05 9/30/2015 16:00	1.0 U	1.0 U	1.0 UJ 1.0 U	1.0 U	0.50 U	10 U	1.0 U
	ose Owned Wells	3/30/2013 10:00	1.0 0	1.00	1.00	1.00	0.50 0	100	1.00
BF-01	BF-01-N-20150826	8/26/2015 9:18	1.0 U	100	10	0.99 J	0.50 U		30
BF-02	BF-02-20150930	9/30/2015 9:15	500 U	45000	500 UJ	500 U	250 U	5000 U	500 U
BF-03	BF-03-20150930	9/30/2015 14:10	1.1	7800	2.0 UJ	1.4	38	10 U	560
BF-04	BF-04-20151001	10/1/2015 13:05	100 U	9200	100 U	100 U	43 J	1000 U	100 U
BF-05	BF-05-20150928	9/28/2015 14:45	1.0 U	0.25 J	1.0 U	1.0 U	0.50 U	10 U	1.0 U
BF-06	GWS02577	10/2/2015 0:00	25 U	3800	25 U	25 U	15		25 U
BF-09 BF-10	BF-09-20150930 BF-10-20150929	9/30/2015 10:50 9/29/2015 9:20	500 U 1.0 U	72000 B 3.8	500 UJ 1.0 U	4900 1.0 U	160 J 0.50 U	5000 U 10 U	500 U 1.0 U
BF-10	BF-10-20150929 BF-11-20151007	10/7/2015 10:35	1.0 U	1.5	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-12	BF-1200-20150929	9/29/2015 15:10	20 U	2100	20 UJ	20 U	3.2 J	200 U	20 U
BF-12	BF-12-20150929	9/29/2015 15:05	20 U	2000 B	20 UJ	20 U	3.9 J	200 U	20 U
BF-13	GWS02578	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.53	32	1.0 U
BF-14	BF-14-20150928	9/28/2015 13:00	1.0 U	21	0.70 J	0.56 J	0.50 U	10 U	0.86 J
BF-15	BF-15-20150928	9/28/2015 9:35	1.3 J	4000	13	5.0 U	12	50 U	15
BF-16	BF-16-20150929	9/29/2015 13:27	10 U	3100	10 U	10 U	7.7	100 U	10 U
BF-17	BF-17-20151007	10/7/2015 9:40	50 U	5100	50 UJ	50 U	9.7 J	500 U	50 U
BF-19 BF-20	BF-19-20151001 BF-20-N-20150826	10/1/2015 9:00 8/26/2015 13:39	1.0 U 5.0 U	1.5 1500	1.0 U 5.0 U	1.0 U 5.0 U	0.50 U	10 U	1.0 U 48
BF-21	BF-21-20150929	9/29/2015 15:15	2.5 U	390 B	2.5 UJ	2.5 U	1.2 J	25 U	2.5 U
BF-22	BF-22-20150929	9/29/2015 12:30	1.0 U	2	1.0 U	1.0 U	0.50 U	10 U	1.0 U
BF-23	BF-23-20151007	10/7/2015 11:45	1.0 U	1.0 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-24	BF-24-20150929	9/29/2015 11:55	43	4800	25 U	25 U	27	250 U	25 U
BF-25	BF-25-20151007	10/7/2015 8:20	1.0 U	1.0 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-27	BF-27-20150930	9/30/2015 10:05	1.0 U	3.7 B	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-28	BF-28-20150930	9/30/2015 9:25	1.0 U	1 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-29 BF-30	BF-29-20150930 BF-30-20150929	9/30/2015 15:10 9/29/2015 11:25	1.0 U	49 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.15 J 0.50 U	10 U 10 U	1.0 U 1.0 U
BF-31	BF-30-20150929 BF-31-20150930	9/30/2015 11:25	1.0 U	1.0 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-34	BF-34-N-20150825	8/25/2015 12:51	2.0 U	2.0 U	2.0 U	2.2	1.0 U		570
BF-35	BF-35-20151001	10/1/2015 14:55	20 U	3100	20 U	20 U	10 U	200 U	2000
BF-36	BF-36-20150930	9/30/2015 11:10	1.0 U	1 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
BF-OW-1	BF-OW-01-N-20150826	8/26/2015 10:39	1.0 U	43	1.0 U	1.0 U	0.41 J		1.8
BF-OW-4	BF-OW-4-20150929	9/29/2015 16:05	25 U	3700 B	25 UJ	25 U	12 U	250 U	25 U
BF-EW-1	BF-EW-1_20151120	11/20/2015 0:00		29000	50 U	99			
BF-EW-2	BF-EW-2-20150311	3/11/2015 0:00		8700	20 U	20 U			
BF-EW-3 BF-EW-4	BF-EW-3-20150312 BF-EW-4-20150311	3/12/2015 10:30		2100 1800	5.0 U 5.0 U	5.0 U 5.0 U			
BF-EW-5	BF-EW-4-20150311 BF-EW-5-20151120	3/11/2015 10:20 11/20/2015 9:30		N/S	5.0 U	5.0 U			
DI -C VV -3	DI -F AA-2-20121170	11/20/2013 3.30		14/3	JU U	JU U			

		Sample Date Units	Ethylbenzene	% Chlorobenzene	ନ୍ଧି Tetrachloroethene	r Chloroform	Benzene	ဋ္ဌ tert-Butyl Alcohol	ក្នុ Trichloroethene
Well	Sample ID	CAS ISGS	700	108-90-7 70	127-18-4 5	67-66-3 100	71-43-2 1	75-65-0	79-01-6 5
MBFC ILM Ow									
BL-10B	BL-10B-N-20150828	8/28/2015 10:08	2.0 U	2.0 U	2.0 U	1.6 J	1.0 U		430
BL-11B BL-12B	BL-11B-N-20150903 BL-12B-N-20150828	9/3/2015 10:57 8/28/2015 10:13	0.40 J 20 U	1.0 U 20 U	1.6 20 U	3.6 20 U	0.38 J 10 U		800 1900
BL-13BD	BL-13BD-N-20150825	8/25/2015 13:37	2.5 U	57	2.5 U	2.5 U	1.2 U		350
BL-14B	BL-14B-N-20151005	10/5/2015 11:00	1.0 U	16	1.0 U	1.0 U	0.50 U		28
BL-9B	BL-09B-N-20150902 P-12B-FD-20150831	9/2/2015 10:07	1.0 U	1.0 U	1.0 U	0.51 J	0.50 U		250
ILMP-12B ILM P-12B	P-12B-P-20150831 P-12B-N-20150831	8/31/2015 10:01 8/31/2015 10:01	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	0.50 U 0.50 U		5 3.5
ILMP-16C	P-16C-N-20150827	8/27/2015 11:40	2.0 U	2.0 U	2.0 U	1.9 J	1.0 U		260
ILMP-26B	P-26B-N-20150902	9/2/2015 12:28	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		330
ILM_P-27B	P-27B-N-20150902	9/2/2015 9:45	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		0.70 J
SWL0013	Owned Wells GWS02565	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0018	GWS02566	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0027	SWL0027-20150929	9/29/2015 9:20	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
SWL0033	GWS02593	10/1/2015 0:00	10 U	3400	12	10 U	3.3 J		74
SWL0035 SWL0040	GWS02568 GWS02569	9/30/2015 0:00 10/1/2015 0:00	1.0 U 1.1	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	0.50 U 140	10	1.0 U 1.0 U
SWL0040	GWS02570	10/2/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0054	GWS02571	10/2/2015 0:00	5.0 U	5.0 U	35	5.0 U	1.1 J		980
SWL0055	GWS02572	10/1/2015 0:00	0.74 J	1.0 U	1.0 U	1.0 U	0.50 U	280	1.0 U
SWL0058	GWS02573	10/1/2015 0:00	1.0 U	28	2.5	1.0 U	0.50 U		25
SWL0061 SWL0064	GWS02574 GWS02575	10/2/2015 0:00 10/2/2015 0:00	1.0 U 5.0 U	1.0 U 680	1.0 U	1.0 U 5.0 U	68 3.5		0.65 J 110
SWL0065	GWS02576	10/1/2015 0:00	5.0 U	5.0 U	5.0 U	5.0 U	2.5 U		5.0 U
MBFC Boeing (Owned Wells								
CMW001	CMW001_WG20150902_01	9/2/2015 9:25	40 U	9000	40 U	40 U	39	1000 U	40 U
CMW002	CMW002_WG20150902_01	9/2/2015 10:33	100 U 4.0 U	55000	100 U 4.0 U	2200	160 2.0 U	2500 U	59 J 2.9 J
CMW026 EWC001	CMW026_WG20150904_01 EWC001 WG20150902 01	9/4/2015 13:03 9/2/2015 10:24	10 U	4.0 U 10 U	4.0 U	4.0 U	51	100 U 250 U	130
EWC003	EWC003_WG20150901_01	9/1/2015 12:30	2.0 U	2.0 U	2.0 U	1.2 J	5.5	50 U	310
EWC004	EWC004_WG20150904_01	9/4/2015 13:38	4.0 U	4.0 U	4.0 U	9.7	2.0 U	100 U	1300
EWC005	EWC005_WG20150901_01	9/1/2015 13:04	4.0 U	13	4.0 U	3.2 J	2.0 U	100 U	1700
IRZCMW001 IRZCMW002	IRZCMW001_WG20150904_01 IRZCMW002 WG20150903 01	9/4/2015 11:04 9/3/2015 8:16	1.0 U	1.0 U 1.8	1.6 0.54 J	0.50 J 0.55 J	0.50 U 0.33 J	25 U 25 U	220 12
IRZCMW002	IRZCMW002_WG20150903_01	9/4/2015 13:09	4.0 U	4.0 U	4.0 U	4.0 U	2.0 U	100 U	13
IWC001	IWC001_WG20150903_01	9/3/2015 11:12	1.0 U	1.0 U	0.40 J	110	0.50 U	25 U	560
IWC003	IWC003_WG20150903_01	9/3/2015 9:36	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	5.9
IWC004	IWC004_WG20150903_01	9/3/2015 13:50	1.0 U	1.0 U	0.35 J	1.2	0.50 U	25 U	850
MWC004 MWC007	MWC004_WG20150904_01 MWC007 WG20150903 01	9/4/2015 8:20 9/3/2015 9:14	2.0 U 1.0 U	2.0 U 1.0 U	2.0 U 1.0 U	1.1 J 1.0 U	1.2 0.50 U	50 U 25 U	330 45
MWC009	MWC009 WG20150903_01	9/3/2015 13:02	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	16
MWC011	MWC011_WG20150902_01	9/2/2015 8:32	1.0 U	1.0 U	1.0 U	1.0 U	0.65	25 U	67
MWC016	MWC016_WG20150903_01	9/3/2015 13:13	1.0 U	1.0 U	1.0 U	0.95 J	0.50 U	25 U	160
MWC017	MWC017_WG20150902_01	9/2/2015 8:47	1.0 U	7	1.0 U	1.0 U	0.50 U	25 U	31
MWC017 MWC021	MWC017_WG20150902_02 MWC021 WG20150902 01	9/2/2015 8:47 9/2/2015 8:11	1.0 U	7.1 1.0 U	1.0 U 0.56 J	1.0 U 0.45 J	0.50 U 0.50 U	25 U 25 U	29 14
MWC022	MWC022_WG20150903_01	9/3/2015 10:24	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	17
MWC023	MWC023_WG20150904_01	9/4/2015 12:58	10 U	10 U	10 U	10 U	13	250 U	790
MWC024	MWC024_WG20150904_01	9/4/2015 13:00	10 U	10 U	10 U	10 U	5.0 U	250 U	2000
MWC025	MWC025_WG20150904_01	9/4/2015 9:20	5.0 U 1.0 U	5.0 U	5.0 U 1.0 U	3.4 J 1.0 U	7.9 0.29 J	130 U	370
MWC026 MWC027	MWC026_WG20150904_01 MWC027 WG20150904 01	9/4/2015 9:31 9/4/2015 8:41	2.0 U	1.0 U 2.0 U	2.0 U	1.0 U	1.5	25 U 50 U	35 260
EWC006	EWC006_WG20150902_01	9/2/2015 14:21	1.0 U	1.0 U	0.40 J	0.69 J	0.43 J	25 U	20
MWC028	MWC028_WG20150901_01	9/1/2015 10:07	1.0 U	1.0 U	1.0 U	0.41 J	1.1	25 U	62
	Owned Wells	40/4/05:	4.5.1			4 1	0.5	40	
G-01WC G-02WC	GWS02561 GWS02562	10/1/2015 0:00 10/1/2015 0:00	1.0 U	1.0 U 310	1.0 U 1.0 U	1.0 U 1.0 U	0.50 U 0.59 U	10 U	1.0 U
G-02WC GW-07C	GWS02597	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.59 U	10 U	1.0 U
SWL0010	GWS02548	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0011	SWL0011-20151007	10/7/2015 11:00	1.0 U	1.0 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
SWL0019	GWS02549	10/2/2015 0:00	1.0 U	1.8	1.0 U	1.0 U	0.50 U		1.0 U
SWL0023	GWS02550	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	160	1.0 U

					e			_	
			e)	ine	[etrachloroethene			ert-Butyl Alcohol	ene
			Ethylbenzene	Chlorobenzene	oroe	orm	a)	N A	Trichloroethene
			/lber	rob	achl	Chloroform	Benzene	But	hlore
		Sample Date	Ethy	Chlo	Tetr	Chlc	Ben	tert	Tric
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Well	Sample ID	CAS ISGS	100-41-4 700	108-90-7 70	127-18-4 5	67-66-3 100	71-43-2 1	75-65-0	79-01-6 5
	o Owned Wells, continued	1303	700	,,,	,	100	-		
SWL0037	GWS02553	9/30/2015 0:00	1.0 U	1.0 U	2.5	1.0 U	0.50 U		0.95 J
SWL0041	GWS02554	10/2/2015 0:00	1011	1.0 U	1.0 U 1.0 U	1.0 U	23 15	24 	1.0 U
SWL0047 SWL0048	GWS02555 GWS02556	9/30/2015 0:00 10/2/2015 0:00	1.0 U 14000	1.0 U 1000 U	1000 U	1.0 U 1000 U	140000		1.0 U 1000 U
SWL0050	GWS02557	10/1/2015 0:00	76	10 U	10 U	10 U	1900		10 U
SWL0056	GWS02559	9/30/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0052 SWL0060	GWS02558 GWS02560	10/5/2015 0:00 10/1/2015 0:00	1.0 U 50 U	1.0 U 50 U	1.4 50 U	1.0 U 50 U	0.50 U 240	200000	1.0 U 50 U
	Montrose Owned Wells	10/1/2013 0.00	30 0	30 0	30 0	30 0	240	200000	30 0
G-01	G-01-20151001	10/1/2015 10:55	1.0 U	7.9	1.0 U	1.0 U	0.50 U	10 U	1.0 U
G-02	G-02-20151001	10/1/2015 12:54	50 U	8100	50 U	50 U	7.5 J	500 U	50 U
G-03 G-04	G-03-20151007	10/7/2015 12:40 10/7/2015 13:55	1.0 U 1.0 U	24 51	0.90 UJ 1.0 UJ	1.0 U 1.0 U	0.50 U 0.50 U	4.8 J 10 U	1.0 U 3.7
G-04 G-05	G-04-20151007 G-05-20151002	10/2/2015 13:55	25 U	4800	25 UJ	25 U	13	250 U	25 U
G-08	G-08-20150928	9/28/2015 11:05	1.0 U	140	1.0 U	1.0 U	0.16 J	10 U	1.0 U
G-09	G-09-20150929	9/29/2015 10:05	0.57 J	720	2.0 U	2.0 U	2.9	20 U	2.0 U
G-12 G-13	G-12-20151001 G-1300-20150928	10/1/2015 13:00 9/28/2015 12:15	25 U 20 U	4000 1900 B	25 U 20 U	25 U 20 U	30 10 U	250 U 200 U	25 U 20 U
G-13	G-13-20150928	9/28/2015 12:15	20 U	1800 B	20 U	20 U	10 U	200 U	20 U
G-14	G-14-20150930	9/30/2015 16:10	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1
G-15	G-15-20150930	9/30/2015 13:50	1.0 U	7.3 B	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
G-16 G-17	G-16-20150928 GWS02601	9/28/2015 12:15 10/1/2015 0:00	1.0 U 1.0 U	1.0 U 110	1.0 U 1.0 U	1.0 U 1.0 U	0.50 U 1.6 U	10 U	1.0 U 20
G-17	G-18-20150929	9/29/2015 9:55	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
G-19A	G-19A-20150929	9/29/2015 11:05	1.0 U	250	1.0 U	1.0 U	0.88	10 U	1.0 U
G-20	G-20-N-20150824	8/25/2015 10:15	1.0 U	2.1	1.0 U	1.0 U	0.50 U		1.0 U
G-21 G-23	G-21-20151001 G-23-20150929	10/1/2015 11:50 9/29/2015 14:05	2.5 U 1.0 U	35 1.0 U	2.5 U 1.0 U	2.5 U 1.0 U	1.2 U 0.50 U	25 U 10 U	380 1.0 U
G-24	G-24-20150929	9/29/2015 14:20	5.0 U	1500	5.0 U	5.0 U	3	50 U	5.0 U
G-25	G-25-20151001	10/1/2015 10:40	1.6 J	1600	10 U	10 U	3.1 J	100 U	10 U
G-26	G-2600-20150930	9/30/2015 12:25	1.0 U	79	1.0 UJ	1.0 U	0.22 J	10 U	1.0 U
G-26 G-27	G-26-20150930 G-27-20150929	9/30/2015 12:10 9/29/2015 11:50	1.0 U 1.0 U	76 B 1.0 U	1.0 UJ 1.0 U	1.0 U 1.0 U	0.23 J 0.50 U	10 U 10 U	1.0 U 1.0 U
G-28	G-28-20151001	10/1/2015 8:55	1.0 U	0.63 J	1.0 U	1.0 U	0.50 U	10 U	1.0 U
G-29	G-29-20151002	10/2/2015 9:45	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
G-30	G-30-20150930	9/30/2015 9:52	1.0 U	1.0 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
G-31 G-32	G-31-20151002 G-32-20150930	10/2/2015 11:00 9/30/2015 12:25	1.0 U 1.0 U	1.0 U 1 U	1.0 U 1.0 UJ	1.9 1.0 U	0.50 U 0.50 U	10 U	1.0 U 1.0 U
G-33	G-33-20150930	9/30/2015 8:55	0.38 J	2.6 B	1.0 UJ	1.0 U	0.15 J	10 U	1.0 U
G-34	G-34-20151001	10/1/2015 9:40	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
G-35	G-35-20150930	9/30/2015 8:35	1.0 U	1 U	1.0 UJ	1.0 U	0.50 U	10 U	1.0 U
G-OW-1 G-OW-3	G-OW-01-N-20150826 G-OW-3-20150929	8/26/2015 9:29 9/29/2015 12:35	1.0 U 1.0 U	1.5 390	1.0 U 1.0 U	1.0 U 1.0 U	0.50 U 7.6	 10 U	1.0 U 1.0 U
LG-01	LG-01-20151001	10/1/2015 10:58	1.0 U	0.47 J	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LG-02	LG-0200-20151001	10/1/2015 14:20	50 U	7600	50 U	50 U	25 U	500 U	50 U
LG-02	LG-02-20151001	10/1/2015 14:05	50 U	7800	50 U	50 U	25 U	500 U	50 U
G-EW-1 G-EW-2	G-EW-1-20150326 G-EW-2-20150311	3/26/2015 0:00 3/11/2015 0:00	-	1100 2900	2.0 U 5.0 U	2.0 U 2.0 U			
G-EW-3	G-EW-3-20150311	3/11/2015 0:00		640	2.0 U	5.0 U			
G-EW-4	G-EW-4-20150311	3/11/2015 0:00		2000	5.0 U	5.0 U			
Gage Aquifer I BL-10C	BL-10C-N-20150828	8/28/2015 11:05	2.5 U	2.5 U	2.5 U	2.5 U	1.2 U		300
BL-10C BL-11C	BL-10C-N-20150828 BL-11C-N-20150904	9/3/2015 11:53	1.0 U	2.5 0	1.0 U	1.0 U	0.18 J		3
BL-12C	BL-12C-N-20150828	8/28/2015 9:27	1.0 U	160	1.0 U	1.0 U	0.23 J		5.4
BL-13C	BL-13C-N-20150827	8/27/2015 9:14	2.0 U	340	2.0 U	2.0 U	0.35 J		2.0 U
BL-14C BL-9C	BL-14C-N-20151005 BL-09C-N-20150902	10/5/2015 11:50 9/2/2015 8:37	0.17 J 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	0.28 J 0.27 J		1.0 U 0.81 J
ILM_P-12C	P-12C-N-20150831	8/31/2015 9:07	1.0 U	1.0 U	1.0 U	1.0 U	0.27 J		1.0 U
ILMP-1C	P-01C-N-20150831	8/31/2015 10:22	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		18
ILMP-26C	P-26C-N-20150827	8/27/2015 11:09	1.0 U	0.91 J	1.0 U	1.0 U	0.50 U		140
SWL0022	Del Amo Owned Wells GWS02579	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0022 SWL0025	GWS02579 GWS02580	10/1/2015 0:00	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U		1.0 U
SWL0026	SWL0026-20150929	9/29/2015 8:10	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
SWL0034	SWL0034-20151001	10/1/2015 11:55	12 J	7700	50 U	50 U	34	500 U	50 U
SWL0036 SWL0063	GWS02581 GWS02582	10/1/2015 0:00	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	0.50 U 41		1.2
24AF00093	UW3U2582	10/2/2015 0:00	1.0 0	1.0 U	1.U U	1.0 0	41		69

Table 2

Summary of Key VOC Laboratory Results
Dual Site Groundwater Operable Unit
Los Angeles, California 2015 Baseline MACR Date Created: 3/17/2016

		Sample Date	Ethylbenzene	Chlorobenzene	Tetrachloroethene	Chloroform	Benzene	tert-Butyl Alcohol	Trichloroethene
		Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		CAS	100-41-4	108-90-7	127-18-4	67-66-3	71-43-2	75-65-0	79-01-6
Well	Sample ID	ISGS	700	70	5	100	1		5
Gage Aquifer Del Amo Owned Wells, continued									
SWL0066	GWS02583	10/1/2015 0:00	1.0 U	1.0 U	0.62 J	1.0 U	0.50 U		18
Gage Aquifer	Boeing Owned Wells								
EWG001	EWG001_WG20150901_01	9/1/2015 9:20	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	9.2
EWG002	EWG002_WG20150901_01	9/1/2015 10:42	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	310
MWG001	MWG001_WG20150904_01	9/4/2015 8:05	2.0 U	2.0 U	2.0 U	1.4 J	2.8	50 U	140
MWG002	MWG002_WG20150903_01	9/3/2015 10:51	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	0.96 J
MWG003	MWG003_WG20150904_01	9/4/2015 9:30	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	25 U	43
MWG004	MWG004_WG20150904_01	9/4/2015 10:21	1.0 U	7.8	0.25 J	1	0.50 U	25 U	1300
Lynwood Aqu	ifer Montrose Owned Wells								
LW-01	LW-01-20151001	10/1/2015 14:05	1.0 U	4.9	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-02	LW-2-20151002	10/2/2015 13:15	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-04	LW-0400-20150930	9/30/2015 14:55	1.0 U	5.1	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-04	LW-04-20150930	9/30/2015 14:50	1.0 U	5	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-05	LW-05-20151001	10/1/2015 9:20	1.0 U	1.0 U	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-06	LW-06-20150929	9/29/2015 13:45	1.0 U	0.22 J	1.0 U	1.0 U	0.50 U	10 U	1.0 U
LW-07	LW-07-20150929	9/29/2015 12:10	1.0 U	0.41 J	1.0 U	1.0 U	0.50 U	10 U	1.0 U

Samples were analyzed using EPA Method 8260B.

Result equals or Exceeds ISGS

Bold Result = Result equal to or above lab reporting dection limit

ISGS = In Situ Groundwater Standard as listed as Table 9-1 in the Record of Decision for the Dual Groundwater Operable Unit, Montrose and Del Amo Superfund Sites (EPA, 1999)

Laboratory-Assigned Qualifier:

U = Analyte not detected above the reporting limit

J = Estimated value. Analyte detected at a level less than the RL and greater than or equal to the MDL.

B = Analyte was present in the associated method blank

R = The results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

Extraction wells were sampled in either March, October, or November 2015. See individual well records in Table 2 and Table 3

			pCBSA
			98-66-8
Well	Sample ID	Sample Date	ug/L
Water Table Boo	eing-Owned Wells		G.
MWB029	MWB029-090215	9/2/2015 9:58	5.0 U
Water Table-Del	Amo Owned Wells		
PZL0025	PZL0025-093015	9/30/2015 12:34	5.0 U
SWL0049	SWL004900-20150928	9/28/2015 15:55	3200
SWL0049	SWL0049-20150928	9/28/2015 15:40	3600
SWL0052	SWL0052-100515	10/5/2015 11:11	5.0 U
SWL0057	SWL0057-093015	9/30/2015 12:53	5.0 U
Water Table-ILN	Owned Wells		
ILMP-10	P10-082715	8/27/2015 9:21	5.0 U
ILMP-22	P22-082715	8/27/2015 13:03	5.0 U
Water Table-Jon	es Owned Wells		
JMWD-01	JMWD-01	9/1/2015 10:45	280
JMWD-02	JMWD-02	9/1/2015 11:12	390
JMWD-03	JMWD-03	9/1/2015 9:28	5.0 U
Water Table -Mo	ontrose Owned Wells		•
MBFB-EW-1	MBFB-EW-0100-20151102	11/2/2015 11:40	52000 J
MBFB-EW-1	MBFB-EW-01-20151102	11/2/2015 11:35	65000 J
MBFB-OW-1	MBFBOW01-082615	8/26/2015 11:43	19000
MW-01	MW-01-20150928	9/28/2015 10:20	670000 H
MW-02	MW-0200-20150930	9/30/2015 12:05	5.0 U
MW-02	MW-02-20150930	9/30/2015 12:05	540000
MW-03	MW03-082515	8/25/2015 14:08	5.0 U
MW-04	MW-04-20150928	9/28/2015 11:30	8900 J
MW-05	MW-0500-20150928	9/28/2015 12:45	39 J
MW-05	MW-05-20150928	9/28/2015 12:45	25 J
MW-06	MW-6-20151002	10/2/2015 10:55	25 U
MW-07	MW07-082615	8/26/2015 13:29	6100
MW-08	MW08-082615	8/26/2015 11:10	5.0 U
MW-09	MW-09-20150929	9/29/2015 8:25	15
MW-10	MW-10-20150928	9/28/2015 15:00	5.0 U
MW-11	MW-11-20150929	9/29/2015 8:05	390
MW-12	MW-12-20150928	9/28/2015 13:55	5.0 UJ
MW-13	MW-13-20151002	10/2/2015 12:00	7700
MW-14	XMW1400-100115	10/1/2015 15:02	22000 J
MW-14	XMW14-100115	10/1/2015 15:02	23000 J
MW-16	MW-16-20151002	10/2/2015 9:10	5.0 U
MW-17	MW17-082615	8/26/2015 12:38	5.0 U
MW-19	MW-19-20150929	9/29/2015 10:05	5.0 U
MW-21	XMW21-093015	9/30/2015 15:35	5.0 U
MW-22	MW-22-20150930	9/30/2015 13:25	3.5 J
MW-23	MW-23-20150928	9/28/2015 14:00	5.0 UJ
MW-24	MW-24-20150928	9/28/2015 10:40	5.0 UJ
MW-25	MW-25-20151007	10/7/2015 12:55	13
MW-26	MW-26-20150928	9/28/2015 11:30	5.0 UJ
MW-27	XMW27-093015	9/30/2015 14:20	5.0 U
MW-28	XMW28-100215	10/2/2015 8:25	5.0 U
MW-29	XMW29-100215	10/2/2015 9:37	5.0 U
MW-30	MW-30-20150928	9/28/2015 14:05	5.0 UJ
MW-31	MW31-082515	8/25/2015 11:41	5.0 U
14144 21	1111131 002313	5, 25, 2015 11.41	5.00

			pCBSA
			98-66-8
Well	Sample ID	Sample Date	ug/L
	FC Montrose-Owned Wells		
BF-32A	BF-32A-20150930	9/30/2015 8:05	6.7
BF-33	BF-33-20150930	9/30/2015 16:00	5.0 U
Unknown	DUP-2 UBA-EW-1 20151120	9/1/2015 10:55	290
UBA-EW-1 UBA-EW-3	UBA-EW-1_20151120 UBA-EW-3-20150312	11/20/2015 14:05 3/12/2015 14:09	530000 13000
MBFC Boeing-Ow		3/12/2013 14.09	13000
CMW001	CMW001-090215	9/2/2015 9:25	31000
CMW002	CMW001-090215	9/2/2015 10:33	74000
MWC017	MWC017-090215	9/2/2015 10.33	95
MWC021	MWC021-090215	9/2/2015 8:11	5.0 U
MBFC Del Amo-C		3/2/2013 0.11	5.0 0
SWL0010	SWL0010-100115	10/1/2015 9:28	5.0 U
SWL0013	SWL0013-093015	9/30/2015 15:18	4.3 J
SWL0027	SWL0027-20150929	9/29/2015 9:20	70
SWL0033	SWL003300-100115	10/1/2015 13:52	23000 J
SWL0033	SWL0033-100115	10/1/2015 13:52	25000 J
SWL0035	SWL0035-093015	9/30/2015 14:48	5.0 U
SWL0053	SWL0053-093015	10/2/2015 8:22	5.0 U
SWL0058	SWL0058-100115	10/1/2015 8:35	760 J
G-02WC	XG02WC00-100115	10/1/2015 11:16	3200 J
G-02WC	XG02WC-100115	10/1/2015 11:16	3800 J
MBFC ILM-Owne		, _,	
ILM P-16C	P16C-082715	8/27/2015 11:40	5.0 U
MBFC Montrose-			
BF-01	BF01-082615	8/26/2015 9:18	2000
BF-02	BF-02-20150930	9/30/2015 9:15	70000
BF-03	BF-03-20150930	9/30/2015 14:10	44000
BF-04	BF-04-20151001	10/1/2015 13:05	110000
BF-05	BF-05-20150928	9/28/2015 14:45	5.0 UJ
BF-06	XBF0600-100215	10/2/2015 10:19	12000
BF-06	XBF06-100215	10/2/2015 10:19	21000
BF-09	BF-09-20150930	9/30/2015 10:50	380000 H
BF-10	BF-10-20150929	9/29/2015 9:20	79
BF-11	BF-11-20151007	10/7/2015 10:35	7.4 J
BF-12	BF-1200-20150929	9/29/2015 15:10	28000
BF-12	BF-12-20150929	9/29/2015 15:05	29000
BF-13	XBF13-100115	10/1/2015 12:02	5.0 U
BF-14	BF-14-20150928	9/28/2015 13:00	280 J
BF-15	BF-15-20150928	9/28/2015 9:35	24000 J
BF-16	BF-16-20150929	9/29/2015 13:27	30000
BF-17	BF-17-20151007	10/7/2015 9:40	24000
BF-19	BF-19-20151001	10/1/2015 9:00	8.4
BF-20	BF20-082615	8/26/2015 13:39	13000
BF-21	BF-21-20150929	9/29/2015 15:15	33000
BF-22	BF-22-20150929	9/29/2015 12:30	12000
BF-23	BF-23-20151007	10/7/2015 11:45	5.0 U
BF-24	BF-24-20150929	9/29/2015 11:55	33000
BF-25	BF-25-20151007	10/7/2015 8:20	820
BF-27	BF-27-20150930	9/30/2015 10:05	5.0 U
BF-28	BF-28-20150930	9/30/2015 9:25	300
BF-29	BF-29-20150930	9/30/2015 15:10	6300
BF-30	BF-30-20150929	9/29/2015 11:25	18
BF-31	BF-31-20150930	9/30/2015 11:02	290
BF-34	BF34-082515	8/25/2015 12:51	5.0 U
BF-35	BF-35-20151001	10/1/2015 14:55	19000
BF-36	BF-36-20150930	9/30/2015 11:10	5.0 U
BF-OW-1	BFOW01-082615	8/26/2015 10:39	500
BF-OW-4	BF-OW-4-20150929	9/29/2015 16:05	41000
BF-EW-1	BF-EW-1_20151120	11/20/2015 0:00	100000
BF-EW-2	BF-EW-2-20150311	3/11/2015 0:00	56000
BF-EW-3	BF-EW-3-20150312	3/12/2015 10:30	15000
BF-EW-4	BF-EW-4-20150311	3/11/2015 10:20	25000
BF-EW-5	BF-EW-5-20151120	11/20/2015 9:30	130000

			pCBSA			
			98-66-8			
Well	Sample ID	Sample Date	ug/L			
MBFB Del Amo Owned Wells						
G-0W-1	GOW01-082615	8/26/2015 9:29	18			
SWL0011	SWL0011-20151007	10/7/2015 11:00	5.0 U			
SWL0023	SWL0023-100115	10/1/2015 12:09	5.0 U			
SWL0037	SWL0037-093015	9/30/2015 14:02	5.0 U			

			pCBSA
			98-66-8
Well	Sample ID	Sample Date	ug/L
Gage Aquifer De	l Amo-Owned Wells	*	
SWL0022	SWL002200-100115	10/1/2015 8:38	740 J
SWL0022	SWL0022-100115	10/1/2015 8:38	780 J
SWL0025	SWL0025-100115	10/1/2015 10:18	5.0 U
SWL0026	SWL0026-20150929	9/29/2015 8:10	82
SWL0034	SWL0034-20151001	10/1/2015 11:55	37000
SWL0036	SWL0036-100115	10/1/2015 9:46	5.0 U
SWL0063	SWL0063-100215	10/2/2015 10:42	5.0 U
Gage Aquifer ILN	/I-Owned Wells		
BL-13C	BL13C-082715	8/27/2015 9:14	4600
ILMP-26C	P26C-082715	8/27/2015 11:09	5.0 U
Gage Aquifer Mo	ontrose-Owned Wells		
G-01	G-01-20151001	10/1/2015 10:55	60
G-02	G-02-20151001	10/1/2015 12:54	13000
G-03	G-03-20151007	10/7/2015 12:40	120
G-04	G-04-20151007	10/7/2015 13:55	1300
G-05	G-05-20151002	10/2/2015 13:20	27000
G-08	G-08-20150928	9/28/2015 11:05	4200 J
G-09	G-09-20150929	9/29/2015 10:05	21000
G-12	G-12-20151001	10/1/2015 13:00	27000
G-13	G-1300-20150928	9/28/2015 12:15	22000 J
G-13	G-13-20150928	9/28/2015 12:00	30000 J
G-14	G-14-20150930	9/30/2015 16:10	5.0 U
G-15	G-15-20150930	9/30/2015 13:50	5.0 U
G-16	G-16-20150928	9/28/2015 12:15	14 J
G-17	XG17-100115	10/1/2015 13:55	4400 J
G-18	G-18-20150929	9/29/2015 9:55	1700
G-19A	G-19A-20150929	9/29/2015 11:05	6100
G-20	G20-082515	8/25/2015 10:15	5.0 U
G-21	G-21-20151001	10/1/2015 11:50	210
G-23	G-23-20150929	9/29/2015 14:05	99
G-24	G-24-20150929	9/29/2015 14:20	9000
G-25	G-25-20151001	10/1/2015 10:40	3800
G-26	G-2600-20150930	9/30/2015 12:25	700
G-26	G-26-20150930	9/30/2015 12:10	730
G-27	G-27-20150929	9/29/2015 11:50	5.0 U
G-28	G-28-20151001	10/1/2015 8:55	1300
G-29	G-29-20151002	10/2/2015 9:45	8600
G-30	G-30-20150930	9/30/2015 9:52	5.0 U
G-31	G-31-20151002	10/2/2015 11:00	8600
G-32	G-32-20150930	9/30/2015 12:25	5.0 U
G-33	G-33-20150930	9/30/2015 8:55	190
G-34	G-34-20151001	10/1/2015 9:40	5.0 U
G-35	G-35-20150930	9/30/2015 8:35	3900
G-OW-3	G-OW-3-20150929	9/29/2015 12:35	7200
LG-01	LG-01-20151001	10/1/2015 10:58	170
LG-02	LG-0200-20151001	10/1/2015 10:38	26000
LG-02	LG-02-20151001	10/1/2015 14:05	27000
LU-UZ	LG-02-20151001	10/1/2015 14:05	2/000

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR Date Created: 3/17/2016

			pCBSA					
			98-66-8					
Well	Sample ID	Sample Date	ug/L					
Lynwood Aquife	ynwood Aquifer Montrose-Owned Wells							
LW-01	LW-01-20151001	10/1/2015 14:05	11					
LW-02	LW-2-20151002	10/2/2015 13:15	21					
LW-04	LW-0400-20150930	9/30/2015 14:55	230					
LW-04	LW-04-20150930	9/30/2015 14:50	220					
LW-05	LW-05-20151001	10/1/2015 9:20	8.1					
LW-06	LW-06-20150929	9/29/2015 13:45	5.0 U					
LW-07	LW-07-20150929	9/29/2015 12:10	5.0 U					

Notes:

pCBSA = 4-chlorobenzenesulfonic acid

Bold Result = Result equal to or above lab reporting dection limit

ug/L = micrograms per liter

Laboratory-Assigned Qualifier:

U = Analyte not detected above the reporting limit

J = Estimated value. Analyte detected at a level less than the RL and greater than or equal to the MDL.

H = Sample analyzed past the recommended holding time

Extraction wells were sampled in either March, October, or November 2015. See individual well records in Table 2 and Table 3

Table 4

Summary of QA/QC Sample Laboratory Results

Sample Date	Sample ID	VOCs	pCBSAs
Labor	atory Method	(EPA 8260B)	(EPA 314.0 Modified)
	Units	(ug/L)	(ug/L)
Equipment Blank-Collected	by Avocet Environmental, Inc.		
9/2/2015 10:45	EB_AV20150902_01	ND	ND
9/3/2015 9:15	EB_AV20150903_01	ND	ND
9/4/2015 9:45	EB_AV20150904_01	ND	ND
Equipment Blank-Collected	by Jacob & Hefner Associates, Inc	: .	
9/28/2015 14:30	EB-20150928	ND	ND
9/29/2015 14:30	EB-20150929	ND	ND
9/30/2015 14:30	EB-20150930	ND	ND
10/1/2015 14:30	EB-20151001	ND	ND
10/2/2015 14:00	EB-20151002	ND	ND
10/7/2015 14:30	EB-20151007	ND	ND
Equipment Blank-Collected	by Tetra Tech		
8/25/2015 7:30	LEB-20150825-BP-RS	ND	ND
8/25/2015 7:45	LEB-082515-BP-VC	ND	ND
		Acetone- 15 J	
10/5/2015 9:00	LEB-20151005-BP	Methyl Ethyl Ketone-58	ND
Equipment Blank-Collected	by URS		
10/1/2015 0:00	FBS02080	ND	ND
10/6/2015 0:00	FBS02107	ND	ND
Trip Blank-Collected by Ave	ocet Environmental, Inc.		•
9/1/2015 0:01	TB_AV20150901_01	ND	ND
9/2/2015 0:01	TB_AV20150902_01	ND	ND
9/2/2015 0:01	TB_AV20150902_02	ND	ND
9/3/2015 0:01	TB AV20150903 01	ND	ND
9/4/2015 0:01	TB AV20150904 01	ND	ND
Trip Blank-Collected by BLA	AINE		•
9/1/2015 9:00	TB-1	ND	ND
Trip Blank-Collected by Jac	ob & Hefner Associates, Inc.		•
9/28/2015 7:00	TB-20150928	ND	ND
9/29/2015 7:30	TB-20150929	ND	ND
9/30/2015 7:30	TB-20150930	ND	ND
10/1/2015 7:00	TB-20151001	ND	ND
10/2/2015 7:00	TB-20151002	ND	ND
10/7/2015 7:00	TB-20151007	ND	ND
11/2/2015 11:00	TB-20151102	ND	ND
Trip Blank-Collected by Tet	ra Tech	<u> </u>	
8/25/2015 7:30	LTB-20150825	ND	ND
9/2/2015 8:00	LTB-20150902	ND	ND
10/5/2015 8:00	LTB-20151005	Methylene Chloride-0.92 J	ND
Trip Blank-Collected by UR	s	•	•
9/30/2015 0:00	FBS02062	ND	ND
9/30/2015 0:00	FBS02063	ND	ND
9/30/2015 0:00	FBS02064	ND	ND
9/30/2015 0:00	FBS02065	ND	ND
9/30/2015 0:00	FBS02066	ND	ND
9/30/2015 0:00	FBS02072	ND ND	ND
9/30/2015 0:00	FBS02073	ND ND	ND
9/30/2015 0:00	FBS02074	ND ND	ND
9/30/2015 0:00	FBS02075	ND ND	ND
9/30/2015 0:00	FBS02076	ND ND	ND
10/1/2015 0:00	FBS02067	ND ND	ND

Table 4

Summary of QA/QC Sample Laboratory Results

Dual Site Groundwater Operable Unit Los Angeles, California 2015 Baseline MACR Date Created: 3/17/2016

Sample Date	Sample ID	VOCs	pCBSAs
Laboratory Method		(EPA 8260B)	(EPA 314.0 Modified)
Units		(ug/L)	(ug/L)
10/1/2015 0:00	FBS02068	ND	ND
10/1/2015 0:00	FBS02069	ND	ND
10/1/2015 0:00	FBS02071	ND	ND
10/1/2015 0:00	FBS02077	ND	ND
10/1/2015 0:00	FBS02078	ND	ND
10/1/2015 0:00	FBS02079	ND	ND
10/2/2015 0:00	FBS02081	ND	ND
10/2/2015 0:00	FBS02082	ND	ND
10/2/2015 0:00	FBS02083	ND	ND
10/2/2015 0:00	FBS02084	ND	ND
10/2/2015 0:00	FBS02085	ND	ND
10/2/2015 0:00	FBS02086	ND	ND
10/2/2015 0:00	FBS02101	ND	ND
10/2/2015 0:00	FBS02102	ND	ND
10/2/2015 0:00	FBS02103	ND	ND
10/2/2015 0:00	FBS02104	ND	ND
10/2/2015 0:00	FBS02105	ND	ND
10/5/2015 0:00	FBS02087	ND	ND
10/5/2015 0:00	FBS02106	Methylene Chloride 0.69	ND
10/6/2015 0:00	FBS02108	ND	ND

Notes:

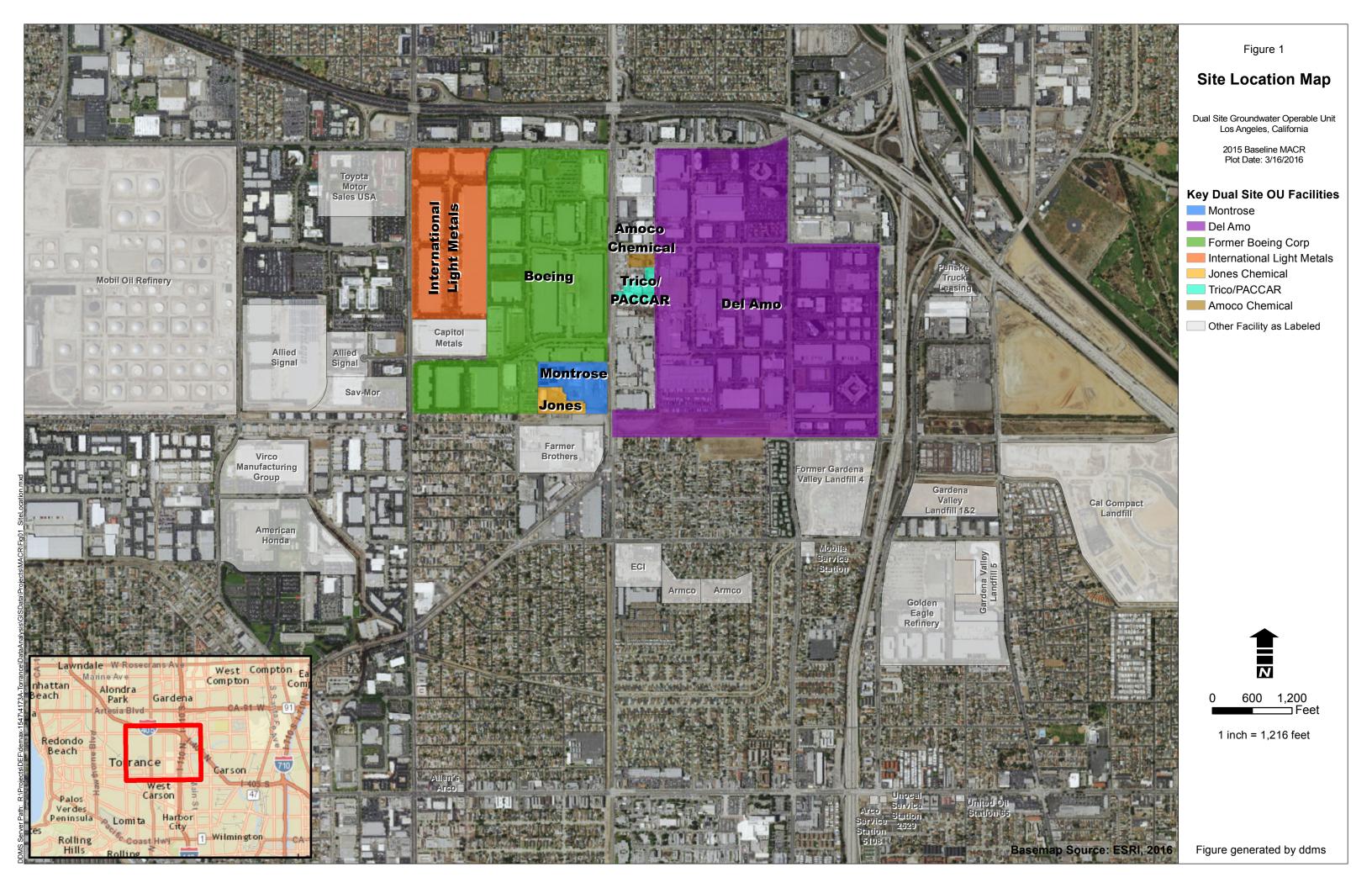
ug/L = micrograms per liter

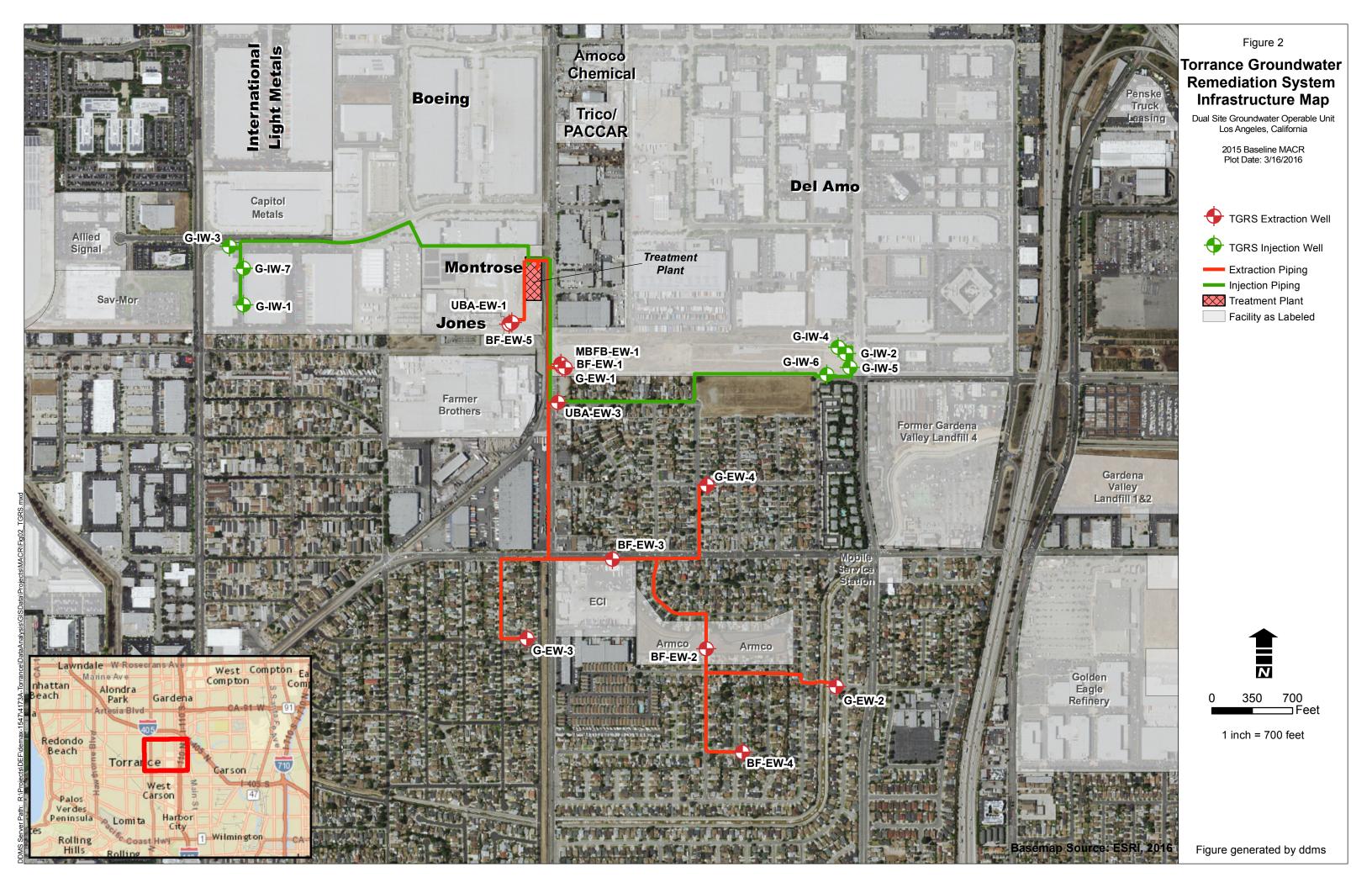
EPA = United States Environmental Protection Agency

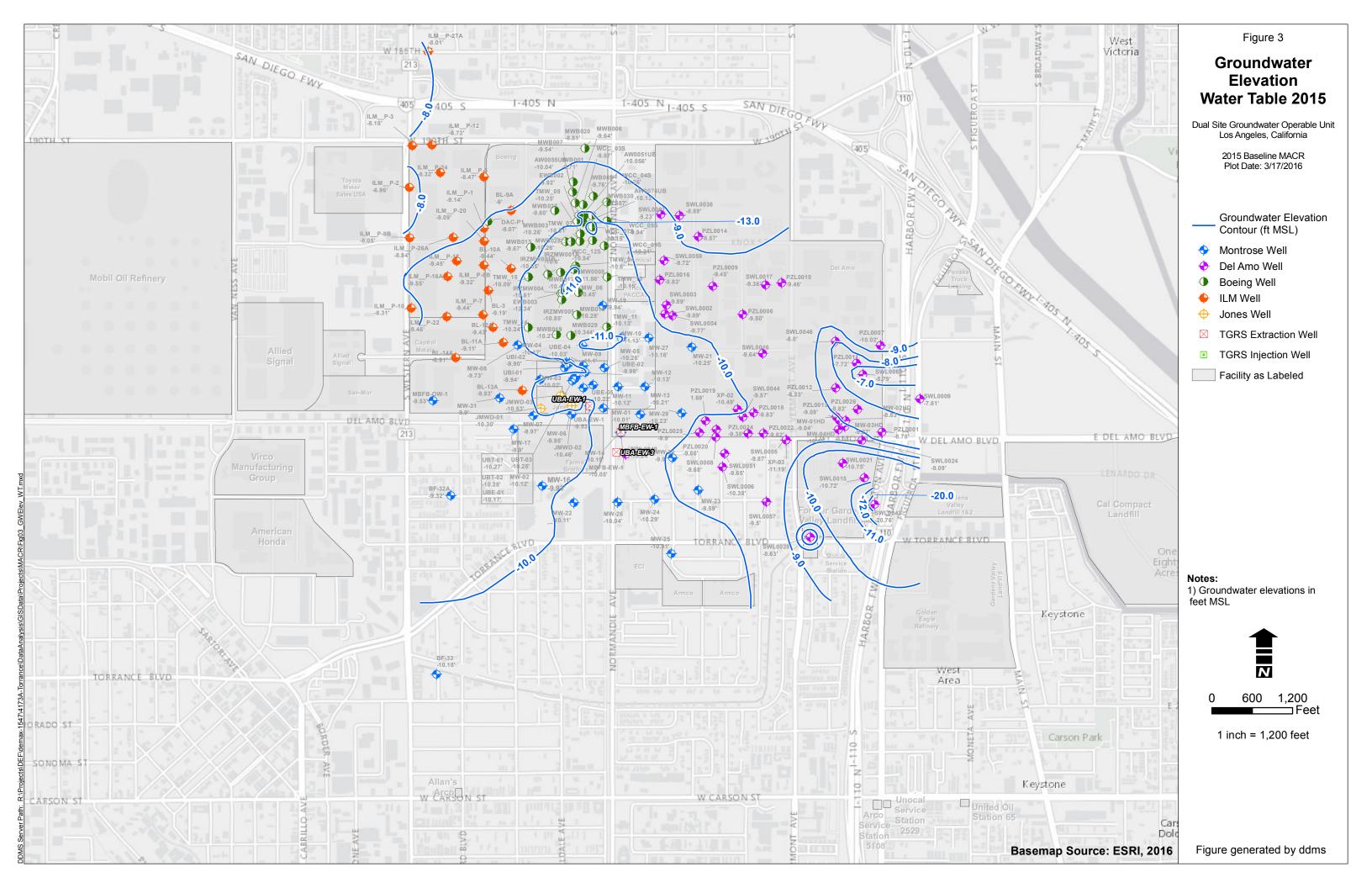
ND = Analytes listed as part of EPA Method 8260B were not detected at or above lab RDL

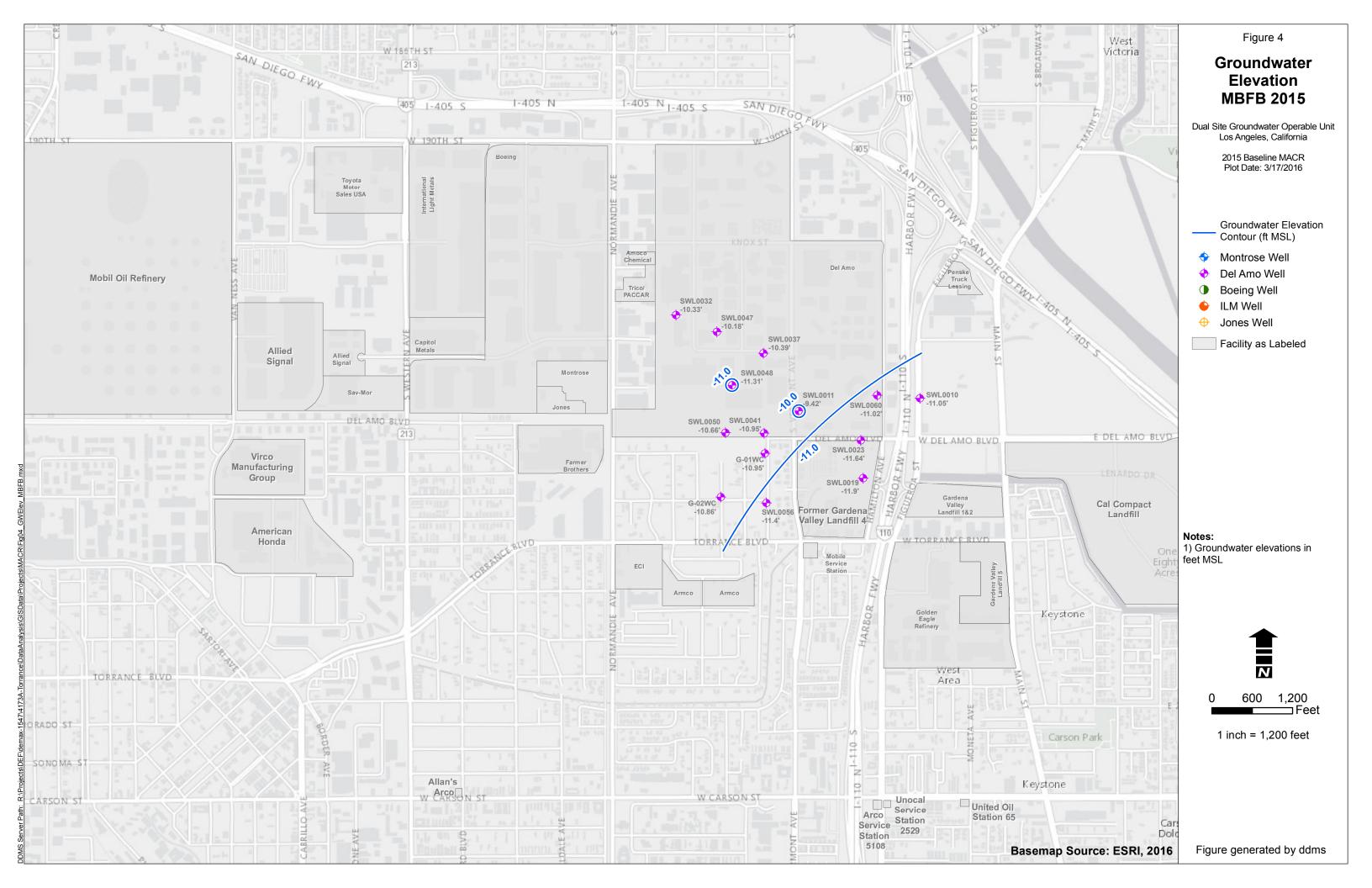
pCBSA = 4-chlorobenzenesulfonic acid

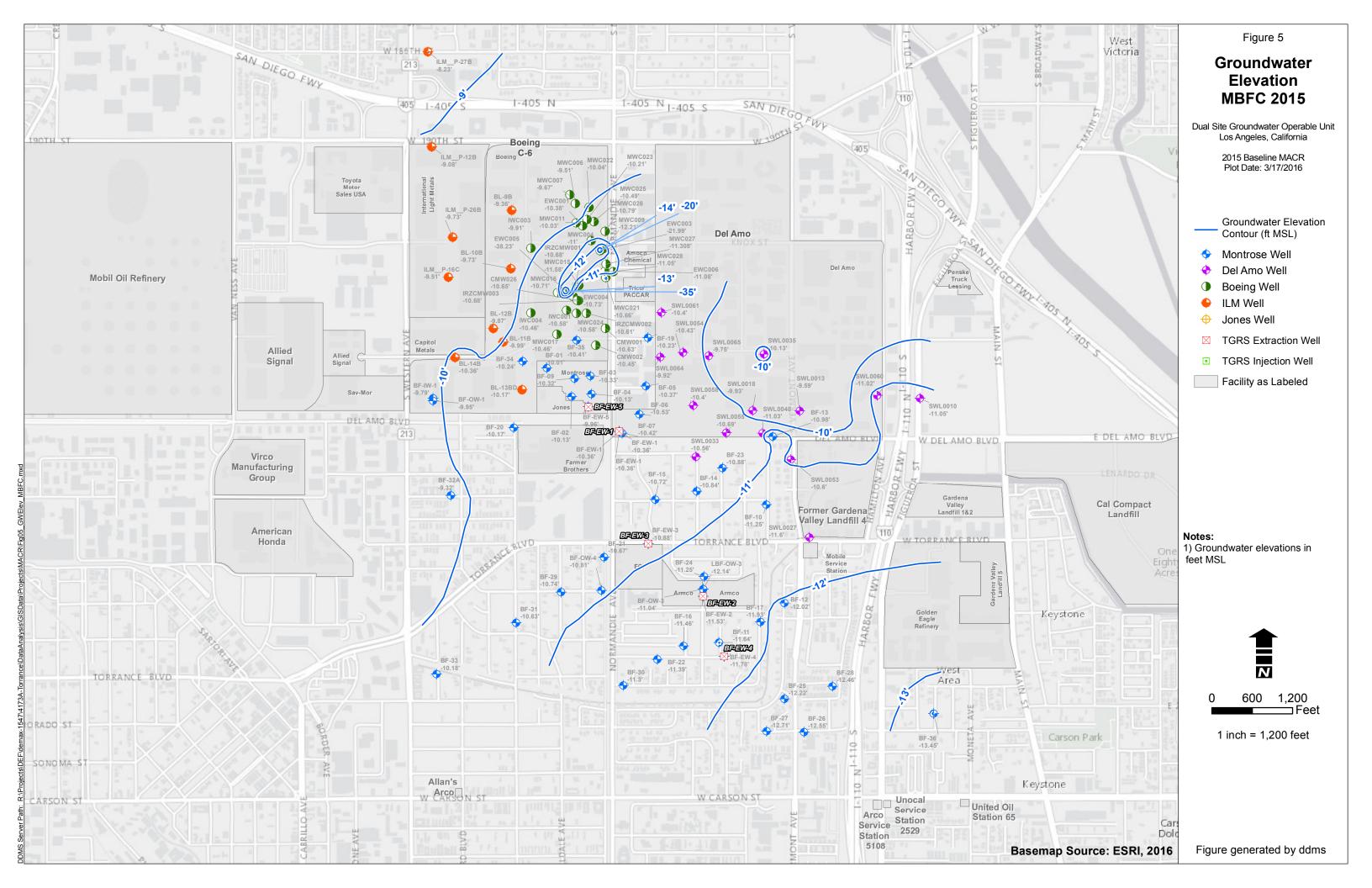
QA/QC = Quality assurance/quality control

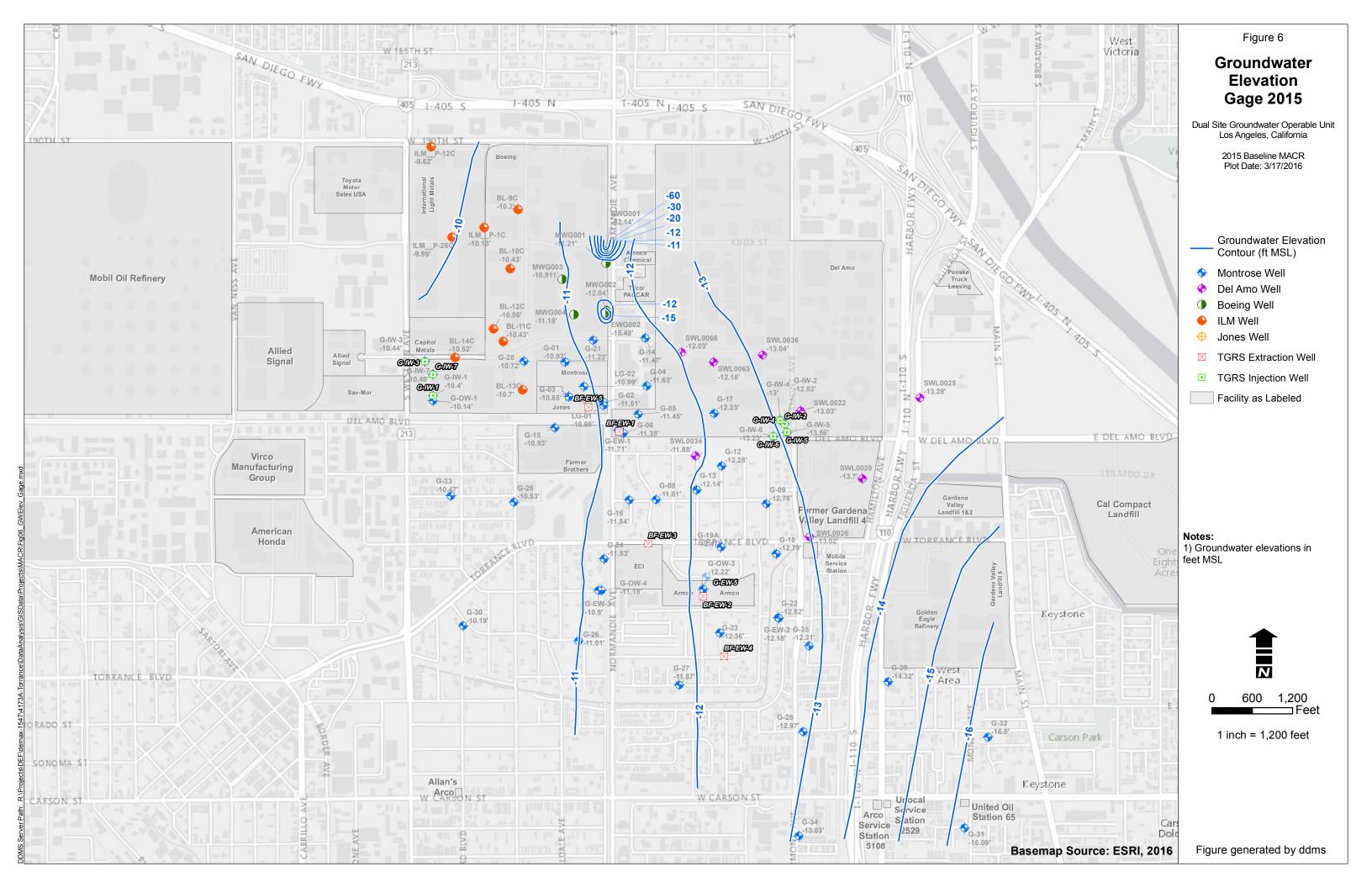

VOC = Volatile organic compound

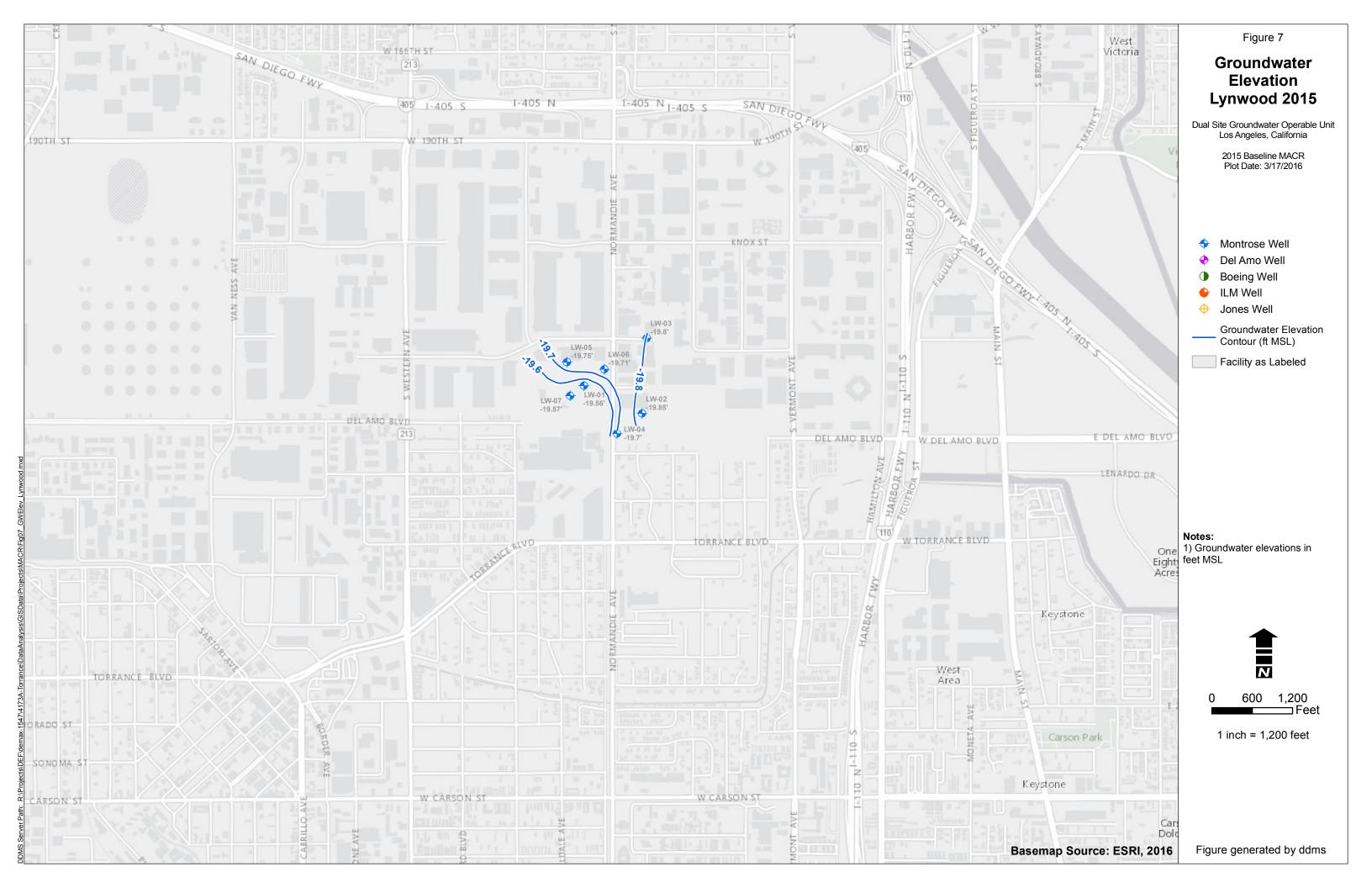

Laboratory-Assigned Qualifier

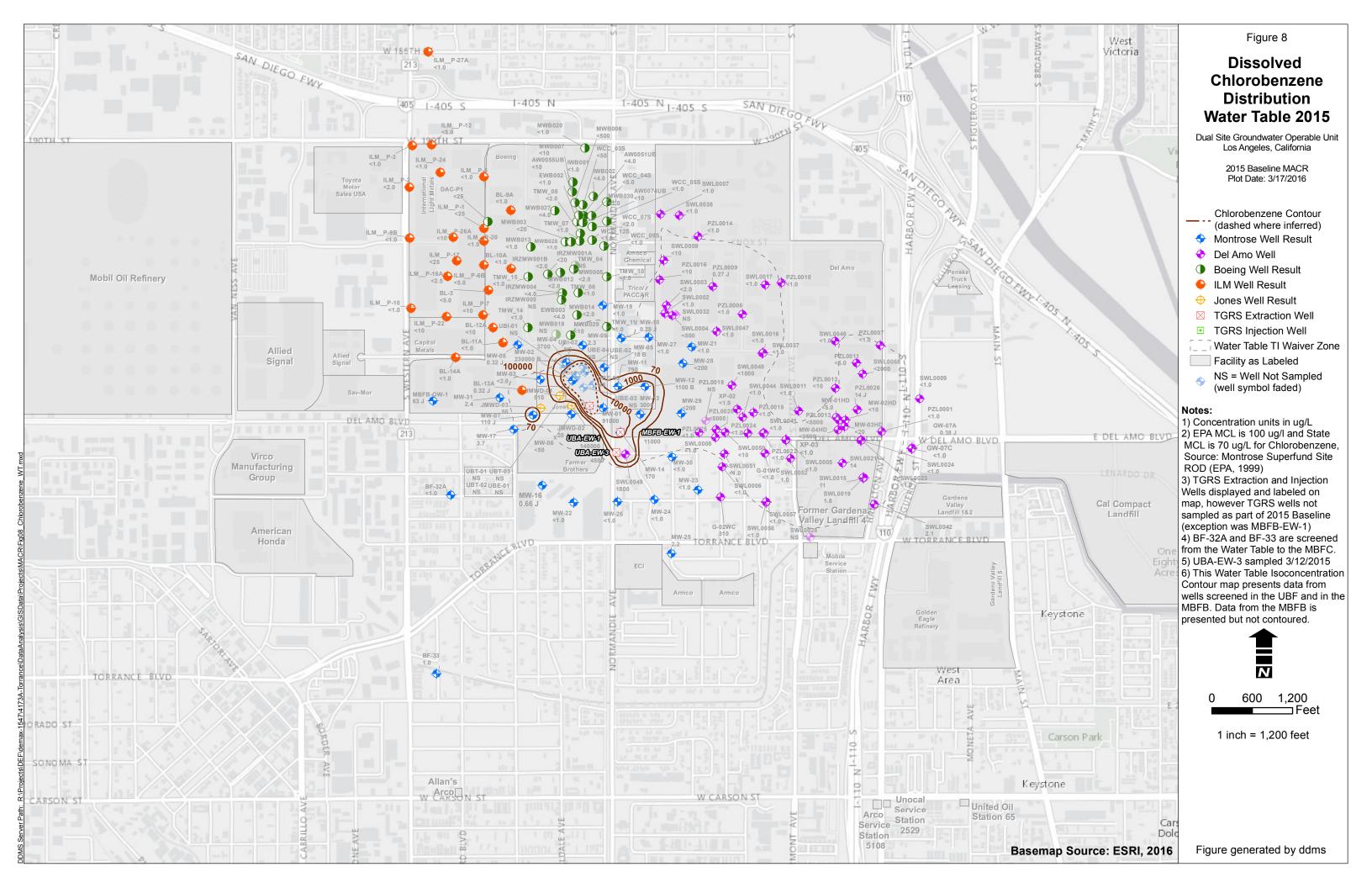

J = Estimated value. Analyte detected at a level less than the RDL and greater than or equal to

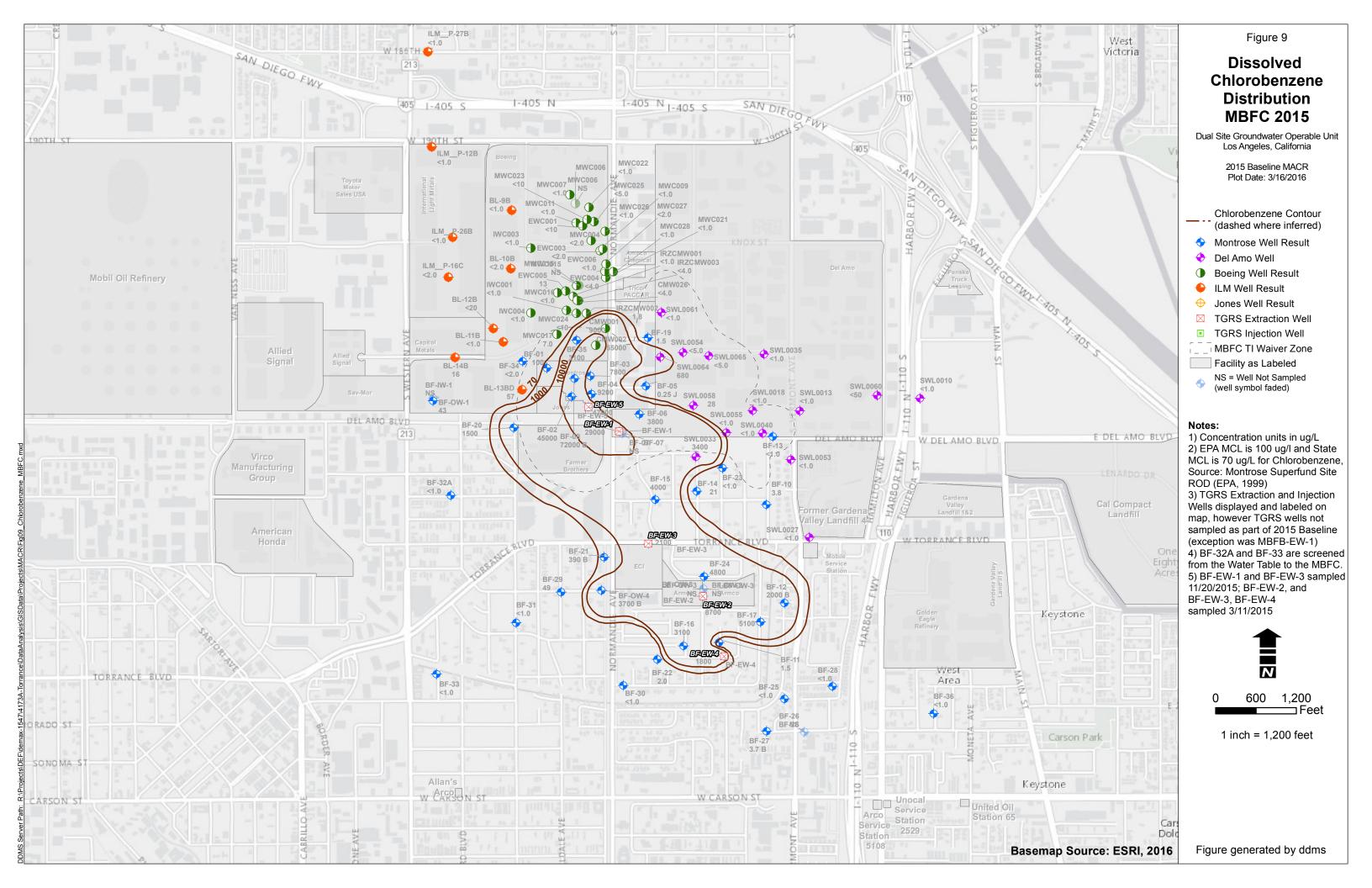

the MDL. The user of this data should be aware that this data is of limited reliability.

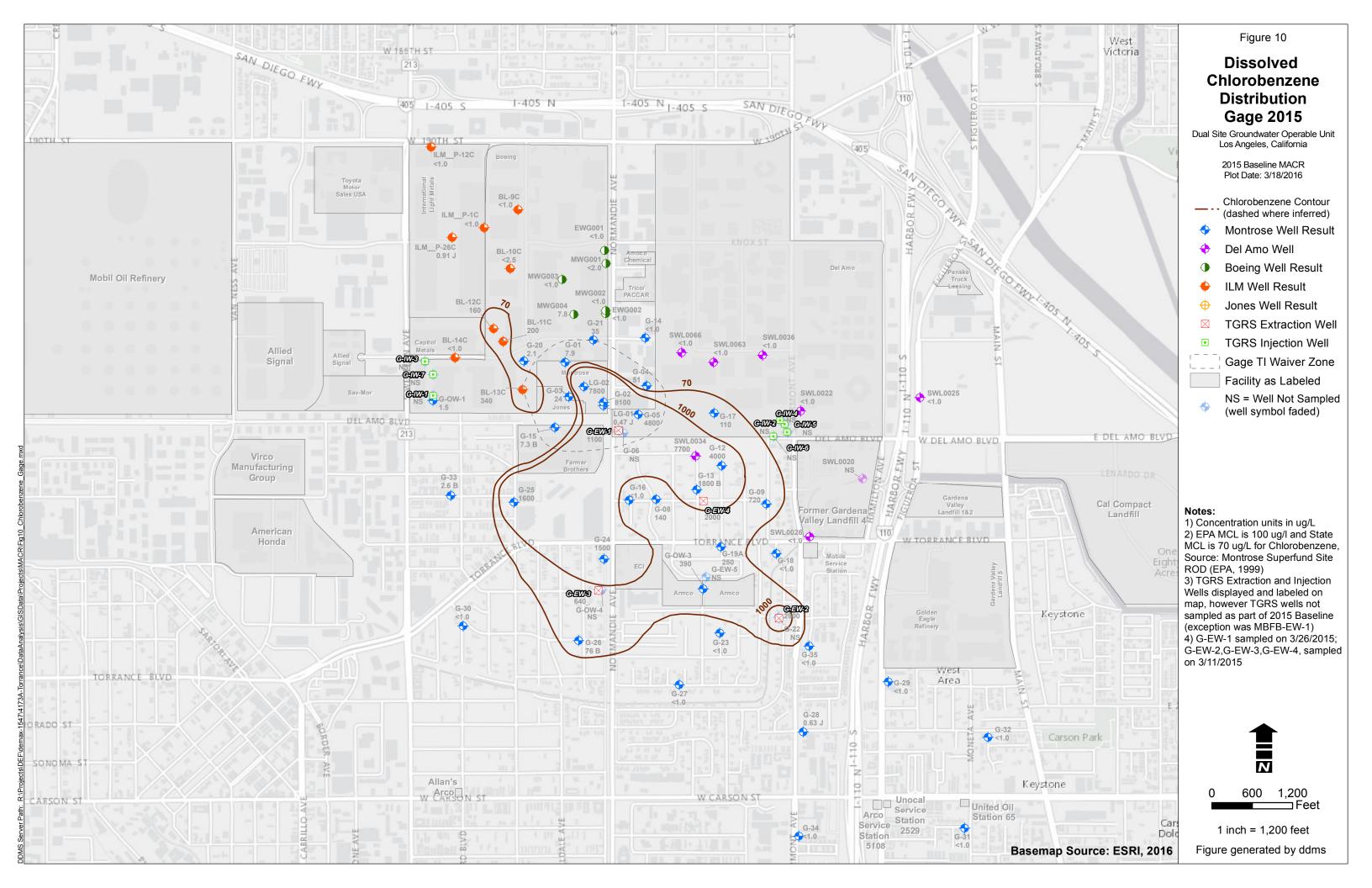

FIGURES

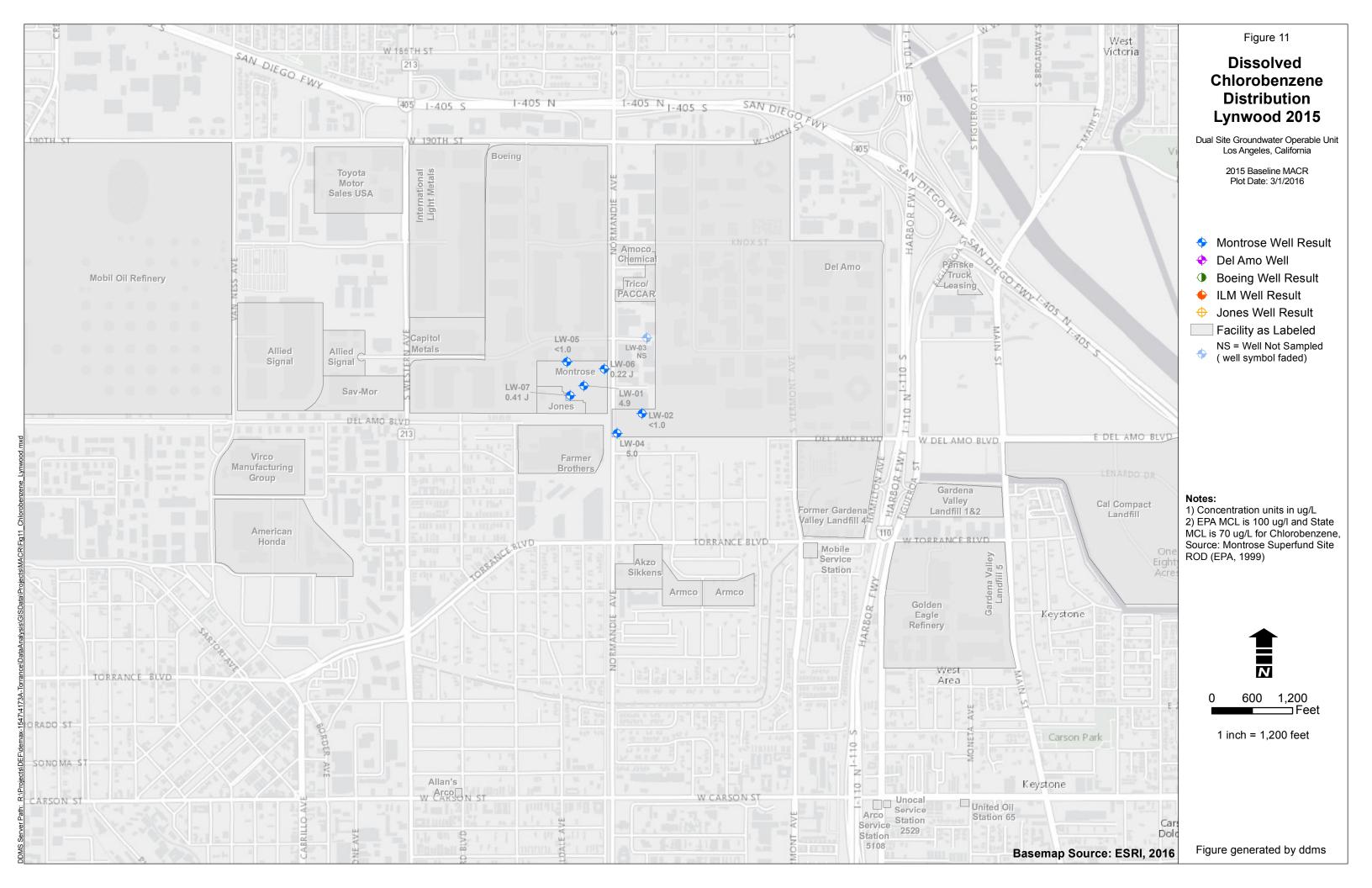


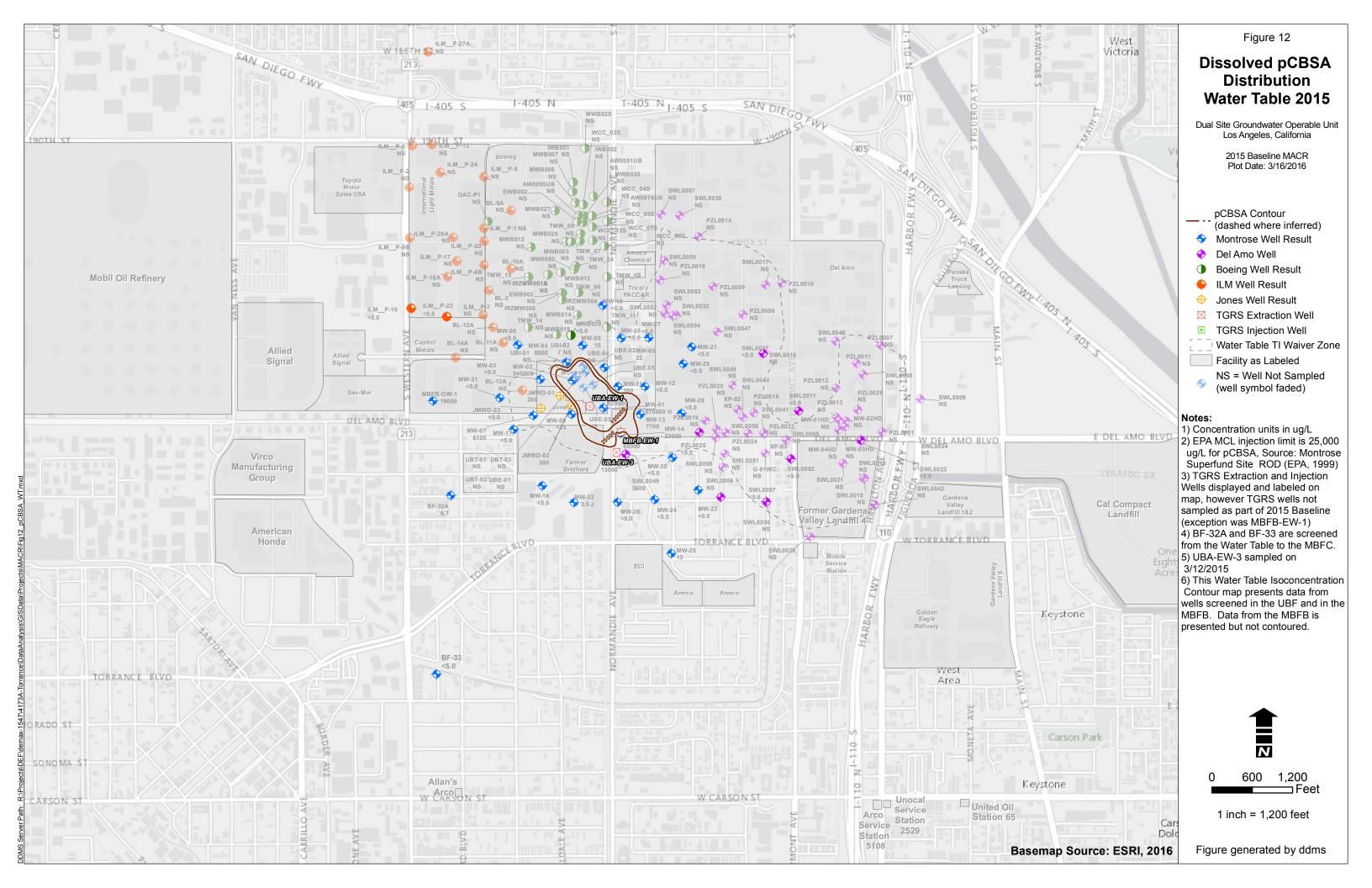


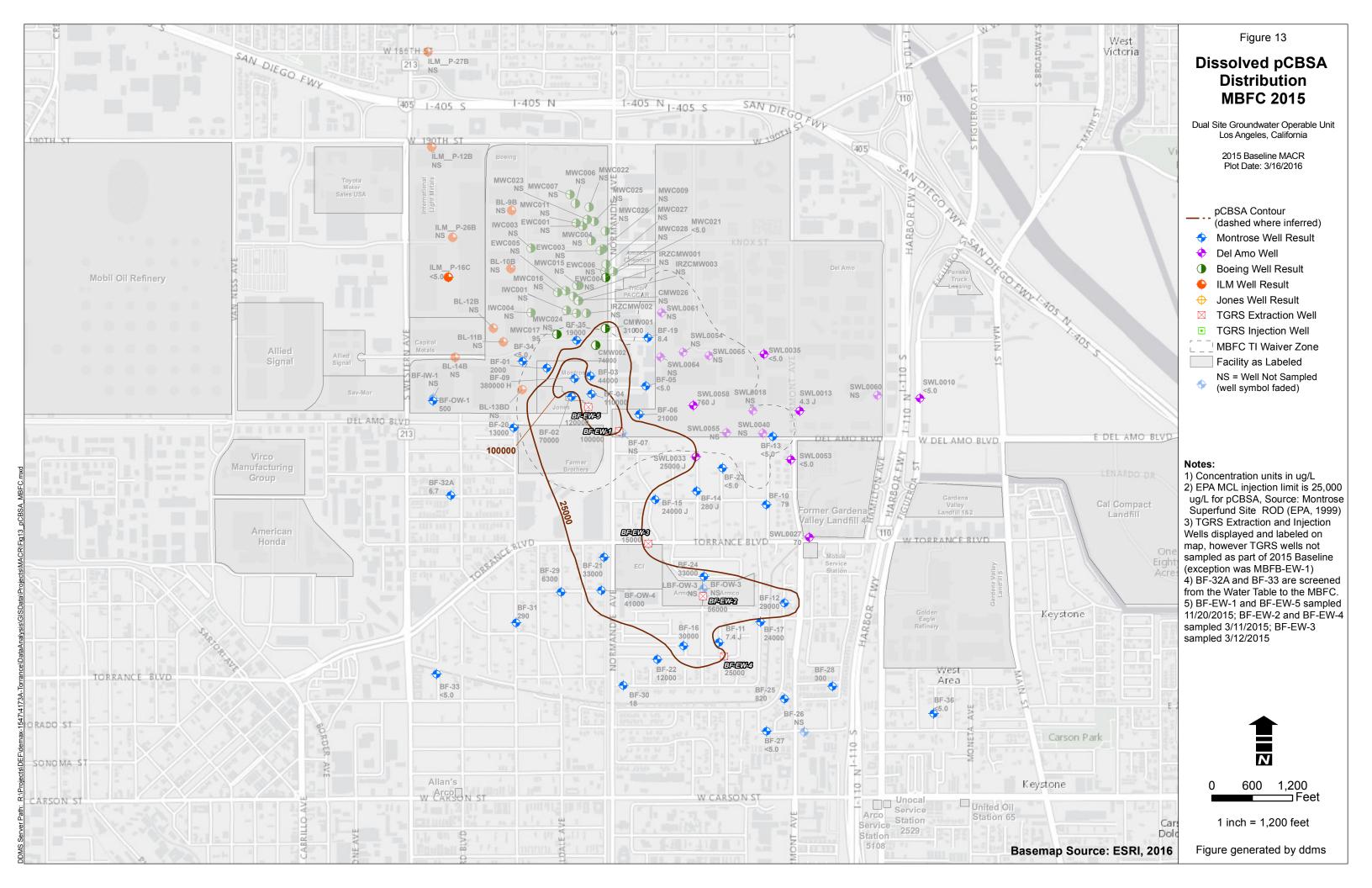


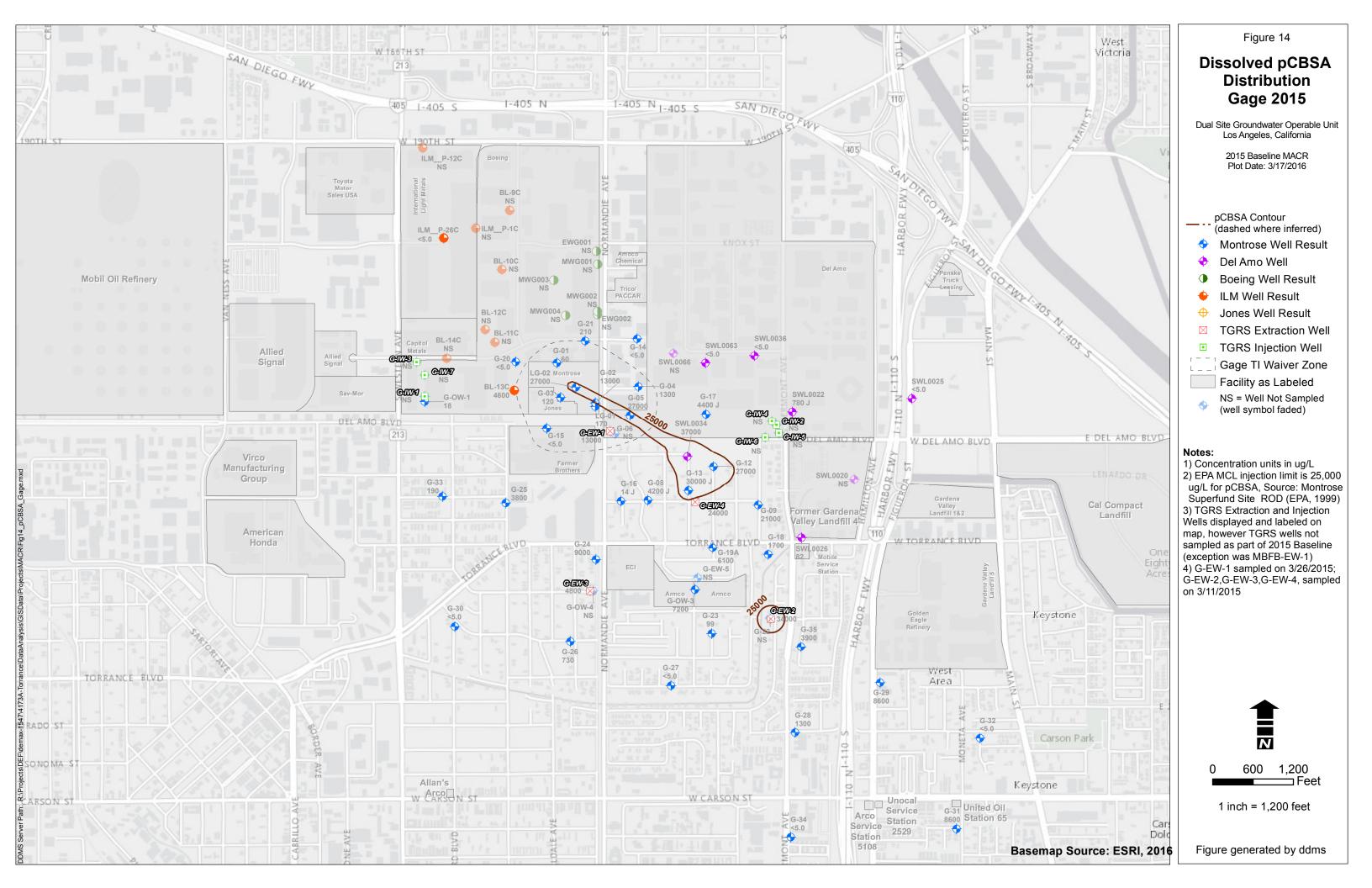


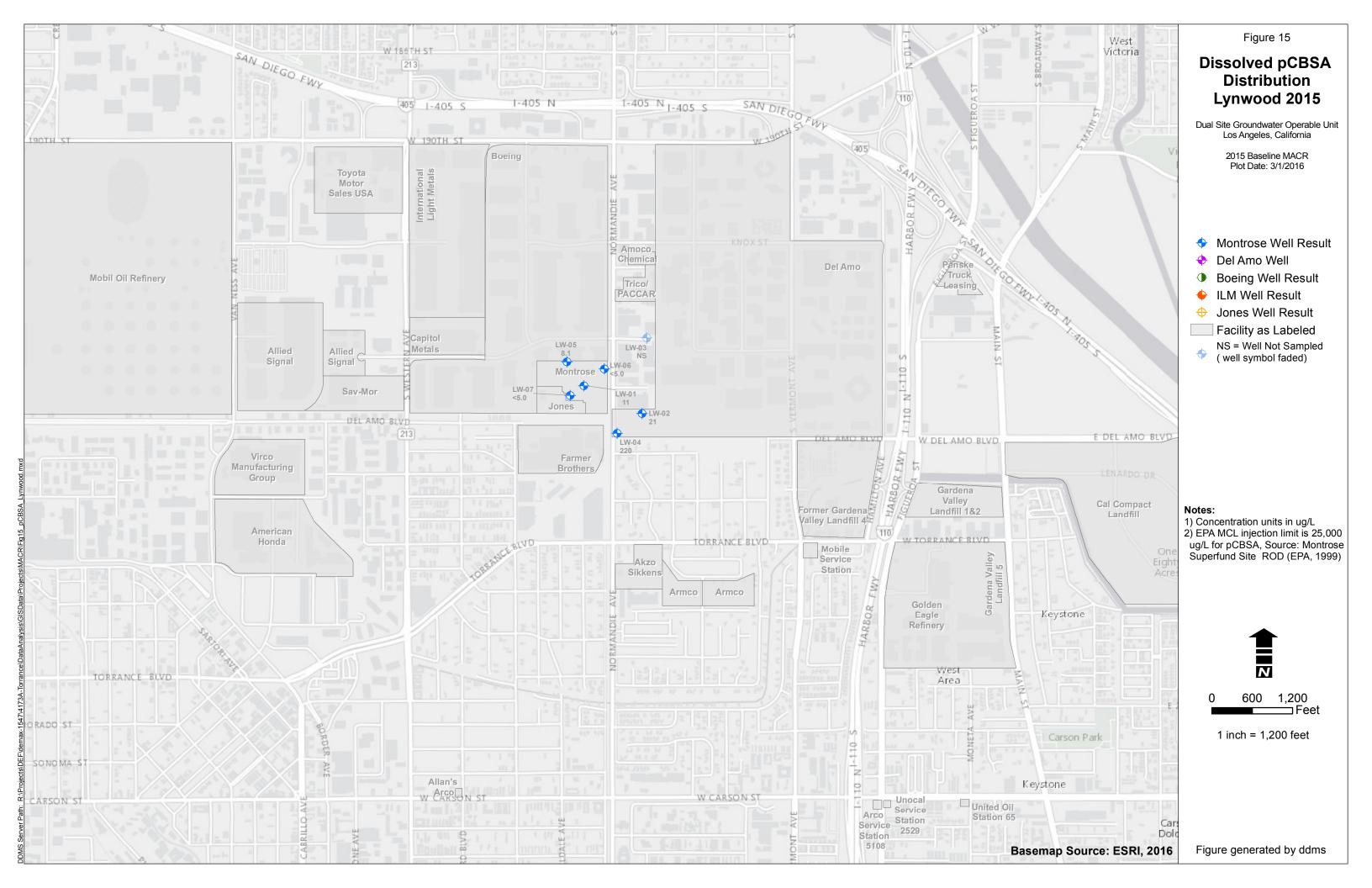


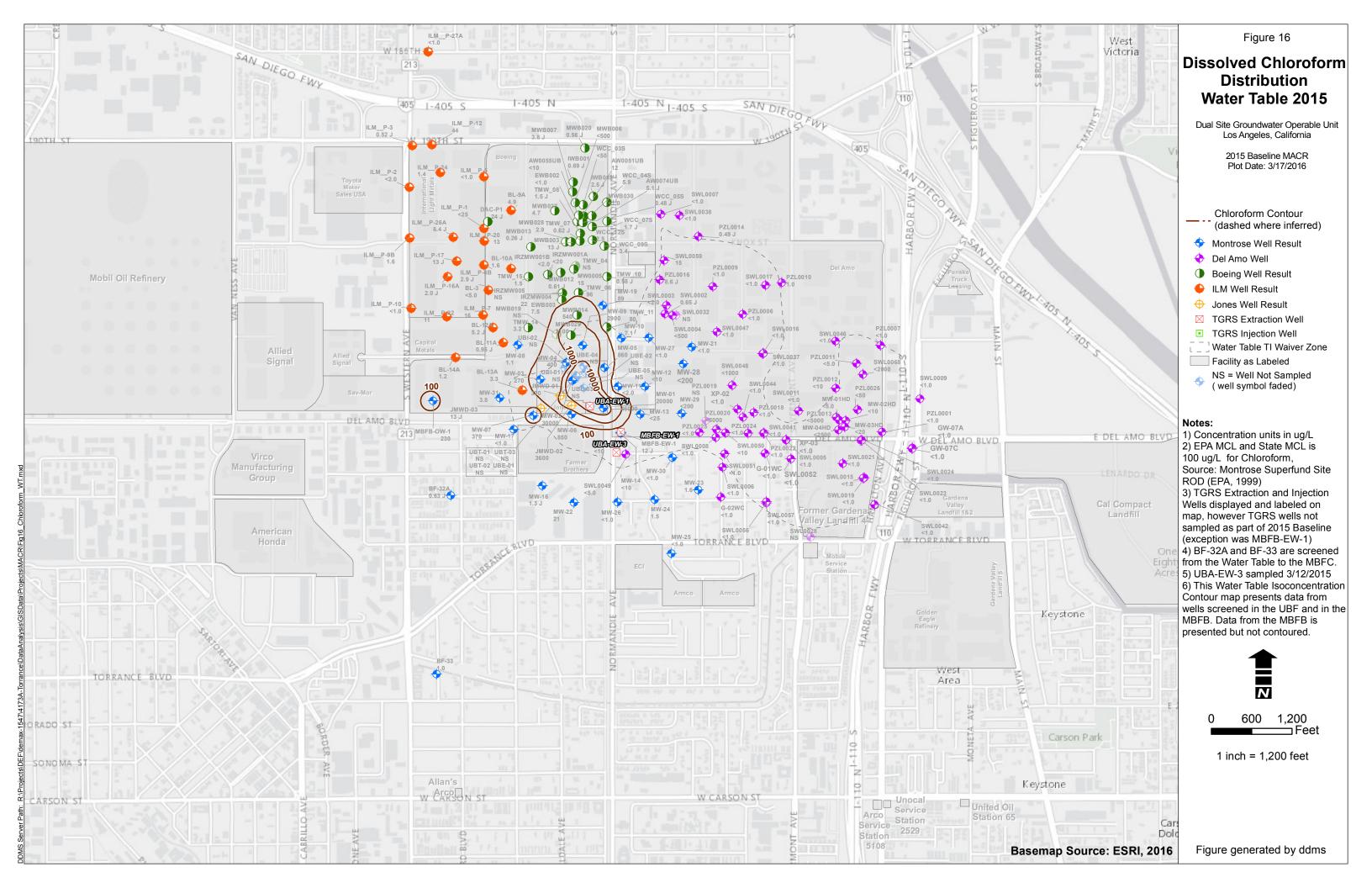


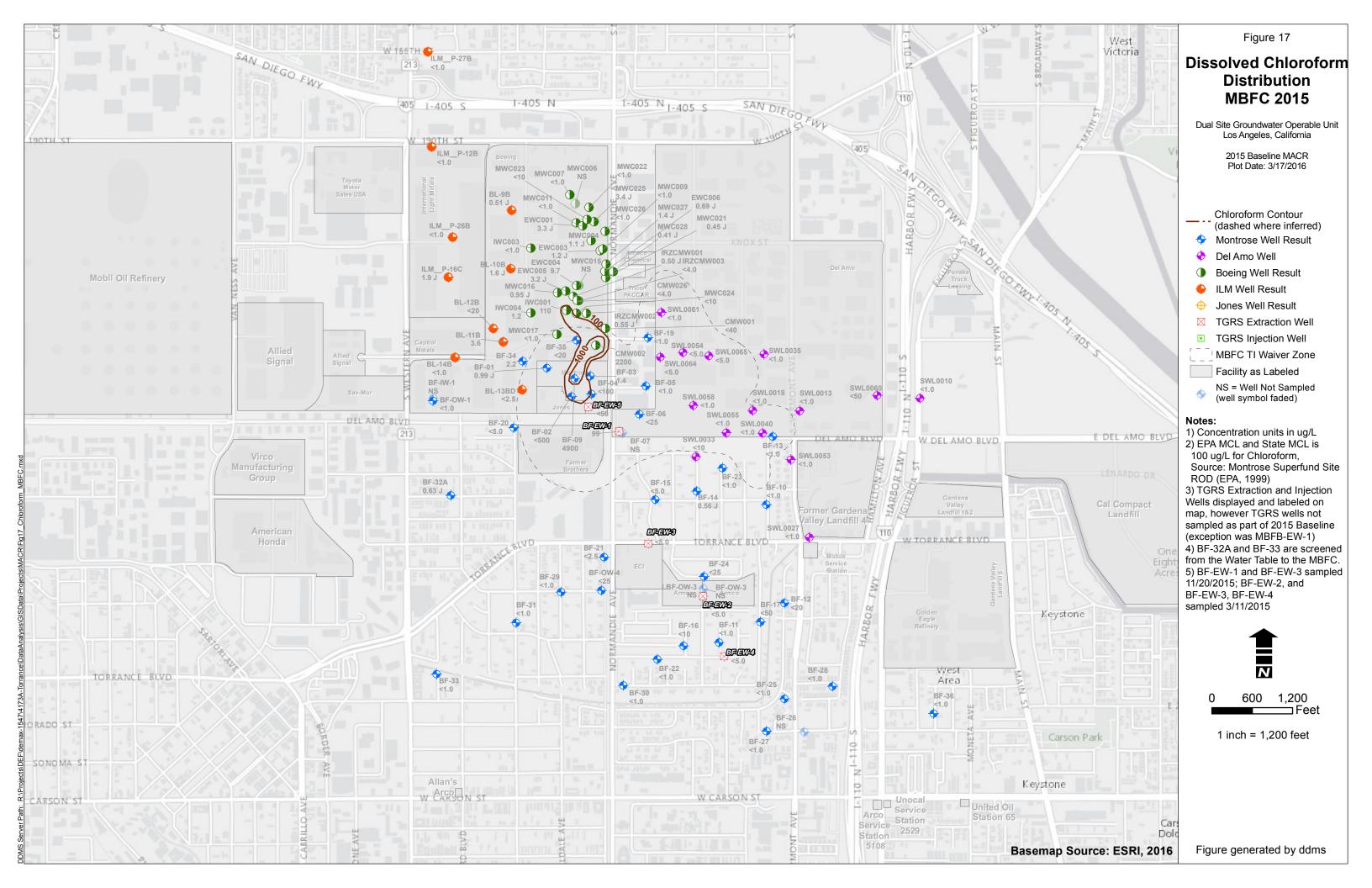


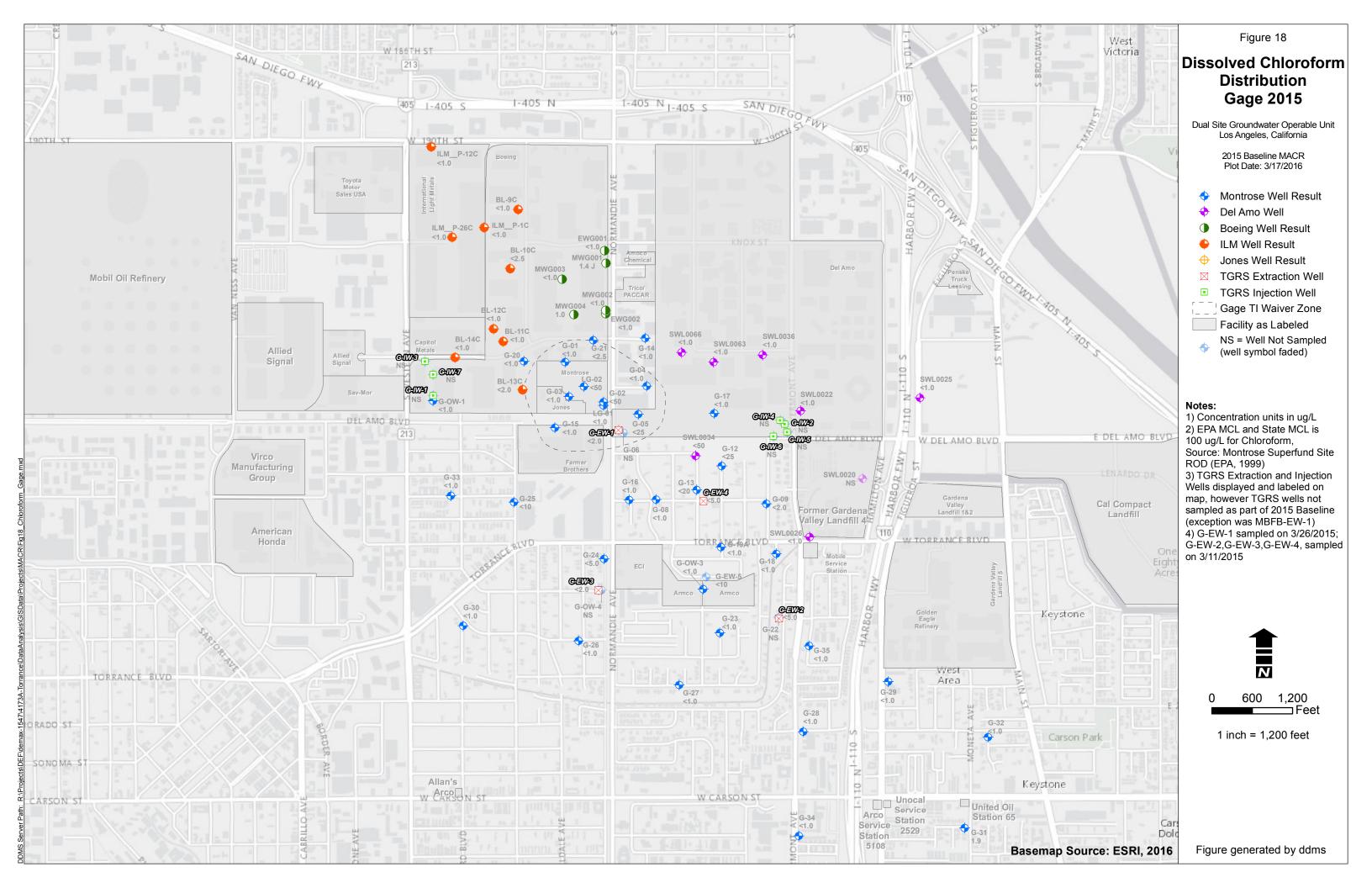


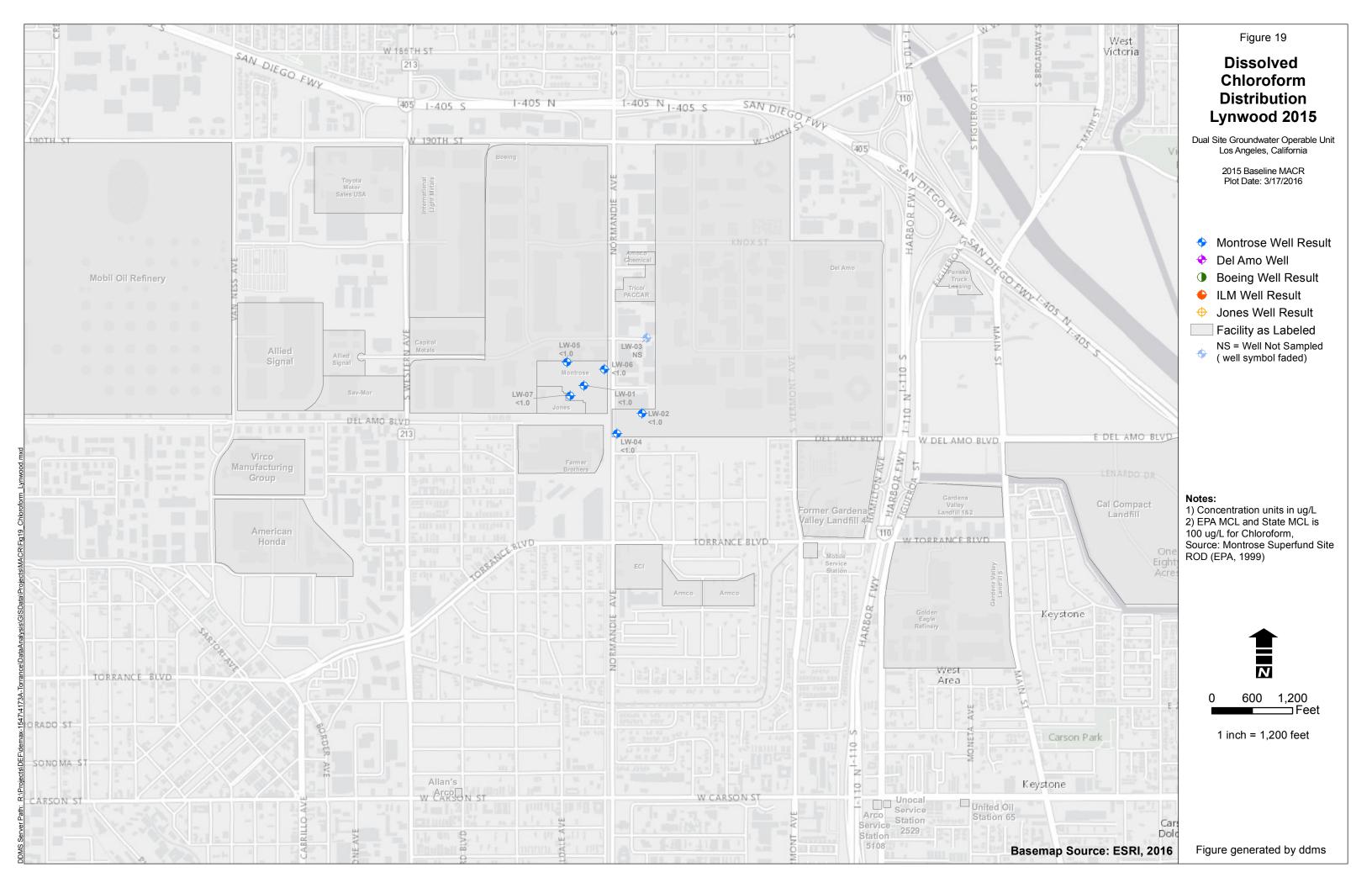


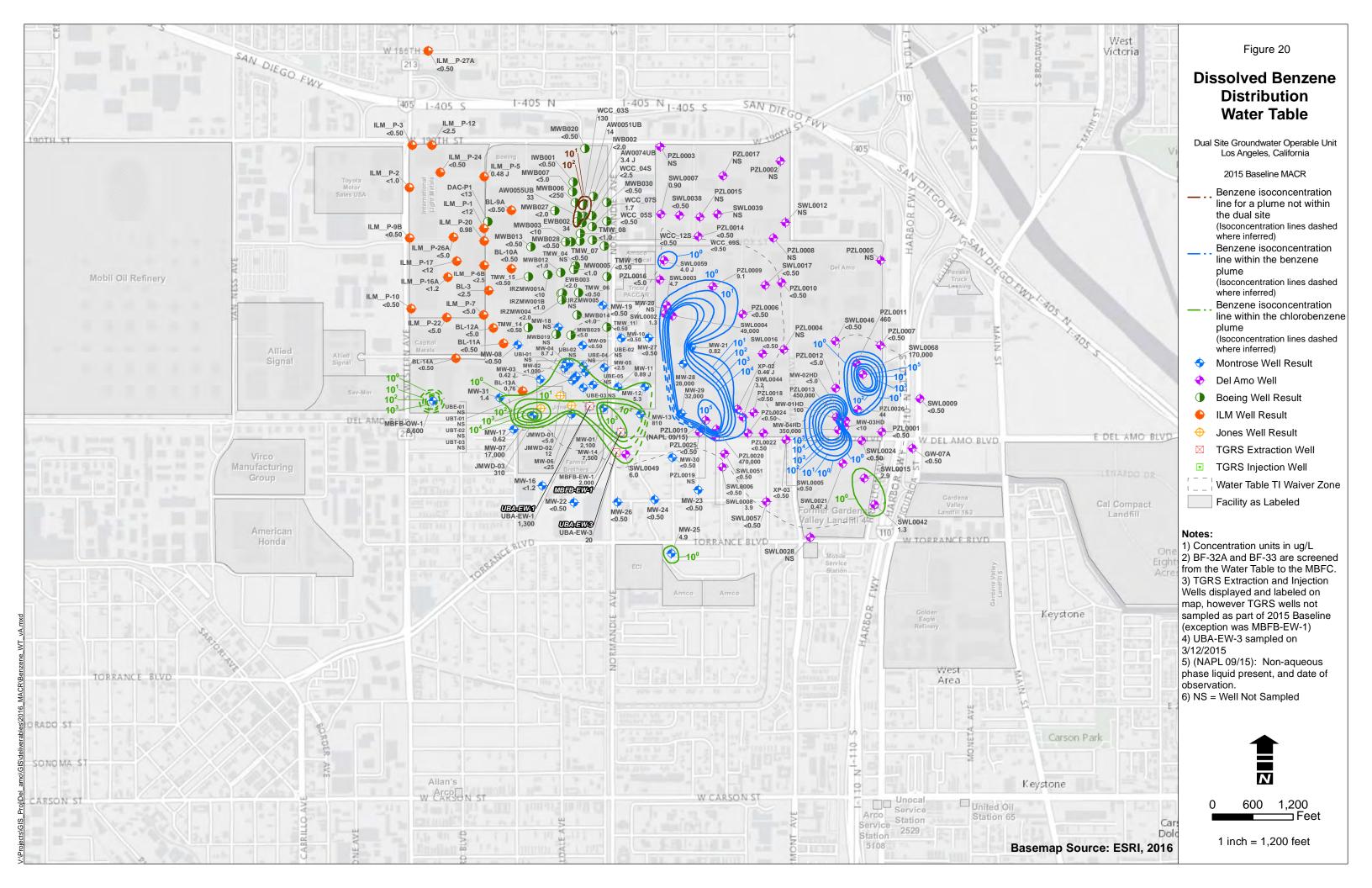


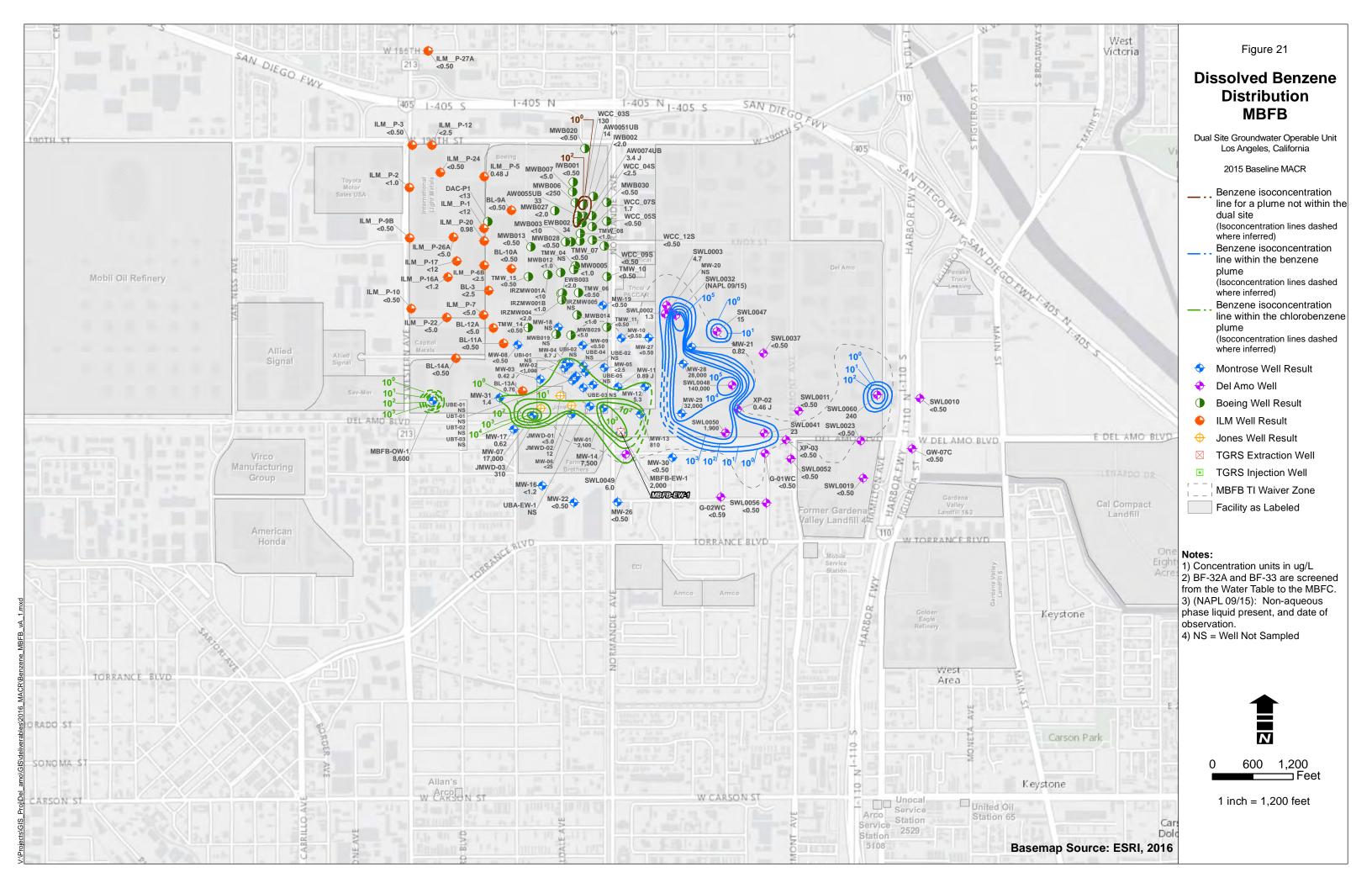


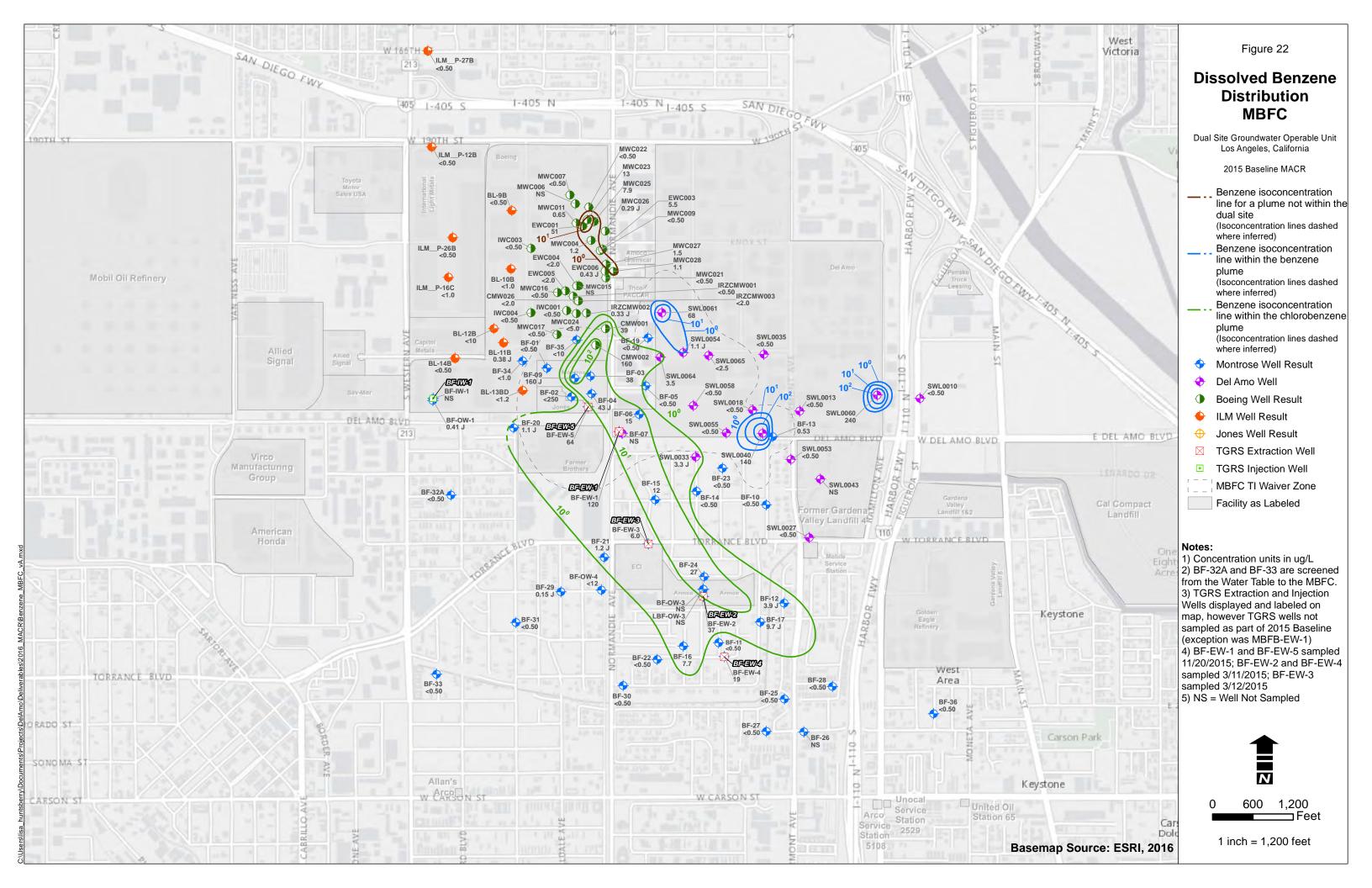


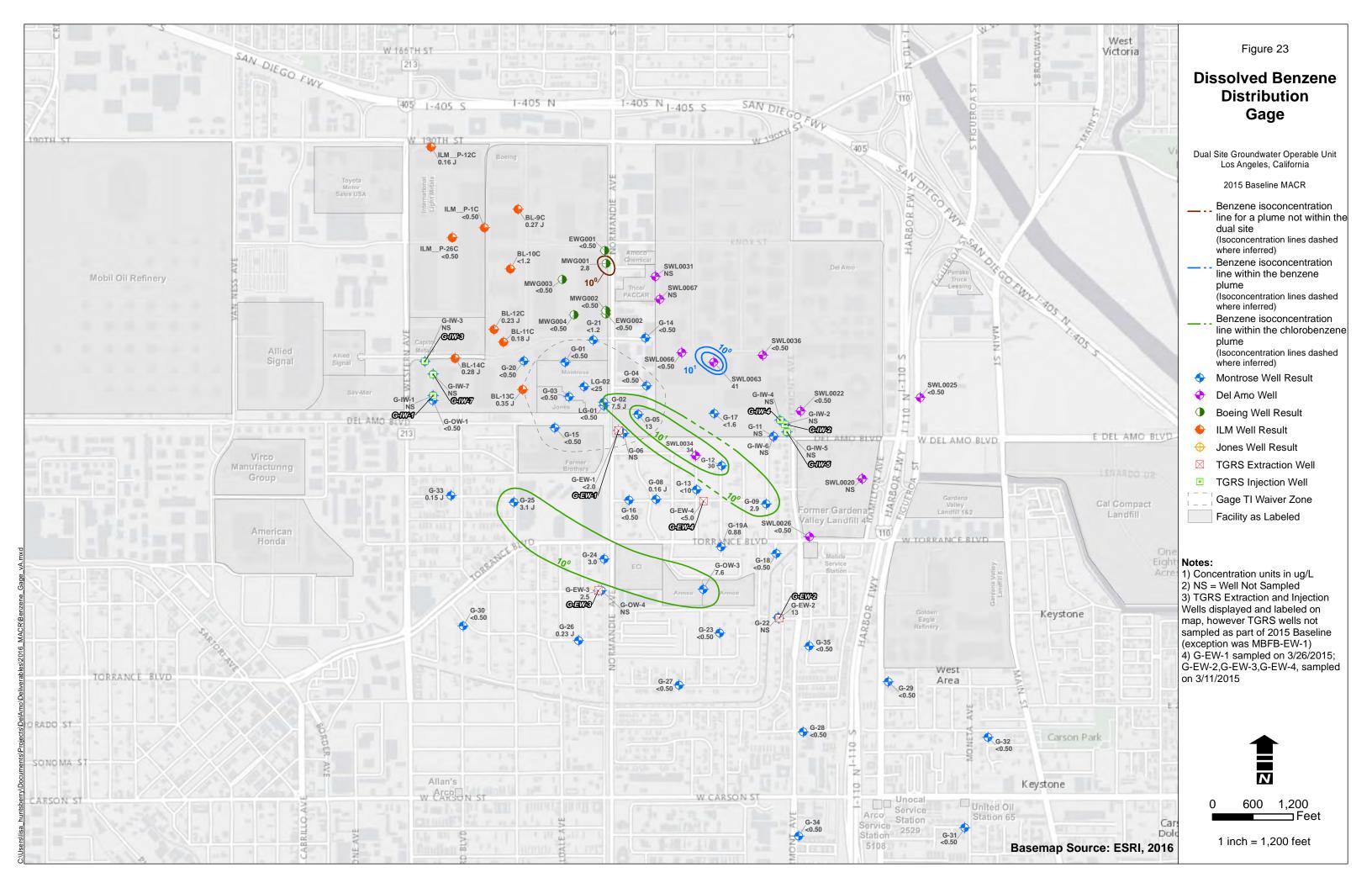


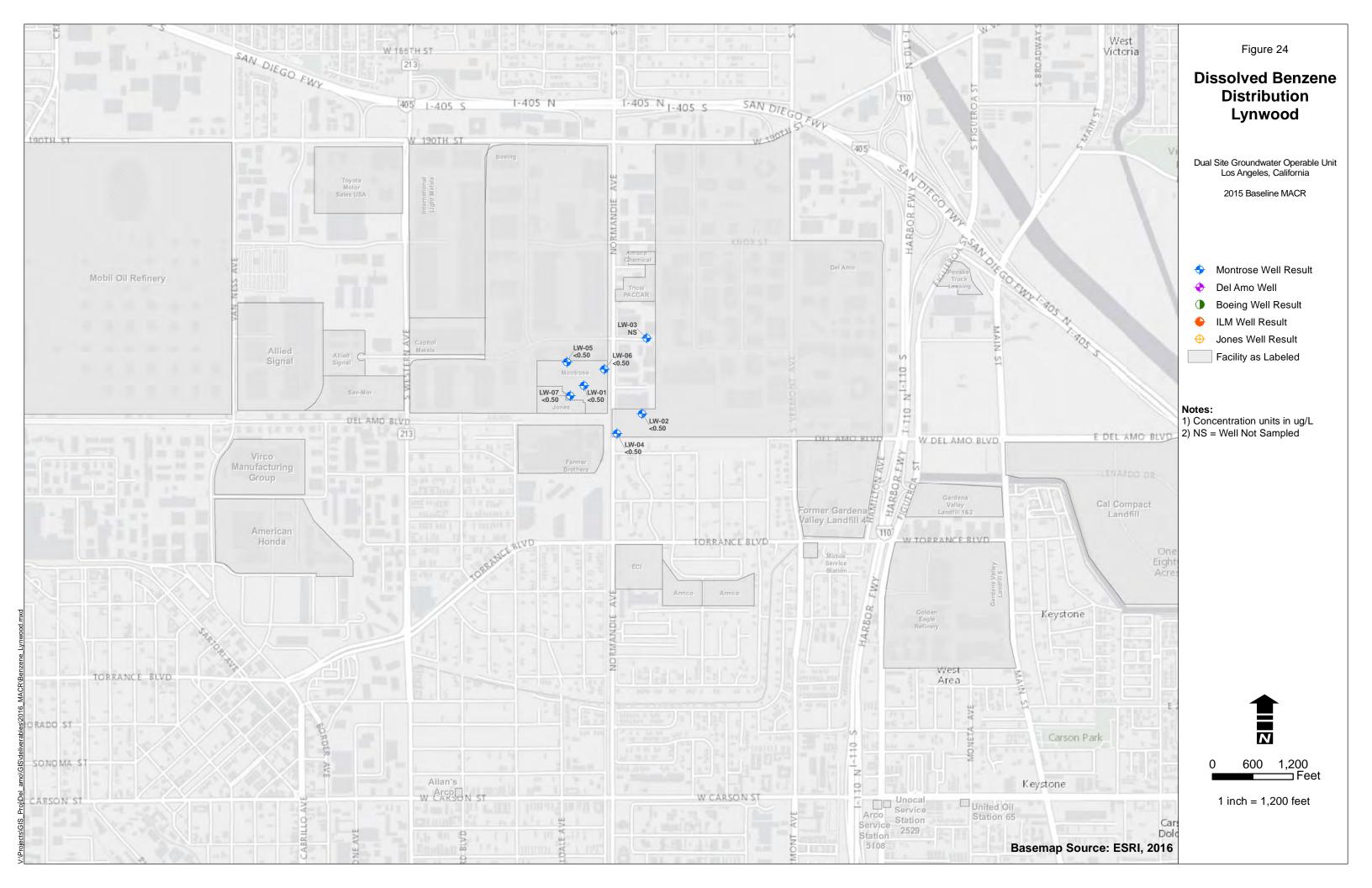


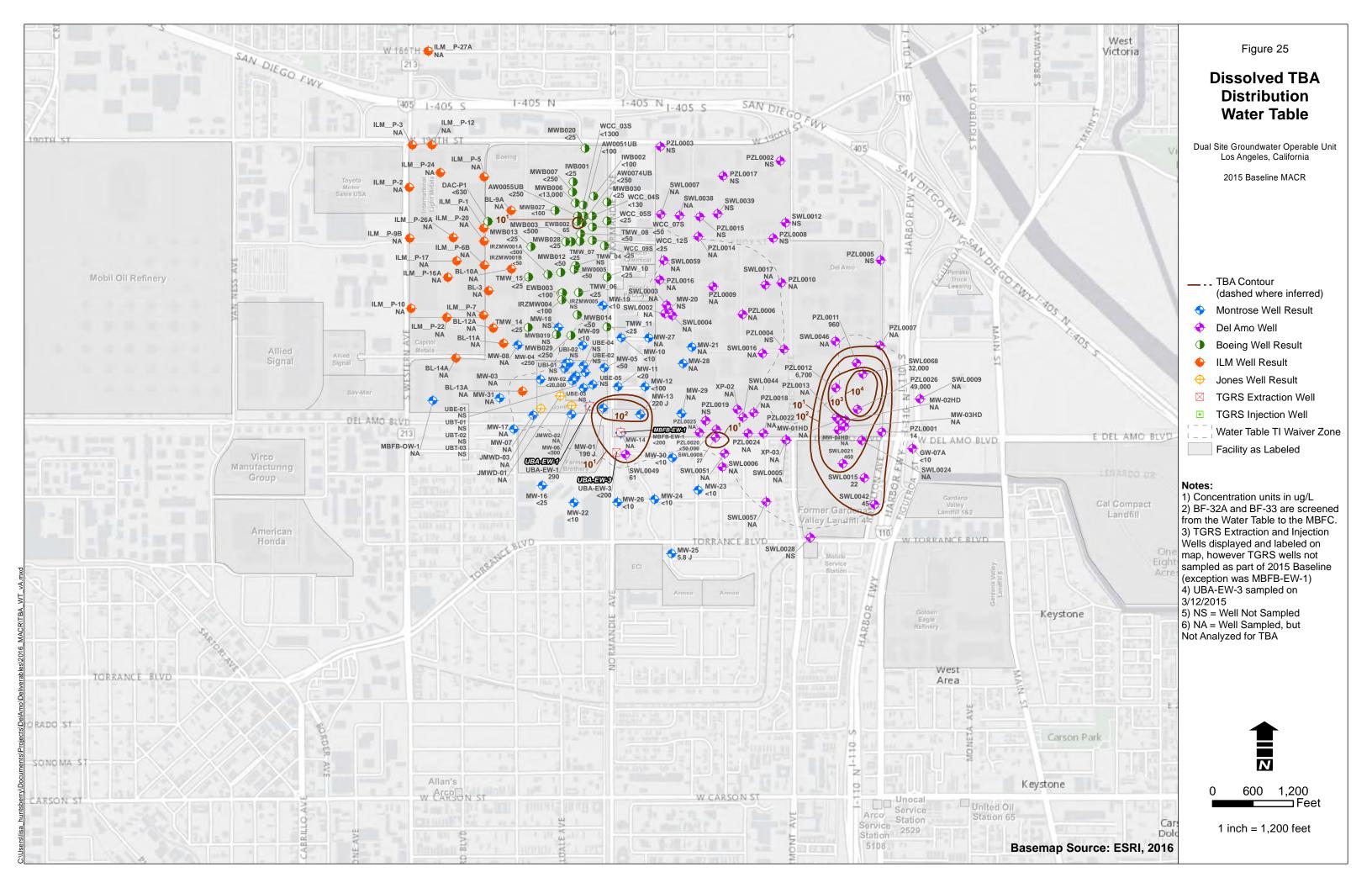


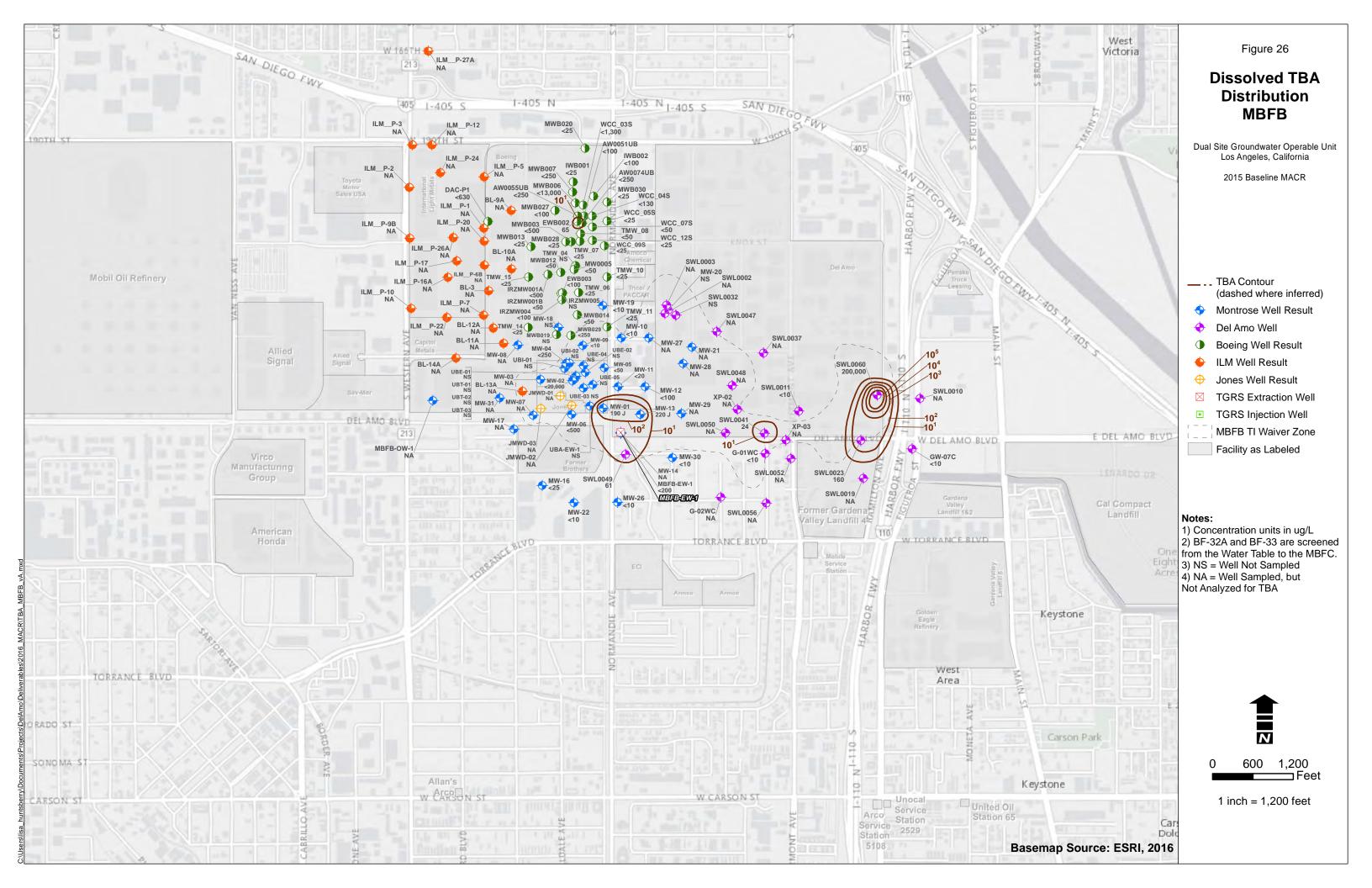


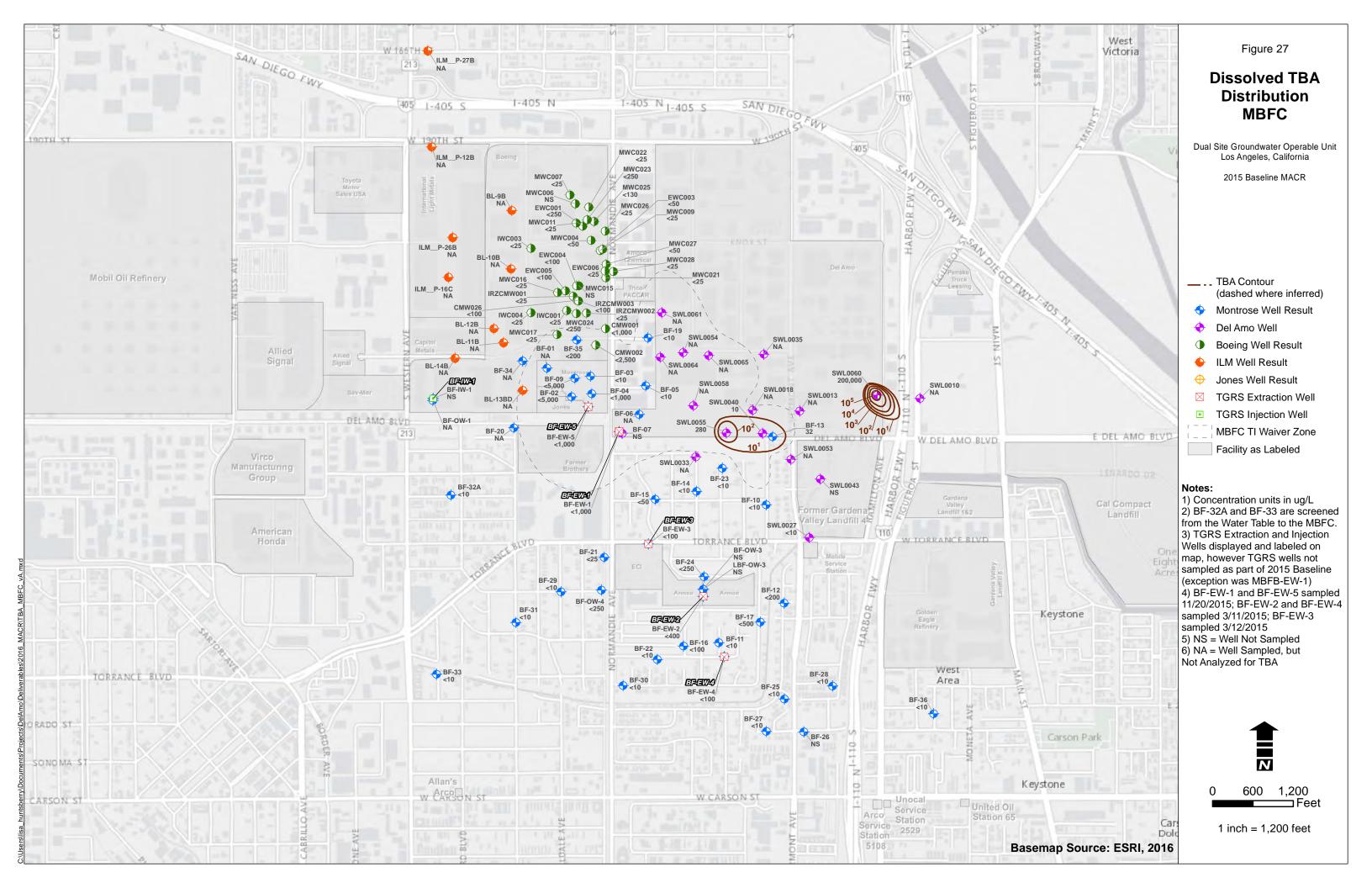


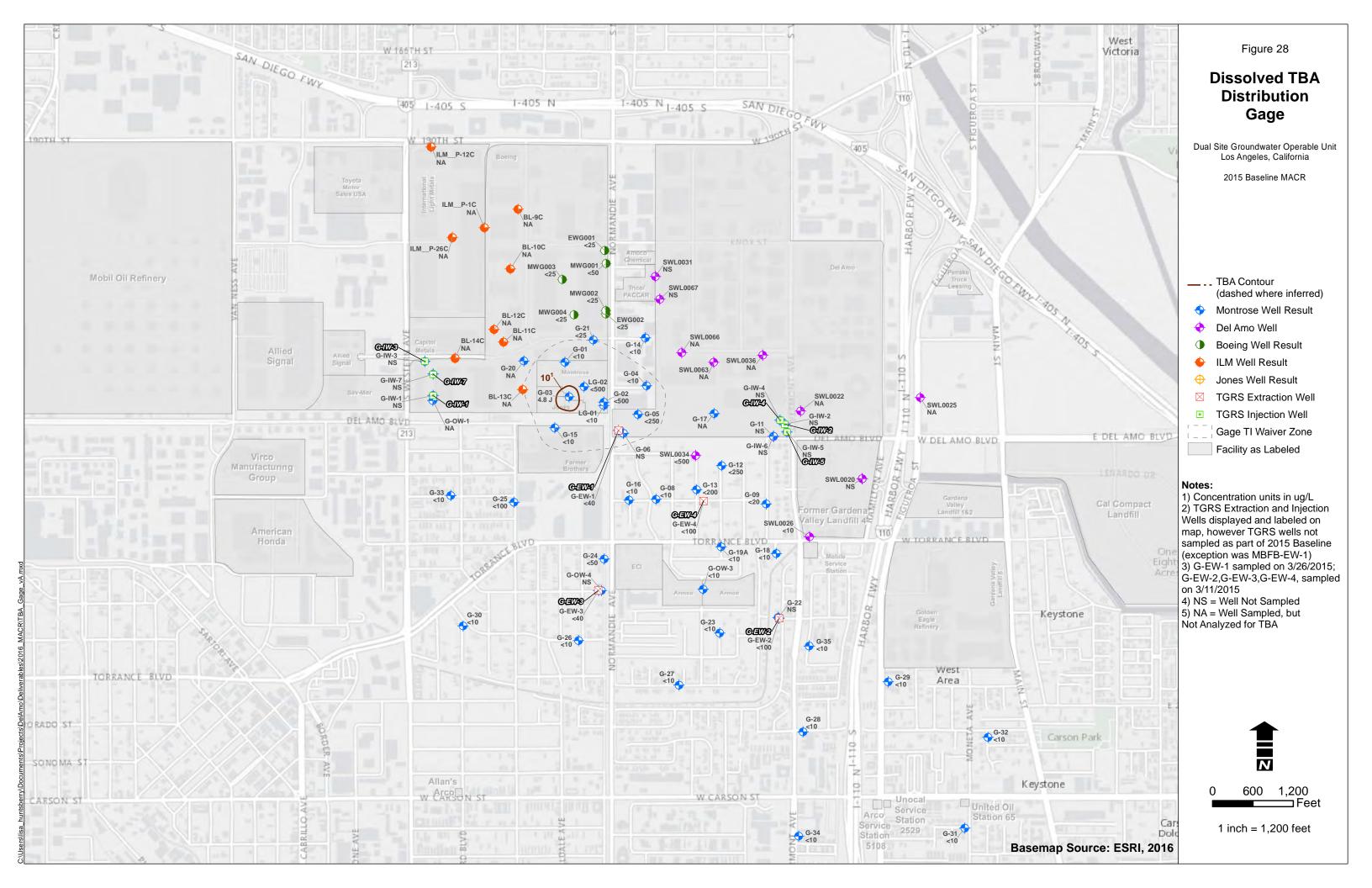


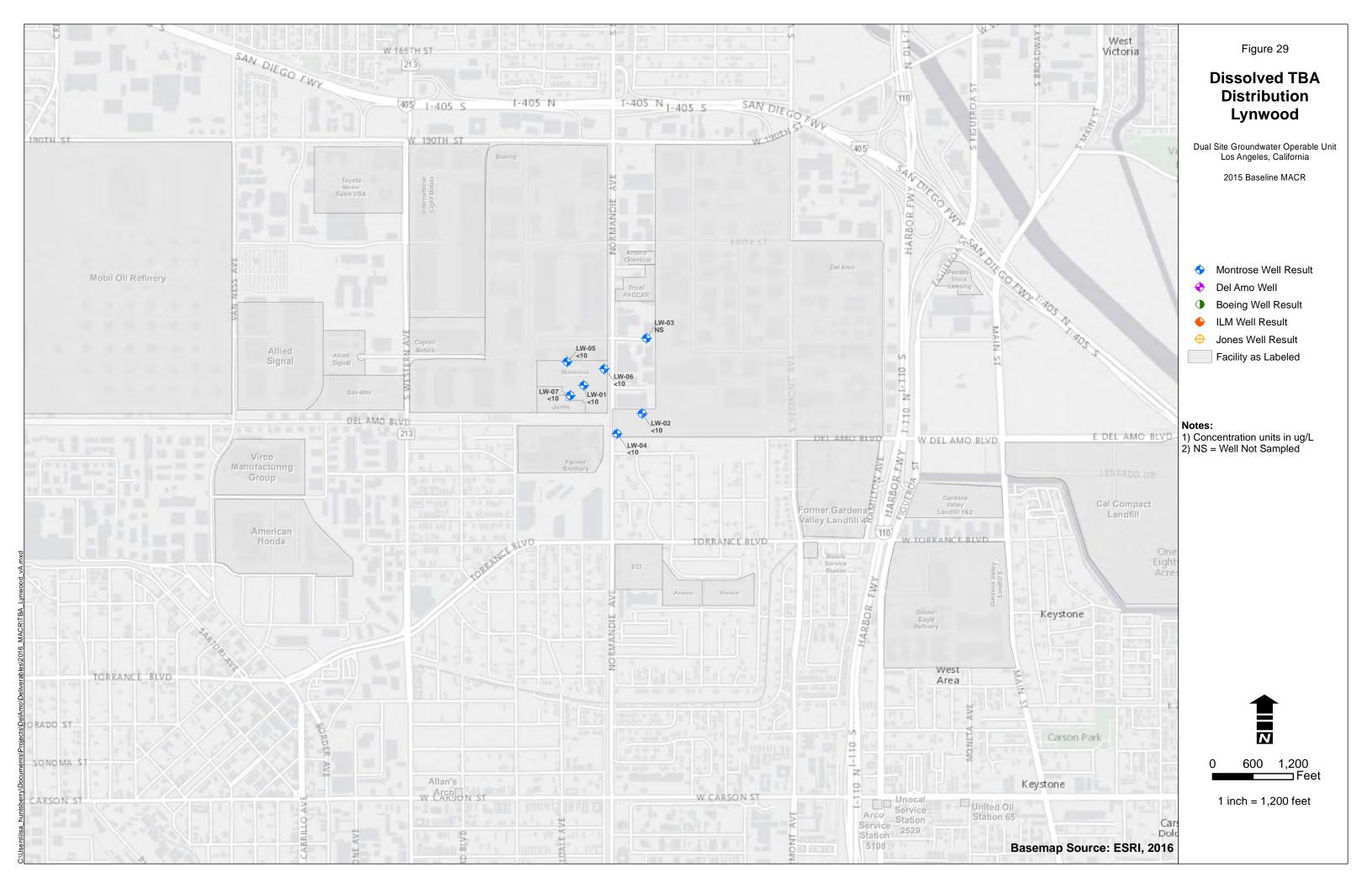


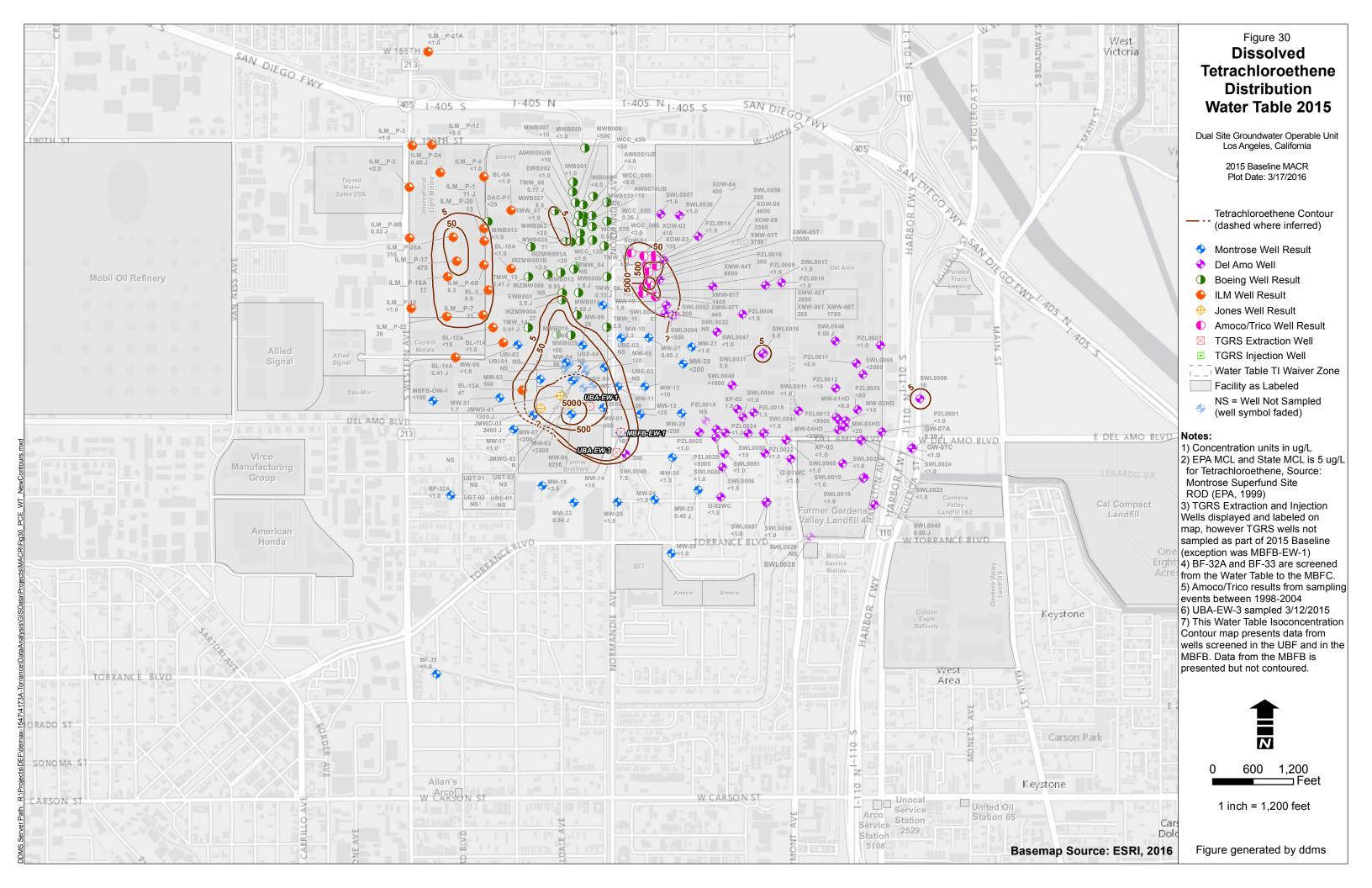


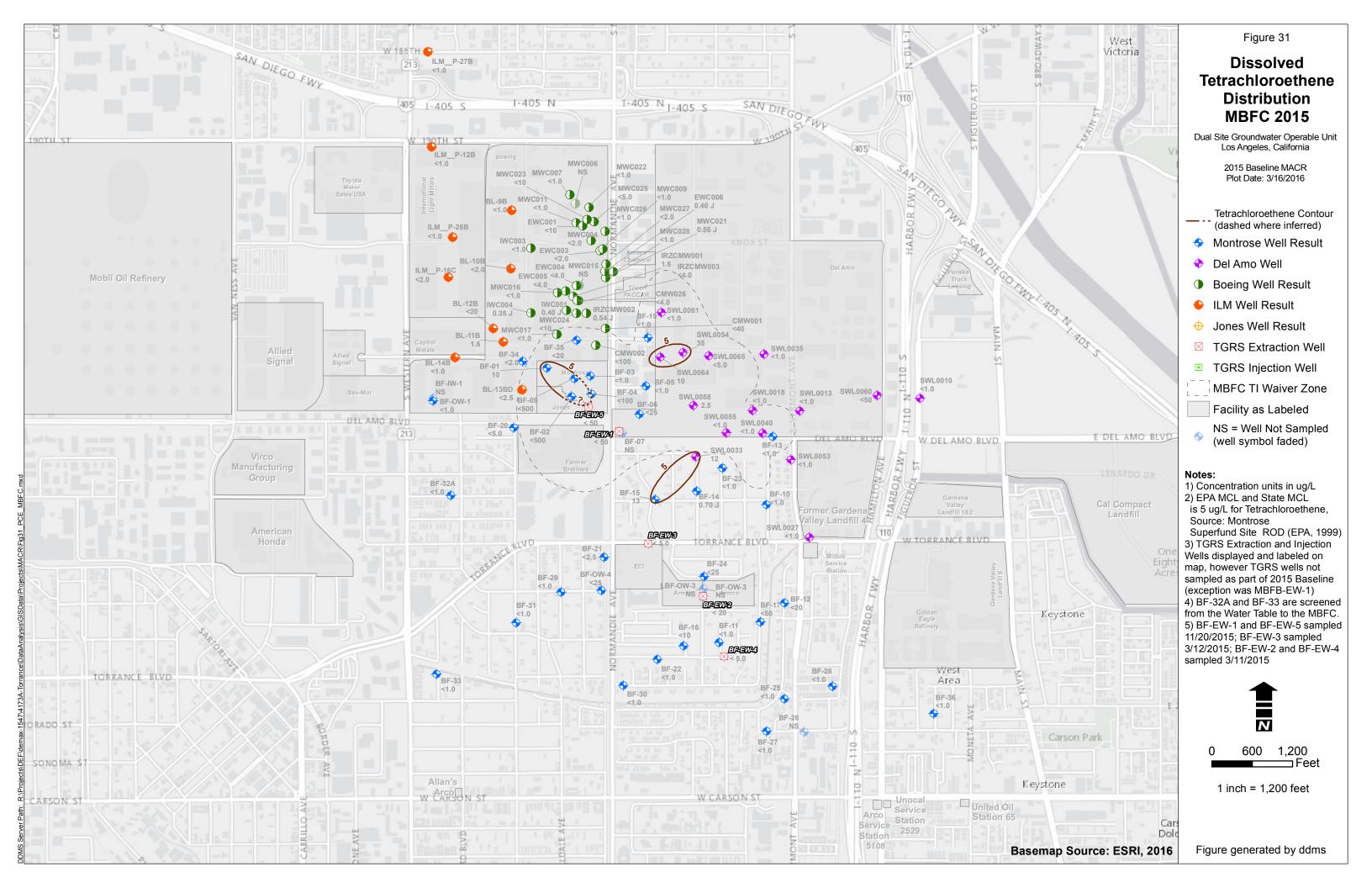


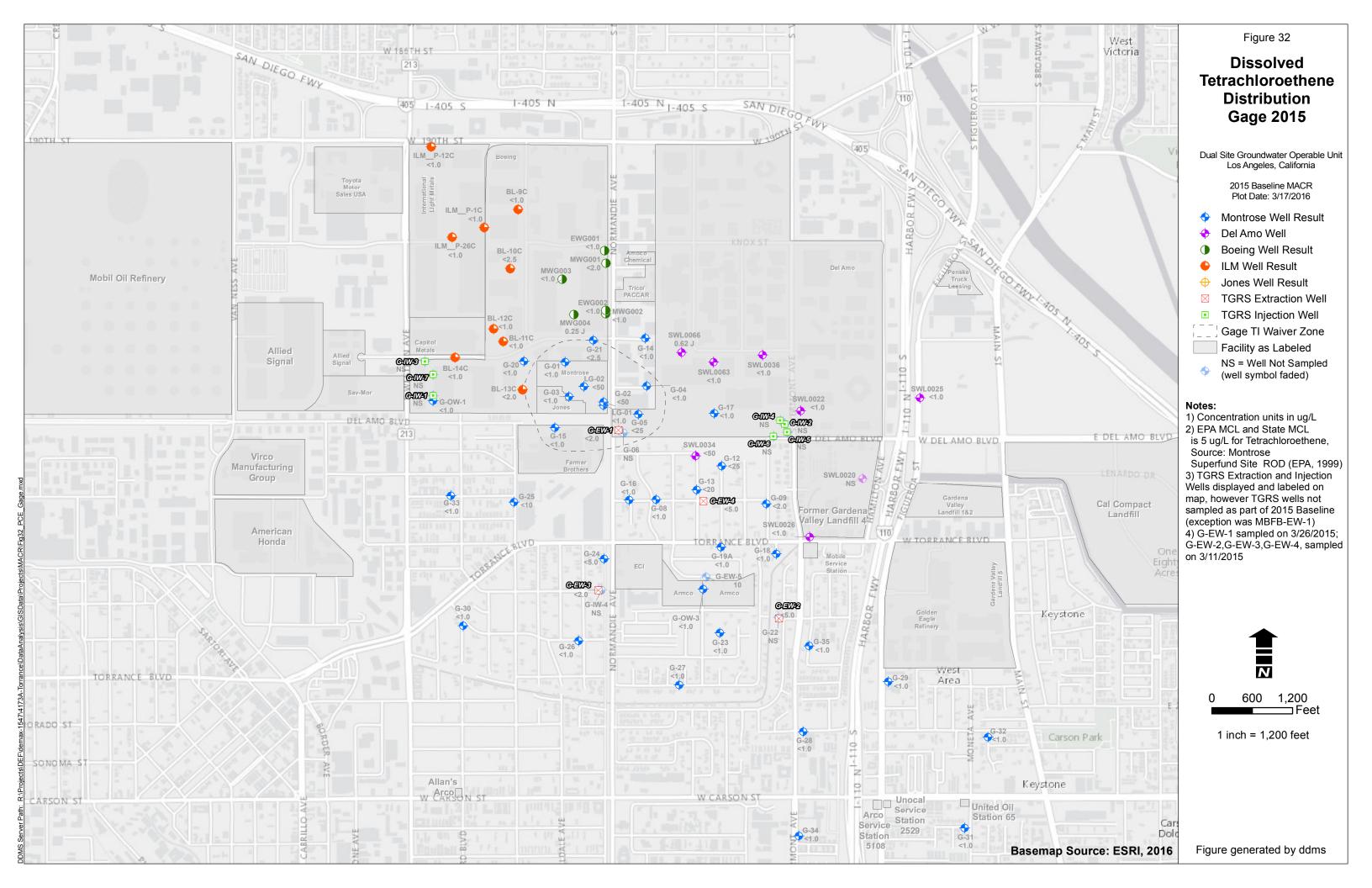


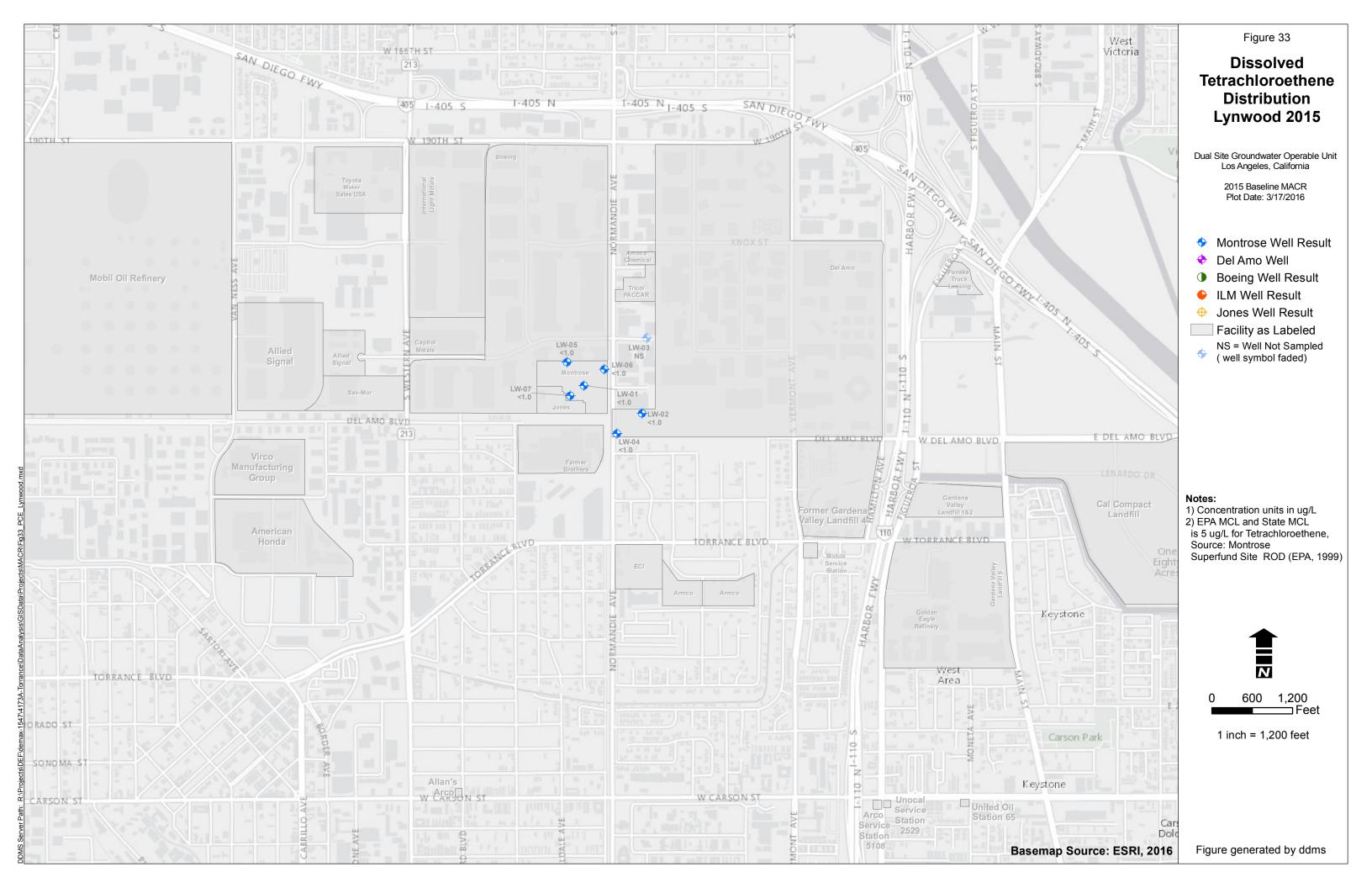


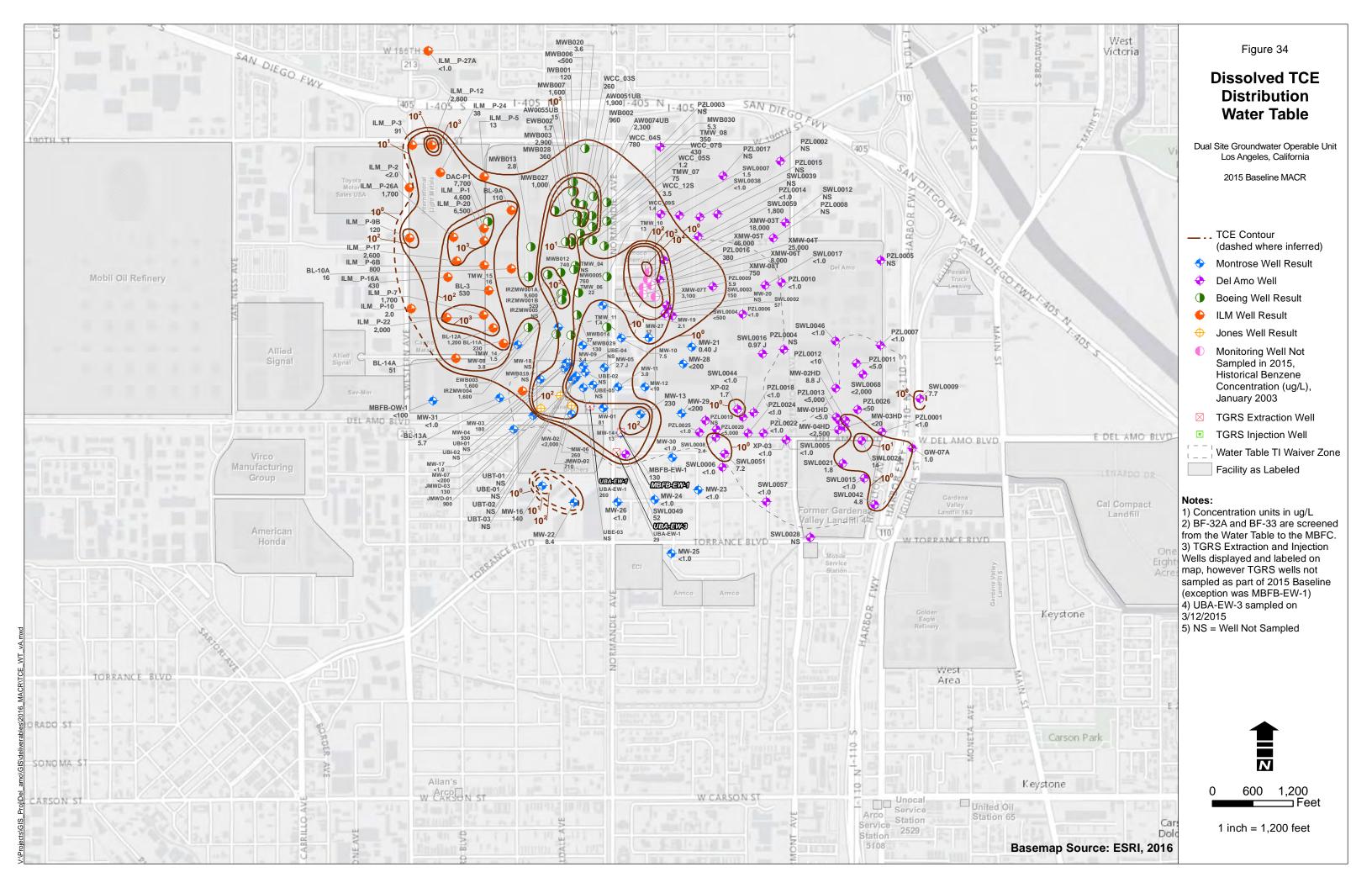


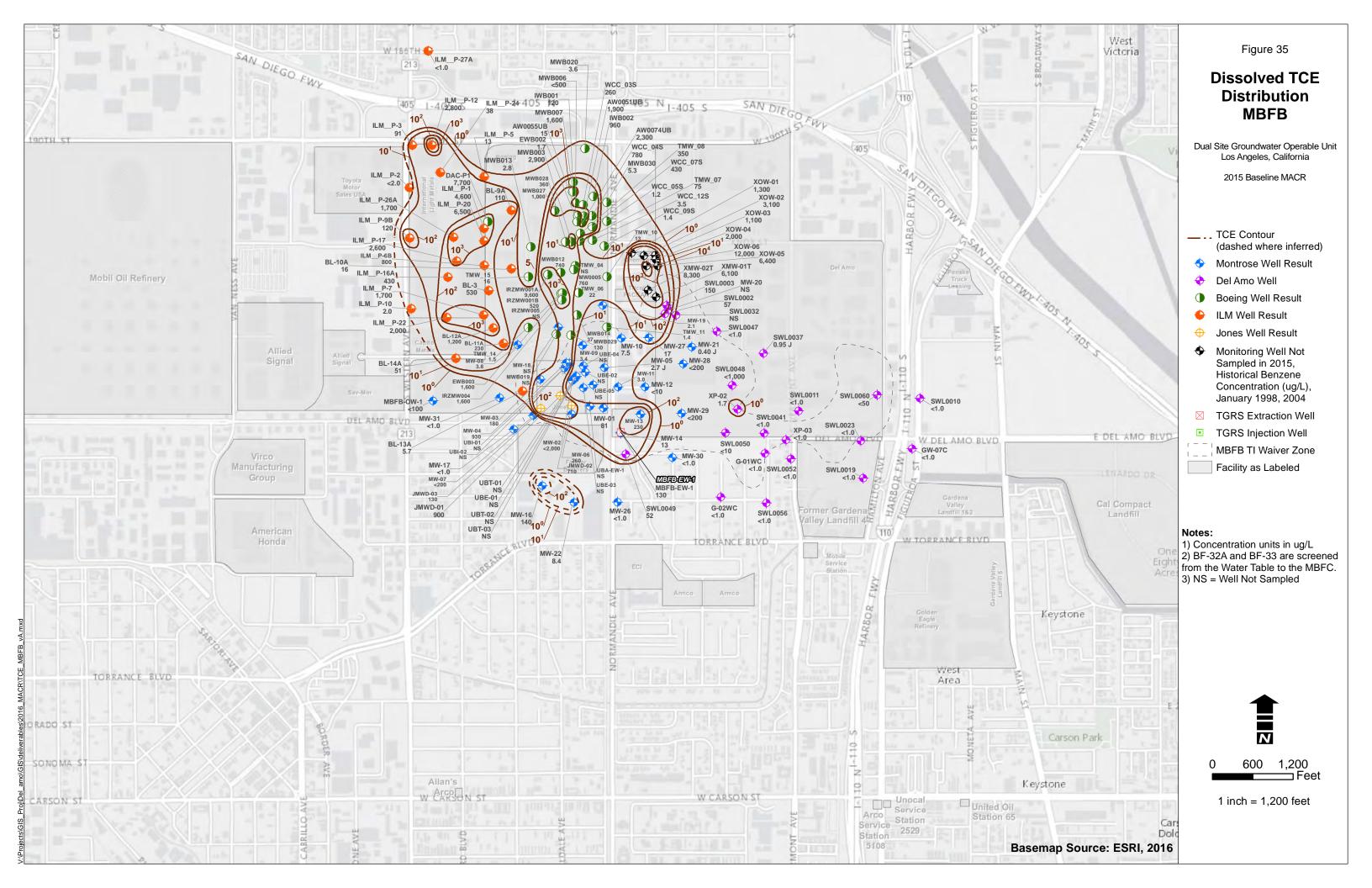


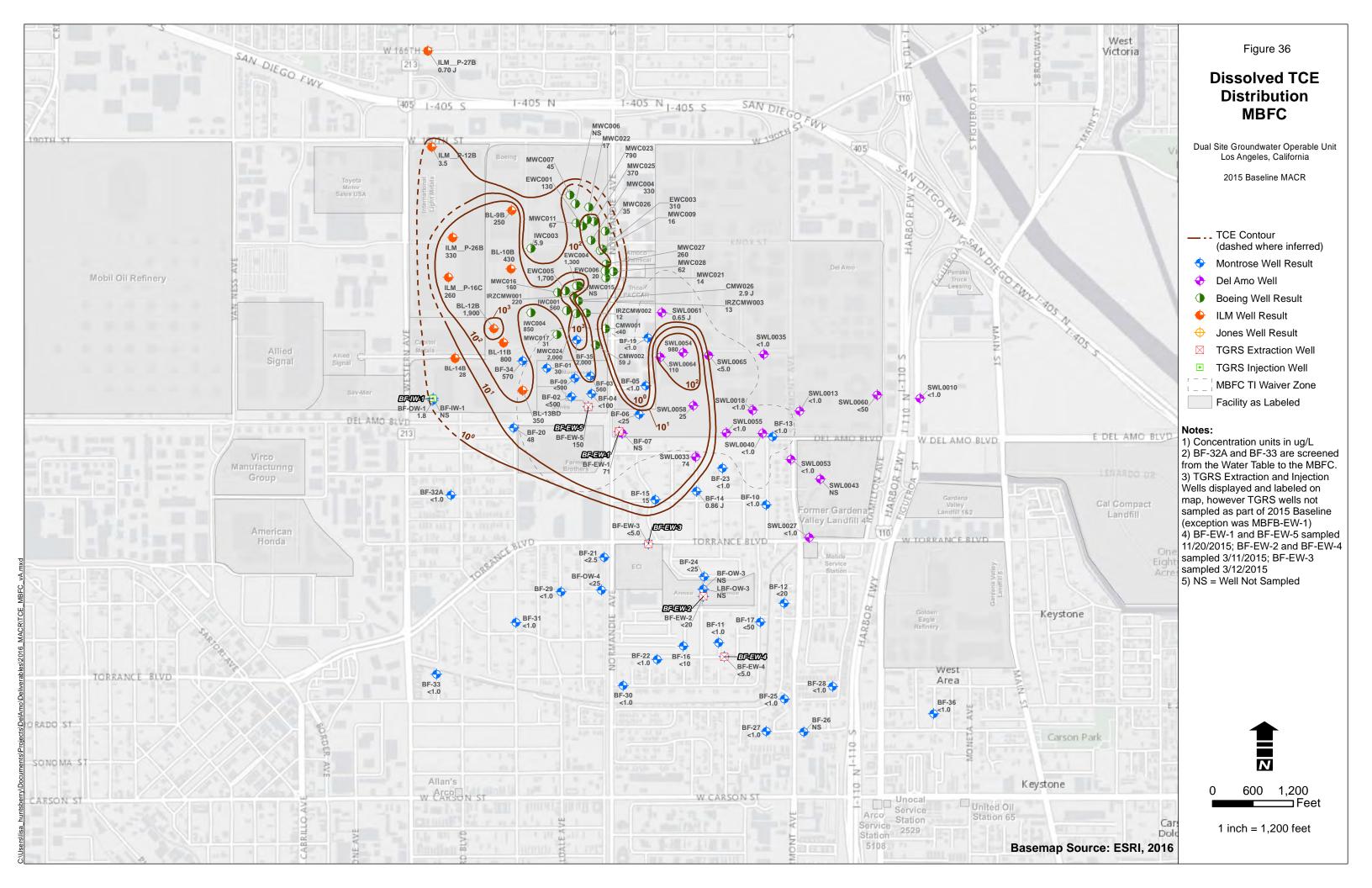


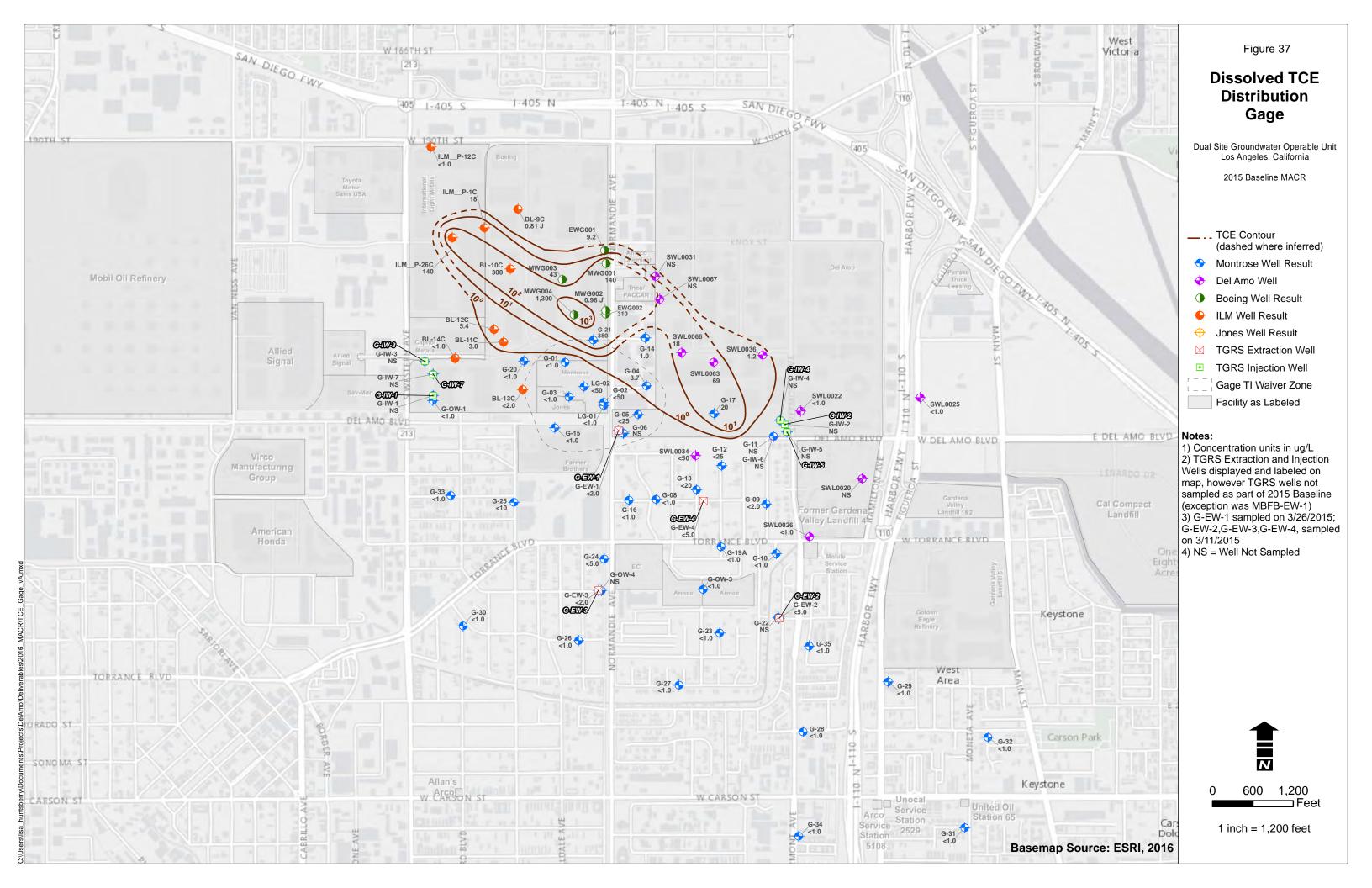


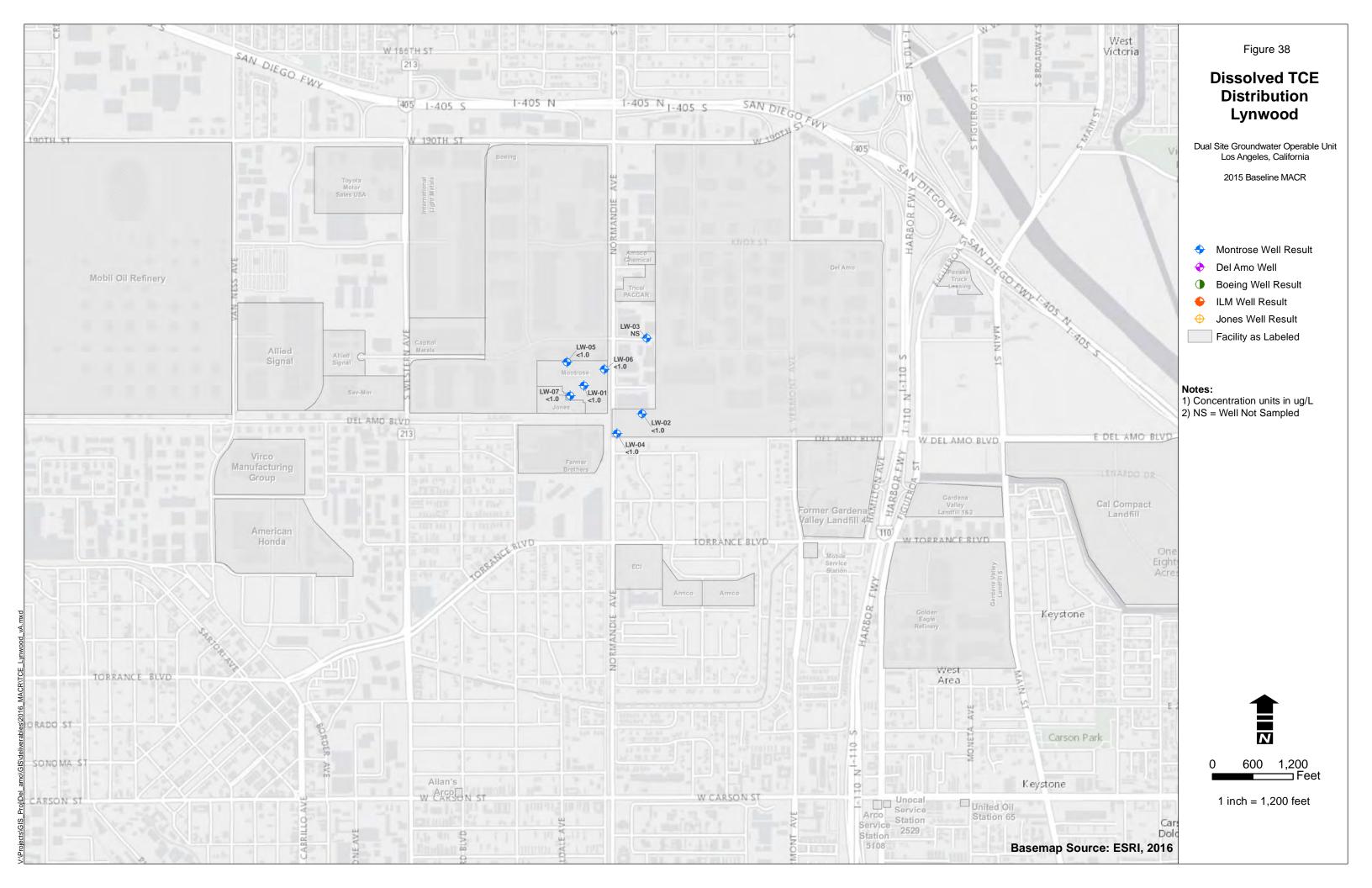












APPENDIX A FIELD SAMPLING LOGS

Montrose Field Forms Water Levels

CALIBRATION PARAMETER LOG FORM

COND NTU Cal gas PPM 0-gas 1-reading 2nd reading 3rd reading Initials Comments Manufacturer Model Serial # Date Time 9/28 800 HOMBE 11.52 4.49 X8OUKIN 4.00 01 0.0 HOUBA 11-52 EM 800 0.0 4.00 4.49 #/ 11.52 750 HOUBE 0.0 4.01 4.50 11.57 X80UKHM 700 LW 4.00 4.50 0.0 650 11.52 0.0 4.01 4.50 HORIBA EM 4.00 HORIBA 11.52 10.0 11.52 X8OUKHAL 0.0 4.00 4.49 760 HORIBA 11-52 0.0 4.50 4.01 EM HORIB A 4.00 0.0 E4 9:00 HO,RIBA U.52 #3 4.50 0.0 4.00 CW 4.50 HORIBA 11-52 X80UNIAL 00 4.50 15-52 HORIBA 0,0 4.00 EM 4.52 4.00 4.50 EH HORIBA M 0.0 HORIBA 11-52 X8WK4M 4.00 00 14.00 HONBA 11.52 0.0 ca 41

WELL INSPECTION FORM

Project Name: Montrose Chemical Superfund Site Date: 9/9/15 Project Number: F205

Well ID	Vault Type & Condition	Concrete	Bolts	Casing Size	Lock	Сар	Tubing	Remarks
BF-10	NEEDS SCIRENS	YES	NO	4"	NO	455	NO	
G-09 G-12 G-30 G-31 MW-11 SWL0020 BF-1W-1	NEOS & SCROWS	YES	NO	4"	NO	NO	NO	PUMP IN WELL
76-12	CAN'T FIND TO	OK PICT	UNES U	OOKS ME	ANDON.			
19-30	EMCO/ GOOD EMCO/ GOOD	YES	YES	4"	YES	YES	NO	
76-31	GM CO/ GOOD	YES	YES	4"	165	YES	NO	
KdW-11	, ,							CAR UN INEU
SW/L0020	,							BEHIND WCK GATE
B#-1W-1	4'x4" 40 (6001)	YES	NG) Z	12"	NO	1945	ND	
BF-1W.2				1		1		BEHIND LOCK GATE

Technician: L. WIDNER

GROUNDWATER MONITORING WELL GAUGING FORM

Project Name: Montrose Chemical Superfund Site Date: | Sep 15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
CMW001					124	
CMW002					124	
CMW017					125	
CMW021					122	
G-02WC					203	
PZL0025				47.08	64	
SWL0026				35.75	178	
SWL0027				33.98	137	
SWL0033				47.75	142.5	
SWL0034				46.38	178	
SWL0049				43.00	63.75	
SWL0058					129	
SWL0063				38.23	192	
BL-13C					164	
BF-01				58.85	126.5	
BF-02				59.67	128	
BF-03				58.84	125.5	
BF-04				57.95	126	
BF-05	4.11	0810	49.80	50.00	135	
BF-06	411	0845	52.14	52.23	132	
BF-07	411	0922	53.07	53.20	119	
BF-09		1		59.10	129	
BF-10				40.17	131	
BF-11				45.64	124	

Technician: M. Haley / S Sanchez

Measuring Device ID:

Salinst Interface
meter model 122

Page 1 of 6

Project Name: Montrose Chemical Superfund Site Date: Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-12				34.49	120	
BF-13				40.61	138	
BF-14				47.3	122	
BF-15				33.69	114	
BF-16				46.89	130	
BF-17				34.75	124	
BF-19	40	0945	50.73	51.05	135	
BF-20		2775	, ,	58.61	130	
BF-21				50.43	123	
BF-22				45.78	120	
BF-23	411	1020	36.87	36.69	120122	
BF-24			000	42.62	115	
BF-25				35.98	110	
BF-26				48.1	122	
BF-27				36.54	115	
BF-28				46.41	115	
BF-29				50.72	126	
BF-30				35.86	120	
BF-31				48.33	135	
BF-32A				60.57	120	
BF-33				46.50	101	
BF-34				66.01	127	
BF-35				60.92	126	
BF-36				48.09	128	

Technician:	Measuring Device ID:			
	Page of	6		

Project Name: Montrose Chemical Superfund Site Date: Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-OW-1				64.41	187	
BF-OW-3				40.64	160	
BF-OW-4				52.21	175	
G-01				58.14	164.5	
G-02				55.11	180	
G-03				61.08	170	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
G-04	411	0825	51.50	51.72	195	VFD Pumpin well
G-05	411	0840	53 33	53.59	194	
G-06	411	0925	54.08	54.36	192	
G-08				34.80	181	
G-09				41.70	213	
G-11				38.53	218	case are well and
G-12				38.62	198	pump in wat - count ame
G-13	4"	1015	48.40	48.65	197	Karak and Carri Mark
G-14	411	0955	52.26	52.65	196	
G-15				59.89	184	
G-16				49.20	187	
G-17				48.25	213	
G-18				34.85	202	
G-19A				48.11	204	
G-20				66.35	176	
G-21				59.46	171	
G-22				36.95	193	
G-23				47.41	180	
G-24				51.98	182	

Technician:

Measuring Device ID:

Project Name: Montrose Chemical Superfund Site	Date:	Project Number: F205	

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
G-25				56.67	169	
G-26				46.75	171.5	
G-27				36.51	170	
G-28				48.88	195	
G-29				49.97	200	
G-30				55.55	202	
G-31				52.92	211	
G-32				49.57	201	
G-33				60.65	201	
G-34				52.65	198	
G-35				44.62	210	
G-OW-1				65.14	187	
G-OW-3				41.98	160	
G-OW-4				52.84	175	
LBF-OW-2				52.97	137	
LBF-OW-3				42.11	136	
- LG-01				54.94	211	Covered by boat
LG-02				56.20	207	7
LW-01				66.49	251	
LW-02				63.55	253	
LW-03	411	0950	60-19	62.00	261	
LW-04	Un	0921	62.40	64.10	246	
LW-05	1	0 101	0	67.68	251	
LW-06				65.65	256	

Technician:	Measuring Device ID:			
		Page of 6		

Project Name: Montrose Chemical Superfund Site Date: Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW 2014 (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
LW-07				69.99	251	
MBFB- OW-1	2"	1330	64.65	64.10	96	
MW-01				53.05	76.6	
MW-02				59.02	77.5	
MW-03				57.80	75	
MW-04				57.00	75.3	
MW-05				55.24	72.4	
MW-06				55.94	85	
MW-07				57.48	85	
MW-08				65.11	85	
MW-09				60.75	85	
MW-10	1111	1000	54.39	53.43	83	
MW-11	4111	0900		52.98	84	Car Parned on veil
MW-12	4/10	0820	50:36	50.46	85	Con thinks or all
MW-13	411	0847	52.61	52.82	81	
MW-14	411	0925	53.33	53.41	80	
MW-16			-0.00	51.39	78	
MW-17				58.10	83	
MW-19	411	1300	56.65	56.76	80	
MW-20	2"	1200	52.84	NM	74	
MW-21	411	1100	4738	46.09	73	
MW-22	1	11-0	1 1100	52.16	74	
MW-23	44	1015	46.00	46.81	80	

Technician:	Measuring Device ID:
	Dage of 6

Project Name: Montrose Chemical Superfund Site Date: Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
MW-24				33.00	68	
MW-25				43.05	75	
MW-26	7			49.38	80	
MW-27	L 10	0947	50.69	50.80	77	
MW-28	411	1215	50.62	50.27	74	
MW-29	411	0910	49.24	49.31	75	
MW-30	411	1010	47.55	47.75	80	
MW-31			1	64.58	82	
UBE-01				59.71	94.3	
UBE-02				55.99	85	
UBE-03				55.34	91	
UBE-04				56.83	95	
UBE-05				57.89	90.5	
UBI-01				56.63	93	
UBI-02				56.85	93	
UBT-01				59.45	99	
UBT-02				59.61	99	
UBT-03				59.71	99	

Technician:	Measuring Device ID:
	D

Project Name: Montrose Chemical Superfund Site			Date:		Project Number: F205	
Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)	
				Meas	uring Device ID:Page_of	
	Well Diameter	Well Time	Well Diameter Time Depth to Water (ft btoc)	Well Diameter Time Depth to Water (ft btoc) Total Depth (ft btoc)	Well Diameter Time Depth to Water (ft btoc) Total Depth (ft btoc) Previous	

GROUNDWATER MONITORING WELL GAUGING FORM

Project Name: Montrose Chemical Superfund Site Date: 09-01-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
CMW001					124	
CMW002					124	
CMW017					125	
CMW021					122	
G-02WC					203	
PZL0025				47.08	64	
SWL0026				35.75	178	
SWL0027				33.98	137	
SWL0033				47.75	142.5	
SWL0034				46.38	178	
SWL0049				43.00	63.75	
SWL0058					129	
SWL0063				38.23	192	
BL-13C					164	
BF-01	tin	0934	58.68	58.85	126.5	tow How tid 4" pamp 18 d
BF-02				59.67	128	
BF-03	4 10	0850	58.61	58.84	125.5	
BF-04	4 in	1007	59.61	57.95	126	TD-124.05
BF-05	, ,,,			50.00	135	101211
BF-06				52.23	132	
BF-07				53.20	119	
BF-09	8 4 6in	1015	59.02	59.10	129	Conductor casing 1s noting
BF-10	71 211	1.00		40.17	131	J. Stering
BF-11	42	13:07	45,31	45.64	124	Puyo

Technician: Stan Jackson Jim McHarry

Measuring Device ID: 21756

Page 1 of 6

Project Name: Montrose Chemical Superfund Site Date: 09-01-4 Project Number: F205

Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
			34.49	120	
			40.61	138	
			47.3	122	
			33.69	114	
			46.89	130	
4=	11150	3461	34.75	124	No bolts - Diversified van 1t
V	11-20	01,01	51.05	135	
			58.61	130	
				123	
				120	
				120122	
				115	
				110	
				A PARTY OF THE PAR	
				11.71	
0.	10:11	10710			No bolts, thread worn, inst
Lin	10:52	60.10	48.09	128	The second secon
		Diameter IIIIe	Well Diameter Time Water (ft btoc)	Well Diameter Time Water (ft btoc) DTW (ft btoc) 34.49 40.61 47.3 33.69 46.89 46.89 46.89 34.75 51.05 58.61 50.43 45.78 36.69 42.62 35.98 48.1 36.54 46.41 50.72 35.86 48.33 60.57 46.50 66.01 60.92 60.92 60.92	Well Diameter Time Water (ft btoc) DTW (ft btoc) (ft btoc) 34.49 120 40.61 138 47.3 122 33.69 114 46.89 130 34.75 124 51.05 135 58.61 130 50.43 123 45.78 120 36.69 120122 42.62 115 35.98 110 48.1 122 36.54 115 46.41 115 50.72 126 35.86 120 48.33 135 60.57 120 46.50 101 66.01 127 60.92 126

Technician: Stan Jackson Jim McHarry

Measuring Device ID: 212756

Project Name: Montrose Chemical Superfund Site Date: 09-01-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-OW-1				64.41	187	
BF-OW-3				40.64	160	
BF-OW-4				52.21	175	
G-01	Hin	0918	57.76	58.14	164.5	
G-02				55.11	180	
G-03	H in	1000	60.72	61.08	170	
G-04		1	0	51.72	195	
G-05				53.59	194	
G-06				54.36	192	
G-08				34.80	181	
G-09				41.70	213	
G-11				38.53	218	
G-12				38.62	198	
G-13				48.65	197	
G-14				52.65	196	
G-15				59.89	184	
G-16				49.20	187	
G-17				48.25	213	
G-18				34.85	202	
G-19A				48.11	204	
G-20				66.35	176	
G-21	Zin	10:35	59.07	59.46	171	One bolt no threads, in street
G-22		1.5		36.95	193	
G-23				47.41	180	
G-24				51.98	182	21270

Technician: Stan Jackson Jim McHarry

Measuring Device ID: 212756

Project Name: Montrose Chemical Superfund Site Date: 09-01-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
G-25				56.67	169	
G-26				46.75	171.5	
G-27				36.51	170	
G-28				48.88	195	
G-29				49.97	200	
G-30				55.55	202	
G-31				52.92	211	
G-32				49.57	201	
G-33				60.65	201	
G-34				52.65	198	
G-35				44.62	210	
G-OW-1				65.14	187	
G-OW-3				41.98	160	
G-OW-4				52.84	175	
LBF-OW-2				52.97	137	
LBF-OW-3				42.11	136	
LG-01	Fin Fin	1044	54.41	54.94	211	New bolts
LG-02	4in	0904	55.77	56.20	207	Schedule 80 PVC
LW-01	4.51	0900	64.59	66.49	251	
LW-02	1.00			63.55	253	
LW-03				62.00	261	
LW-04				64.10	246	
LW-05	4 in	0917	66.01	67.68	251	
LW-06	Ain	0841	66.29	65.65	256	

Technician: Ston Jackson Jim MEHARM

Measuring Device ID: 212756

Project Name: Montrose Chemical Superfund Site Date: 09-51-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW 2014 (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
LW-07	Him	1010	68,26	69.99	251	
MBFB- OW-1				64.10	96	
MW-01				53.05	76.6	
MW-02	Hia	0947	58.86	59.02	77.5	Haga purepinit
MW-03	Hin	0930	57.51	57.80	75	
MW-04	4:1	0915	56.87	57.00	75.3	Hasa low flow lid
MW-05	4in	0844	56.84	55.24	72.4	
MW-06	1			55.94	85	
MW-07				57.48	85	71
MW-08				65.11	85	
MW-09				60.75	85	1
MW-10				53.43	83	
MW-11				52.98	84	
MW-12				50.46	85	
MW-13				52.82	81	
MW-14				53.41	80	
MW-16				51.39	78	
MW-17				58.10	83	
MW-19				56.76	80	
MW-20				NM	74	
MW-21				46.09	73	
MW-22				52.16	74	
MW-23				46.81	80	

Technician: Ston Luckson Lin McHarry

Measuring Device ID: 212756

Project Name: Montrose Chemical Superfund Site Date: 09-01-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
MW-24				33.00	68	
MW-25	41	13:17	42.90	43.05	75	Pung.
MW-26		12.1.1		49.38	80	
MW-27				50.80	77	
MW-28				50.27	74	
MW-29				49.31	75	
MW-30				47.75	80	
MW-31				64.58	82	
UBE-01	82	13:39	59.53	59.71	94.3	
UBE-02	87	13:56	55.78	55.99	85	
UBE-03	13:82	13:32	55.20	55.34	91	
UBE-04	80	13159	56.60	56.83	95	
UBE-05	6-	13:52	57.65	57.89	90.5	
UBI-01	62	13:47	56,42	56.63	93	Bent bolts
UBI-02	85.	14:16	56,60	56.85	93	
UBT-01	62	13:44	59.33	59.45	99	
UBT-02	84"	14:16 13:44	56,60 59,	59.61	99	
UBT-03	4"	13.36	59.57	59.71	99	

Technician: Stan Sicken

Measuring Device ID: 212756

Technician:

GROUNDWATER MONITORING WELL GAUGING FORM CONTINUED

roject Nar	me: Montros	e Chemical S	Superfund Site	Date:		Project Number: F205
Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
1	42	(3:42	59.48			the upra
2	10	13:44	59.33			4.
3	682 04	13:56	55.78			UBE2 UBE4
4	84	13:59	56.66			UDE 9
					1-	

Measuring Device ID:

GROUNDWATER MONITORING WELL GAUGING FORM

Project Name: Montrose Chemical Superfund Site Date: 9 1 1/5 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
CMW001			- 1		124	
CMW002					124	
CMW017					125	,
CMW021					122	
G-02WC					203	
PZL0025				47.08	64	
SWL0026				35.75	178	
SWL0027				33.98	137	
SWL0033				47.75	142.5	
SWL0034				46.38	178	
SWL0049				43.00	63.75	
SWL0058					129	
SWL0063				38.23	192	
BL-13C	2	1225	64.20		164	In Frito-Lay Lot SE aren; Pell mis Labelal anground Cap. Labela incor
BF-01				58.85	126.5	2111113
BF-02	ų	0-1048 1848	59.80	59.67	128	mis labely on a round CAP. Labeled
BF-03				58.84	125.5	incor
BF-04	4	0 to48 187 °	59.8057.97	57.95 54.80	126 14.2	East of where shown on MAP.
BF-05		7 7 0 11-1		50.00	135	a si Olosia a Olicadii ali likii.
BF-06				52.23	132	
BF-07				53.20	119	
BF-09				59.10	129	
BF-10				40.17	131	
BF-11				45.64	124	

Heron Dipper-T

Measuring Device ID: 2419

Technician: Evic Morse

Project Name: Montrose Chemical Superfund Site Date: 9 1 5 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-12				34.49	120	
BF-13				40.61	138	
BF-14				47.3	122	1
BF-15				33.69	114	
BF-16		V		46.89	130	
BF-17				34.75	124	1
BF-19				51.05	135	
BF-20				58.61	130	
BF-21	4	922	50.51	50.43	123	
BF-22		- 127		45.78	120	
BF-23				36.69	120122	
BF-24				42.62	115	
BF-25				35.98	110	
BF-26				48.1	122	
BF-27				36.54	115	
BF-28				46.41	115	
BF-29	4	1151	50.53	50.72	126	across from 20856 Hall dale qu
BF-30	,			35.86	120	The state of the
BF-31	4	1158	48.35	48.33	135	Infant of 20915 Donker
BF-32A	4	1128	60.30	60.57	120	Just W. 1605 Drive way, not Lab
BF-33	4	845	46.33	46.50	101	1107
BF-34	2	1229	66.00	66.01	127	In Frite lay lot, Not spot 64
BF-35			17.50	60.92	126	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BF-36				48.09	128	71117

Heran Dipper-T

Measuring Device ID: 24(9)

Project Name: Montrose Chemical Superfund Site Date: 9/1/15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-OW-1				64.41	187	
BF-OW-3				40.64	160	
BF-OW-4	2	1323	52.18	52.21	175	
G-01				58.14	164.5	
G-02	4	1029	54.94	55.11	180	
G-03				61.08	170	
G-04				51.72	195	
G-05				53.59	194	
G-06				54.36	192	
G-08				34.80	181	
G-09				41.70	213	
G-11				38.53	218	
G-12				38.62	198	
G-13				48.65	197	
G-14				52.65	196	Between south 120+ T-10 106 side
G-15	4	1334	59.81	59.89	184	In Farmer Brothers Just before for
G-16	4	932	49.11	49.20	187	Zillar bialistica and called
G-17				48.25	213	
G-18				34.85	202	
G-19A				48.11	204	
G-20				66.35	176	
G-21				59.46	171	
G-22				36.95	193	
G-23				47.41	180	
G-24	4	926	52.10	51.98	182	

Technician: E. Morse

Measuring Device ID: 2419

dipper T

Project Name: Montrose Chemical Superfund Site Date: 9 1/16 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
G-25	4	952	56.76	56.67	169	
G-26	4	915	46.90	46.75	171.5	
G-27				36.51	170	
G-28				48.88	195	
G-29				49.97	200	
G-30				55.55	202	Parked over, visited multiple vists white
G-31				52.92	211	The door was training to the
G-32				49.57	201	Λ.
G-33	4	1120	60,78	60.65	201	W. of 1611 Driveway, map inversel.
G-34				52.65	198	10 11 11 11 11 11 11 11
G-35				44.62	210	
G-OW-1				65.14	187	
G-OW-3				41.98	160	
G-OW-4				52.84	175	
LBF-OW-2				52.97	137	
LBF-OW-3				42.11	136	
LG-01	4	w34.58100	1654.58	54.94	211	
LG-02		21,2019	7	56.20	207	
LW-01				66.49	251	
LW-02				63.55	253	
LW-03				62.00	261	
LW-04				64.10	246	
LW-05				67.68	251	
LW-06				65.65	256	

Technician: E. Morse

Measuring Device ID: 24/19/ Dippor T Page of 6 Heron

Project Name: Montrose Chemical Superfund Site Date: 9 1 15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW 2014 (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
LW-07				69.99	251	
MBFB- OW-1				64.10	96	
MW-01	4	1034	52.95	53.05	76.6	
MW-02			500	59.02	77.5	
MW-03				57.80	75	
MW-04	DVIQ			57.00	75.3	1
MW-05	4"	1016	55.80	-55.24	-72.4 DA	MW-6 Gaucid by EPICM of
MW-06	1			55.94	85	VOLVIMAN C. (ACCOU)
MW-07				57.48	85	Diving Co (flater)
MW-08				65.11	85	
MW-09	4	1301	61.74	60.75	85	Corner of 1440 Building (NE) in road.
MW-10				53.43	83	C.M. S. III. SOILES TO SILISS.
MW-11				52.98	84	
MW-12				50.46	85	
MW-13				52.82	81	
MW-14				53.41	80	
MW-16	Н	1205	51.41	51.39	78	15'E. of Wall, 10'E gate on Scale
MW-17		180	33.76	58.10	83	10 C 3410 213046
MW-19				56.76	80	
MW-20				NM	74	
MW-21				46.09	73	
MW-22	4	942	52.13	52.16	74	
MW-23	-			46.81	80	

Technician: Eric Morse

Measuring Device ID: 24191 Hecon

Heron Page of 6

Dipper

Project Name: Montrose Chemical Superfund Site Date: 9 11/15 Project Number: F205

Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
			33.00	68	
			43.05	75	
			49.38	80	
			50.80	77	
			50.27	74	
			49.31	75	
				80	
				82	
			59.71	99	
	La Carlo Wale At Wale La Carlo	lima	Diameter Time Water	Diameter Water (ft btoc) (ft btoc) 33.00 43.05 49.38 50.80 50.27 49.31 47.75 64.58 59.71 55.99 55.34 56.83 57.89 56.63 59.45 59.45 59.61 59.61	Diameter Water (ft btoc) (ft btoc) Previous 33.00 68 43.05 75 49.38 80 50.80 77 50.27 74 49.31 75 47.75 80 64.58 82 59.71 94.3 55.99 85 55.34 91 56.83 95 57.89 90.5 56.63 93 56.85 93 59.45 99 59.61 99

Technician: Eric Morse

Measuring Device ID: 24 9

roject Name: Montrose Chemical Superfund Site			Date:		Project Number: F205	
Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)	
				Meas	uring Device ID:Page_of	
	Well Diameter	Well Time	Well Diameter Time Depth to Water (ft btoc)	Well Diameter Time Depth to Water (ft btoc) Total Depth (ft btoc)	Well Diameter Time Depth to Water (ft btoc) Total Depth (ft btoc) Previous	

GROUNDWATER MONITORING WELL GAUGING FORM

Project Name: Montrose Chemical Superfund Site Date: 9-7-75 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
CMW001					124	
CMW002					124	
CMW017					125	
CMW021					122	
G-02WC					203	
PZL0025				47.08	64	
SWL0026	4"	847	35.48	35.75	178	
SWL0027	411	849	33.84	33.98	137	
SWL0033				47.75	142.5	
SWL0034	4"	936	47.36	46.38	178	
SWL0049	4.	938	42.73	43.00	63.75	
SWL0058					129	
SWL0063	40	832	50.68	38.23	192	Double checked DTW
BL-13C					164	Description of the
BF-01				58.85	126.5	
BF-02				59.67	128	
BF-03				58.84	125.5	
BF-04				57.95	126	
BF-05				50.00	135	
BF-06				52.23	132	
BF-07				53.20	119	
BF-09				59.10	129	
BF-10				40.17	131	
BF-11				45.64	124	

Technician: Enc Holmberg

Heron Instruments
Measuring Device ID: 32462

Page 1 of 6

Project Name: Montrose Chemical Superfund Site Date: 9-1-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-12				34.49	120	
BF-13				40.61	138	
BF-14				47.3	122	
BF-15	4"	914	33.53	33.69	114	
BF-16	ight	706	48.90	46.89	130	
BF-17				34.75	124	
BF-19				51.05	135	
BF-20				58.61	130	
BF-21				50.43	123	
BF-22				45.78	120	
BF-23				36.69	120122	
BF-24				42.62	115	
BF-25	40	1105	35.91	35.98	110	
BF-26	40	1113	48.02	48.1	122	
BF-27				36.54	115	
BF-28				46.41	115	
BF-29		_		50.72	126	
BF-30				35.86	120	
BF-31				48.33	135	
BF-32A				60.57	120	
BF-33				46.50	101	
BF-34				66.01	127	
BF-35				60.92	126	
BF-36				48.09	128	

Technician: Eric Holmbeg

Measuring Device ID: 32462

Project Name: Montrose Chemical Superfund Site Date: 9-1-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-OW-1				64.41	187	
BF-OW-3	2"	1045	40.53	40.64	160	In same well box as LBF-OW-3 + 6
BF-OW-4				52.21	175	
G-01				58.14	164.5	
G-02				55.11	180	7
G-03				61.08	170	
G-04				51.72	195	
G-05				53.59	194	
G-06				54.36	192	
G-08	4"	922	34.50	34.80	181	
G-09				41.70	213	
G-11				38.53	218	
G-12				38.62	198	
G-13				48.65	197	
G-14				52.65	196	
G-15				59.89	184	
G-16	410	906	49.90	49.20	187	
G-17				48.25	213	
G-18				34.85	202	
G-19A				48.11	204	
G-20				66.35	176	
G-21				59.46	171	
G-22				36.95	193	
G-23				47.41	180	
G-24				51.98	182	

Technician: Eric Holmberg

Measuring Device ID: 32462

Project Name: Montrose Chemical Superfund Site Date: 7-1-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
G-25			1	56.67	169	
G-26				46.75	171.5	
G-27				36.51	170	
G-28				48.88	195	
G-29				49.97	200	
G-30				55.55	202	
G-31				52.92	211	
G-32				49.57	201	
G-33				60.65	201	
G-34				52.65	198	
G-35				44.62	210	
G-OW-1				65.14	187	
G-OW-3	211	1046	41.71	41.98	160	In some well box as BF-OW3 + LBF.
G-OW-4	2"	955	52.55	52.84	175	
LBF-OW-2				52.97	137	
LBF-OW-3	2"	1047	41.65	42.11	136	
LG-01				54.94	211	In some well box as BF-OW-3 + G-OL
LG-02				56.20	207	
LW-01				66.49	251	
LW-02	42	1029	61.71	63.55	253	
LW-03				62.00	261	
LW-04				64.10	246	
LW-05				67.68	251	
LW-06				65.65	256	

Technician: Era Holmberg

Measuring Device ID: 32462

Project Name: Montrose Chemical Superfund Site Date: 9-1-15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW 2014 (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
LW-07				69.99	251	
MBFB- OW-1				64.10	96	
MW-01				53.05	76.6	
MW-02				59.02	77.5	
MW-03				57.80	75	
MW-04				57.00	75.3	
MW-05				55.24	72.4	
MW-06				55.94	85	
MW-07				57.48	85	
MW-08				65.11	85	
MW-09				60.75	85	
MW-10				53.43	83	
MW-11				52.98	84	
MW-12				50.46	85	
MW-13				52.82	81	
MW-14				53.41	80	
MW-16				51.39	78	
MW-17				58.10	83	
MW-19				56.76	80	
MW-20				NM	74	
MW-21				46.09	73	
MW-22				52.16	74	
MW-23				46.81	80	

Technician: Eric Holmbea

Measuring Device ID: 32462

Project Name: Montrose Chemical Superfund Site Date: 9-1-15 Project Number: F205

4"	929 855	32,68	33.00 43.05 49.38 50.80 50.27 49.31	68 75 80 77 74 75	
411			49.38 50.80 50.27 49.31	80 77 74	
4"	855	49.20	50.80 50.27 49.31	77 74	
			50.27 49.31	74	
			49.31		
				75	
				10	
			47.75	80	
			64.58	82	
			59.71	94.3	
			55.99	85	
			55.34	91	
			56.83	95	
			57.89	90.5	
			56.63	93	
			56.85	93	
			59.45	99	
			59.61	99	
			59.71	99	
				57.89 56.63 56.85 59.45 59.61	57.89 90.5 56.63 93 56.85 93 59.45 99 59.61 99

Technician: Fric Holmbea

Measuring Device ID: 32 462

roject Na	me: Montrose	Chemical Su	perfund Site	Date:	9-1-15	Project Number: F205
Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)

echnician:	Measuring Device ID:	32462
		Dogo of 6

GROUNDWATER MONITORING WELL GAUGING FORM

Project Name: Montrose Chemical Superfund Site Project Number: F205 Date:

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
CMW001			1		124	
CMW002					124	
CMW017					125	
CMW021					122	
G-02WC					203	
PZL0025				47.08	64	
SWL0026				35.75	178	
SWL0027				33.98	137	
SWL0033				47.75	142.5	
SWL0034				46.38	178	
SWL0049				43.00	63.75	
SWL0058					129	
SWL0063				38.23	192	
BL-13C				00,20	164	
BF-01				58.85	126.5	
BF-02				59.67	128	
BF-03				58.84	125.5	
BF-04				57.95	126	
BF-05				50.00	135	
BF-06				52.23	132	
BF-07				53.20	119	
BF-09	- 72			59.10	129	
BF-10	40			40.17	131	70k/ 10/40 - 10:1
BF-11	4			45.64	124	PUMPIN WELL

Measuring Device ID: 02389

Project Name: Montrose Chemical Superfund Site Date: 9 1 15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-12	4"	1105	34.28	34.49	120	
BF-13				40.61	138	
BF-14	4	1325	47-20	47.3	122	
BF-15	/			33.69	114	
BF-16	4"	1200	46.83	46.89	130	
BF-17	4"	1045 1HO	3480	34.75	124	DUDGE CHEEK BOTH PEF !
BF-19		12 12		51.05	135	TO BUT CHECK SOLIL PORT ?
BF-20				58.61	130	1
BF-21	411	1315	50.38	50.43	123	1
BF-22	4"	1153	45.74	45.78	120	
BF-23			1	36.69	120122	
BF-24	4"	1307	42.49	42.62	115	
BF-25	4"	1030		35.98	110	Pump IN WELL
BF-26	4"	10:00		48.1	122	Frap IN WELL
BF-27	2"	1015	36.95	36.54	115	TO PIN PORCE
BF-28	1411	1130	46.31	46.41	115	
BF-29	40	836	4918	50.72	126	
BF-30	46	1144	35.94	35.86	120	
BF-31		/		48.33	135	
BF-32A				60.57	120	
BF-33				46.50	101	
BF-34				66.01	127	
BF-35				60.92	126	
BF-36	4	910	48.16	48.09	128	

Technician: LESTER WITHER

Project Name: Montrose Chemical Superfund Site Date: 9/1/15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-OW-1				64.41	187	
BF-OW-3				40.64	160	
BF-OW-4				52.21	175	
G-01				58.14	164.5	
G-02				55.11	180	
G-03				61.08	170	
G-04				51.72	195	
G-05				53.59	194	
G-06				54.36	192	
G-08				34.80	181	
G-09		1340		41.70	213	TO DV IN I - D IN
G-11		7.0		38.53	218	TRUCK ON TOP OF WELL
G-12				38.62	198	
G-13				48.65	197	
G-14				52.65	196	
G-15				59.89	184	
G-16				49.20	187	
G-17				48.25	213	
G-18	4	1137	34.55	34.85	202	
G-19A	4	1313	47.76	48.11	204	
G-20		1	1,19	66.35	176	
G-21				59.46	171	
G-22	4"	1045	36.80	36.95	193	
G-23 ·	44	1205	47, 25	47.41	180	
G-24	4"	1220	51.00	51.98	182	

Technician:

Measuring Device ID: 023890/201062

Project Name: Montrose Chemical Superfund Site Date: 9/1/15 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
G-25				56.67	169	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G-26				46.75	171.5	
G-27	4	1149	36.40	36.51		
G-28	4.	950	48.57	48.88	170	
G-29	4"	836	36.45 48.57 49.80	49.97	195	
G-30			1.00		200	
G-31	N'A	NIR	N/A	55.55	202	
G-32	4"	851	49.54	52.92	211	CAR ON TOPOFNEN
G-33			71.37	49.57	201	
G-34	4	an	K-0 /	60.65	201	
G-35	4"	930	52.53 44.55	52.65	198	
G-OW-1	T	11115	44.55	44.62	210	
G-OW-3				65.14	187	
G-OW-4				41.98	160	
LBF-OW-2				52.84	175	
				52.97	137	
LBF-OW-3				42.11	136	
LG-01				54.94	211	
LG-02				56.20	207	
LW-01				66.49	251	
LW-02				63.55	253	
LW-03				62.00	261	
LW-04				64.10	246	
LW-05				67.68		
LW-06	17.			65.65	251 256	
echnician:				50.00	200	

Technician:

Measuring Device ID: 023 890/201082

Project Name: Montrose Chemical Superfund Site Date: 9 1/5 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW 2014 (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
LW-07			1 2 2 2 2 2	69.99	251	
MBFB- OW-1				64.10	96	
MW-01	1111				50	
MW-02				53.05	76.6	
MW-03				59.02	77.5	
MW-04				57.80	75	
MW-05				57.00	75.3	
MW-06				55.24	72.4	
MW-07				55.94	85	
MW-08				57.48	85	
MW-09				65.11	85	
				60.75	85	
MW-10				53.43	83	
MW-11				52.98	84	
MW-12				50.46	85	
MW-13				52.82	81	
MW-14				53.41	80	
MW-16				51.39	78	
W-17				58.10	83	
/W-19				56.76	80	
/IW-20				NM	74	
/IW-21				46.09	73	
/IW-22				52.16	74	
/W-23				46.81	80	

Technician:	

Measuring Device ID: 023890/201082

Project Name: Montrose Chemical Superfund Site Date: 9 1 19 Project Number: F205

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
MW-24			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.00		
MW-25	4	1300		33.00	68	
MW-26		1500		43.05	75	pring IN WELL
MW-27				49.38	80	1 1 1000
MW-28				50.80	77	
MW-29				50.27	74	
MW-30				49.31	75	
MW-31				47.75	80	
UBE-01				64.58	82	
UBE-02				59.71	94.3	
UBE-03		- 1		55.99	85	
UBE-04				55.34	91	
UBE-05				56.83	95	
UBI-01				57.89	90.5	
				56.63	93	
UBI-02				56.85	93	
UBT-01				59.45	99	
UBT-02				59.61	99	
UBT-03				59.71	99	
				50.71	33	

Technician:	

Measuring Device ID: 023 890 / 70/082

GROUNDWATER MONITORING WELL GAUGING FORM CONTINUED

Project Na	me: Montrose	Chemical Su	uperfund Site	Date:		Project Number: F205
Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Total Depth (ft btoc) Previous	Remarks (Note if bottom is hard or soft)
- L -1-1-2-						
conician:					Measu	uring Device ID:Page of

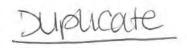
GROUNDWATER MONITORING WELL GAUGING FORM

9/9/15 **Project Name: Montrose Chemical Superfund Site** Date: **Project Number: F205**

Well ID	Well Diameter	Time	Depth to Water (ft btoc)	Previous DTW (ft btoc)	Total Depth (ft btoc)	Remarks (Note if bottom is hard or soft)
BF-10	4	1/15	39.98	40.17	131	With Ox
G-09	4.	1120	41.50	41.70	213	PIND WWELL
G-12	WIN			38.62	198	LOOKS LIKE ITS ABANDON.
G-30	4	1006	52.86	55.55	202	war along this OK
G-31	4	1200	52.86	52.92	211	1 101
MW-11				52.98	84	CAR ON WELL MOVED CONFINANCE BEHIND LOCK GATE
SWL0020						BEHIND LOCK GATE W
BF-IW-1	12"	1030	64.98	65.17	125	014
BF-IW-2				33.68	144	BETIND COCK GATE
4 0	,					
CALIBR,	TIME	DTW	TECH	CONTRACTOR	CLIENT	DEVICE ID.
WCC-055	930	58.77	CESTER	JHA	MONTROSE	DEVICE I.D. 201082

Technician: L. WIDWOR

Measuring Device ID: 20/082
Page 1 of 1


Montrose Field Forms Groundwater Sampling

Mall ID #	: MW-01			Purging Method:	Low-Flow			Site: Montrose Chemical Superfund				
Well ID #		111		Pump Model and		0-16h	Ò	Date: 9-28-15				
		OC North Sid		Tubing Type and			•	Sampling Event: September 2015 Project Number: F205 Client Name: Montrose / demaximis				
All A. Principal Co.		OC - North Sid	е									
	Vell Depth (1			Minimum Initial P	Purge Volum	ne (mL):	20 CHAC					
	erval (ft): 6			Willimum initial r		ox Settings		Client Projec	t Number:			
Depth to L		NA		A 3 -	-			Sampled By:	4 1	chuson		
Depth to V	Vater (ft):	53.83		CPM: A R: LC		PSI: 70			C 11	00(00)000		
Pump Set	Depth (ft):	68'		Weather Condition	ons: V2t	chy (louds,	Hot	14.3724			
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
0930	(ft) 53.83	200	(IIIC)		_	_		_	_	Cloudy		
0955	53.83		5000	23.74	6.68	6.66	196	1.44	-49	Slightly Cloudy		
1000	53.83		4000	23.69	6.61	6.66	162	1.25	-57			
1005	700		7000	23.70	6.60	100	6.60	6.46	121	1.12	-62	
1010	53.83		8000	23.70	6.61	6.66	118	1.09	-63			
1015	53.83	6	9000	23.72	4.59	6.66	113	1.08	-64	∢		
101	37-03											
	1					1						
								-				
										120000000000000000000000000000000000000		
Samı	ple Type	Quantity/Co	ontainer Type	Preservative		Analy	40 At	Samp	le Time	Sample Indentification		
	imary	2 VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C		Including fuel o pCBSA (EPA 3	exygenates (8260B);	107	20	MW-01-20150928		

Notes:

W-ILID # BANAL C	2					A CANADA	1 20 1 30 10	7. rest. 7.5	777, 11 0.11		
Vell ID #: MW-0			Purging Method	THE THE PARTY			Site: Montrose Chemical Superfund				
Vell Diameter (in):	4"		Pump Model and				Date: 9-30-15				
leasurement Point:	TOC - North Sid	de	Tubing Type and	d Diameter:	TLPE.17X1	1/4 x LDPE.17x1/4	Sampling Event: September 2015				
stalled Well Depth	(ft): 77.50		WQ Meter Mode	52/x9	SOUKHAC	Project Num	umber: F205				
creen Interval (ft):	66.7-76.7		Minimum Initial			917	Client Name	: Montrose	/ demaximis		
epth to LNAPL (ft):	NA			Control B	ox Setting	<u>s</u>	Client Project	Client Project Number:			
epth to Water (ft):	58.84		CPM: 4 R: 1	0 p. 5	PSI:	00	Sampled By: C Johnson				
ump Set Depth (ft):	71.7		Weather Conditi		ear				0.11.3001		
Time Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
125 58.84	160	-	_	-	-		_	_	Cleer Odor		
140 58.84	1	1800	24.16	5.49	4.61	1.9	1.59	45			
145 58.84 2400		2400	24.00	5.51	6-60	2.2	1.49	47	V.		
150 58 84		3000	23.91	5.51	6.60	1.9	1.42	49			
155 58.84		3400	23.87	5.52	6.62	2.1	1.38	49			
200 58.84	✓	4200	23.87	5.53	6.61	2.2	1.36	50	₹		
Sample Type	Quantity/Con	ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification		
Primary	→ VOAs (40 ml);	; 1, 125 ml poly	HCL; 4°C	n(VOCs (82 CBSA (EPA 31		120	5	MW-02-2015092830		

Well ID #	#: MW-04	1		Purging Method	: Low-Flow			Site: Montrose Chemical Superfund							
Well Diam	eter (in):	4"		Pump Model an	d ID: MP-	50-16	elle	Date: 9-28-15							
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Event: September 2015							
Installed V	Well Depth ((ft): 75.30		WQ Meter Mode	and ID: []	57. 1x	80UKHAC	Project Num	414 - 1144	se / demaximis					
Screen Int	terval (ft): 6	64.9-74.9		Minimum Initial	Purge Volu	me (mL):	4725 945		70.000,972.00						
Depth to L	NAPL (ft):	N/A				lox Setting		Client Project							
Depth to V	Vater (ft):	56.79		CPM: 4 R: 1			71/3	Sampled By: C Johnson							
Pump Set	Depth (ft):	109.5		Weather Conditi	0 1	chy (0 / 1								
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations					
1055	56.79	200		_	_	- 17	_		-	Clear					
1105	96.79	1	2000	24.02	1.68	6.86	0.0	2.46	148	- Civer					
1110	56.79		3000	23.57	1.70	4.82	0-0	1.65	146						
1115	50.79		4000	23.26	1.70	6.86	0-0	1.29	143						
1120	56.79		5000	23.21	1.70	4.87	0-0	1.19	142						
1125	56.79	4	6000	23.19	1.70	6.87	0.0	1.15 142 8		₹					
Sample	е Туре	Quantity/Cor	ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification					
	nary	3 VOAs (40 ml)	; 1, 125 ml poly	HCL: 4°C		VOCs (82	260B);	1136		MW-04-20150928					

MW-0	9		Purging Method	: Low-Flow			Site: Montrose Chemical Superfund				
Well Diameter (in):		f.1,	Pump Model and	ID: MP	-50 -	1616	Date: 9-28-15				
Measurement Point:	William Part and the	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Event: September 2015				
nstalled Well Depth	(ft): 72.40		WQ Meter Mode	l and ID: 🔰	52/X	80UKHAC	Project Numl	per: F205			
Screen Interval (ft): (51.5-72.5		Minimum Initial	Purge Volun	ne (mL):	900	Client Name:	Montrose	/ demaximis		
Depth to LNAPL (ft):	N/A			Control B	ox Settings	1	Client Project Number: Sampled By: C Johnson				
Depth to Water (ft):	54.84		CPM: 4 R: 1	0 D: 5	PSI:	15					
Pump Set Depth (ft):	67		Weather Conditi	Λ 1	chy	Clouds,	Hot				
Time Depth to Water (ft)	Water (mL/min) Purged		Temp. (deg C)	Cond. (mS/cm)	nd.	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1205 50.84	200	_	_	_	_			_	Clear		
1215 56-84		2000	24.59	2-41	4.90	0-0	0.97	1			
1220 56.84		3000	23.79	253	4.9.1	0.0	0.80	34			
1225 56-84		4,000	23.45	2.54	6.92	0.0	0.75	53			
1230 56.84		5000 23.9		254	4.93		0.72	45			
1235 56-84		6000	23.51	2.54	6-94	0-0	0.69	68			
1240 56.84		7000	23.49	2.5A	4.95	0.0	0.68	71	₹		
Sample Type Quantity/Container Type		ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification		
Primary	XVOAs (40 ml); 1, 125 ml poly	HCL; 4°C	pe	VOCs (82 CBSA (EPA 31		124	15	MW-5-20150928		

Well ID #	#: MW-06	3		Purging Method:	Low-Flow			Site: Montro	al Superfund			
Well Diam	eter (in):	4"		Pump Model and	ID: Mi	50-lu	PLA	Date: 10-2-15				
Measurem	nent Point:	TOC - North Sid	de	To profess the Company of the Landson			/4 x LDPE.17x1/4	Sampling Event: September 2015				
Installed V	Well Depth	(ft): 85		WQ Meter Model	and ID:	52/X8	POUKHAC	Project Number: F205				
Screen Int	terval (ft): {	35.00 65-	80	Minimum Initial I	Purge Volur	me (mL):	900	Client Name: Montrose / demaximis				
		65-80- N/A			Control B	ox Settings	<u>s</u>	Client Projec	t Number:			
Depth to V	Vater (ft):	55.58	,	CPM: 4 R: [O D: 5	PSI:	0	Sampled By:	(0)	ohnson		
Pump Set	Depth (ft):	·66.5	70'	Weather Condition	ons:	lesv	bot					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1010	5558	200		_	_		-		_	Clear		
1025	95.75	1	3000	23.38	141	4.70	33.6	2.39	73	i		
1030	55.75		4000	23.02								
1035	55.75		5000	22.90	14.1	6.71	26.1	1.57				
1040	55.75		6000	22.87	14-1	G-71	20.8	1.54	91			
1045	55.15	4	7000	22.86	14.2	6.70	199	1.52	92	- Annie		
1050	CF.75	1	8000	22.85	14.2	6.70	19.1	1.50	93	₩		
						7 -						
Samp	le Type	Quantity/Co	ntainer Type	Preservative Analysis				Sample	Time	Sample Indentification		
Pri	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	VOCs (8260B); pCBSA (EPA 314 Modified)			-1050 MW-6-2015 LG				
Notes:								10	55			

Well ID #	#: MW-09			Purging Method:	Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	neter (in): 🔊	4"		Pump Model and	ID: QE	D. MP.3	50	Date: 9/29/15					
Measuren	nent Point: T	OC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1/4	x LDPE.17x1/4	Sampling Event: September 2015					
Installed \	Well Depth (f	t): 85.00		WQ Meter Model	and ID:	SOUNST		Project Number: F205					
Screen In	terval (ft): 60	6-81		Minimum Initial I	Purge Volui	me (mL): 90	/ demaximis						
Depth to I	LNAPL (ft):	NA		,	Control B	ox Settings		Client Project Number:					
Depth to \	Water (ft):	60.4	18	CPM: 4 R: /	0 D: 5	PSI: 6	5	Sampled By:	LW				
Pump Set	Depth (ft):	73.5		Weather Condition									
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
800	60.59	200	2000	20.52	2.30	690	22.6	2.54	103	CUETR			
805	60.9	100	2500	20.62	2.47	6.82	20.6	1.10	1.2	CUEAR			
810	60.59	100	2000	20.63	2.48	6.41	20.4	1.09	1.0	(CGA)			
815	60.59			3500	20.63	2.48	6.40	20.1	1-09	1.0	CUEAR		
\$20	60.59	100	4000	20.63	2.49	6.40	20.1	1.09	1.0	CUPAR			
Samp	ole Type	Quantity/Co	ontainer Type	Preservative		Analys	is	Sample	Time	Sample Indentification			
Pri	imary	3, VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C		VOCs (826 pCBSA (EPA 314		870	5	MW-09. 2015 09 29			

Well ID #	#: MW-10			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund				
Well Diam	eter (in):	4"		Pump Model and	ID: DED	Bladder	Pump	Date: 9(281)5				
Measurem	ent Point:	TOC - North Sid	de				/4 x LDPE.17x1/4	Sampling E		mber 2015		
Installed V	Well Depth	(ft): 83.00		WQ Meter Mode	and ID: V	I Popl	15 + Flacel	Project Nur	nber: F205			
Screen Int	terval (ft): 6	62-77		Minimum Initial				Client Nam	e: Montrose	e / demaximis		
Depth to L	NAPL (ft):	NA -	-		Control B	ox Setting	<u>s</u>	Client Proje	ct Number:			
		53.77 11		CPM:4 R: 18	PM:4 R: 18 D: 5 PSI: Sampled By: Eric Morg.							
	Depth (ft):			Weather Conditi			ne 92°F					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	pH	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1435	53.42	200	1000	25.7	2264	6.79	6.13	1.68	57.5	filled I system yelvine		
1440	5342	200	2000	25.3	2274	6.88	5.42	0.74	443	,		
	53.42	200	3000	25.2	2270	6.89	2.51	0.71	43.4			
1990	53.42	200	4000	25.1	2272	6.89	2.19	0.67	42.9			
1455	5342	200	5000	25.0	2273	6.89	2.14	0.64	423			
1500	5342	200	6000	25.0	2270	6.89	2.18	0.63	41.9			
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Samp	le Time	Sample Indentification		
Pri	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	ı	VOCs (8 oCBSA (EPA 3		1500		MW-10-20150928		

Notes: Pulled dedicated pump prior to purge & sample.
rando new 4" cap. Bladder Leffort of well.

Well ID	#: MW-1	1		Purging Method	d: Low-Flow			Site: Montrose Chemical Superfund					
Well Dian	neter (in):	4"	344	Pump Model an	IN DED	Bladder	PUMP	Date: 9/29/15					
Measurer	ment Point:	TOC - North Si	de		4		1/4 x LDPE.17x1/4	Sampling Event: September 2015 Project Number: F205					
Installed	Well Depth (ft): 84.00	- 1	WQ Meter Mode	el and ID: YS	TPaPh	•						
Screen In	terval (ft): 6	52-77	7.7	Minimum Initial			•	Client Name	e: Montrose	/ demaximis			
Depth to	LNAPL (ft):	NA			Control E	Box Setting	<u>s</u>	Client Proje					
	Water (ft):			CPM: 4 R:/C	D: 5	Enc M	~50						
	Depth (ft):			Weather Condit					CHE MAR				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations		
0745	52.96	200	1000	22.6	2408	6.68	4.20	1.82	202.8	removed	Isysten volume		
0750	53.00	200	2000	22.7	2441	6.68	3.5)	1.73	197.8	1	13/5/20 0=101		
0755	53.00	200	3000	22.8	2449	6-69	4.15	1.75	195.4				
0800	53.00	200	4000	22.9	2452	6.68	4.10	1.76	193.1	.1			
0805	53.00	2.008	5000	22.9	2955	6.68	4.04	1.75	191.3				
1000	nary		ntainer Type); 1, 125 ml poly	Preservative HCL; 4°C	, c	VOCs (8 OCBSA (EPA 3	260B);	0805	le Time		Sample Indentification		

Well ID	#: MW-1	1		Purging Method	d: Low-Flow			Site: Montrose Chemical Superfund					
Well Dian	neter (in):	4"	344	Pump Model an	IN DED	Bladder	PUMP	Date: 9/29/15					
Measurer	ment Point:	TOC - North Si	de		4		1/4 x LDPE.17x1/4	Sampling Event: September 2015 Project Number: F205					
Installed	Well Depth (ft): 84.00	- 1	WQ Meter Mode	el and ID: YS	TPaPh	•						
Screen In	terval (ft): 6	52-77	7.7	Minimum Initial			•	Client Name	e: Montrose	/ demaximis			
Depth to	LNAPL (ft):	NA			Control E	Box Setting	<u>s</u>	Client Proje					
	Water (ft):			CPM: 4 R:/C	D: 5	Enc M	~50						
	Depth (ft):			Weather Condit					CHE MAIN				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations		
0745	52.96	200	1000	22.6	2408	6.68	4.20	1.82	202.8	removed	Isysten volume		
0750	53.00	200	2000	22.7	2441	6.68	3.5)	1.73	197.8	1	13/5/20 0=101		
0755	53.00	200	3000	22.8	2449	6-69	4.15	1.75	195.4				
0800	53.00	200	4000	22.9	2452	6.68	4.10	1.76	193.1	.1			
0805	53.00	2.008	5000	22.9	2955	6.68	4.04	1.75	191.3				
1000	nary		ntainer Type); 1, 125 ml poly	Preservative HCL; 4°C	, c	VOCs (8 OCBSA (EPA 3	260B);	0805	le Time		Sample Indentification		

Well ID #	#: MW-12			Purging Method: Low-Flow Site: Montrose Chemical Superfund				l Superfund										
Well Diam	eter (in): y			Pump Model and	d ID: QE	D Bla	doler	Date: 9-28-15										
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septem	ber 2015								
nstalled \	Well Depth (ft): 85.00		WQ Meter Model and ID: YSI Po Plus Flow Cell					Project Number: F205					Project Number: F205				
Screen In	terval (ft): 6	1-76		Minimum Initial	Purge Volun	me (mL): i		Client Name: Montrose / demaximis										
Depth to L	NAPL (ft):	AN			Control B	ox Settings	1	Client Proje	ct Number:									
Depth to V	Nater (ft):	50.28		CPM: R:	D:	PSI: 50		Sampled By	· Era L	Tolmbero								
ump Set	Depth (ft):	68.5		Weather Conditi	ions:													
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations								
334	50.29	200	1000	23.8	1487	6.52	11.9	0.60	-99.1									
339	50.28	1	2800	23.8	1491	6.47	10.2	0-64	-97.3									
344	50.78		3006	23.7	1490	6.48	10.1	0.67	-98.0									
349	50.28		4000	23.1	1490	6.49	9.2	0.75	-99.6									
354	50.28		5660	23.6	1489	6.52	8. 7	0.80 -103.1										
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy		Sampl	e Time	Sample Indentification								
Prin	mary	3, VOAs (40 ml	I); 1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		135	5	MW-12-20150929								

Well ID #: MW-13			Purging Method	: Low-Flow			Site: Montro	se Chemica	al Superfund		
Well Diameter (in):	4"		Pump Model and	ID: MX	50-14	ollo	Date:	.2-	15		
Measurement Point:	TOC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Ev	ent: Septen	nber 2015		
Installed Well Depth	(ft): 81.00		WQ Meter Mode	l and ID: 🚫	52/X9	YOUKHAC	Project Num	ber: F205			
Screen Interval (ft):	62-77		Minimum Initial	Purge Volur	ne (mL):	850	Client Name	Montrose	/ demaximis		
Depth to LNAPL (ft):	N/A			Control B	ox Settings		Client Project Number:				
Depth to Water (ft):	52.5	8	CPM: 4 R: 10	0 D: 5	PSI:	50	Sampled By:	()	ohnson		
Pump Set Depth (ft)	65	V	Weather Conditi								
Time Depth to (hh:mm) Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1125 52.58	200	-	_	_	-	_	-	-	Clear, Odar		
1135 526		2000	21.60	2.59	694	0.0	2.25	-135	, ,		
11AO 52.61		3000	21-44	259	6.94	0.0	1.69	736			
1145 5261		4000	21.41	2.59	694	0.0	1.40	-140			
1150 5261		5000	21-39	2.59	6.93	0-0	1.38	-139			
1155 5261	✓	4000	21-37	2.59	6.92	0.0	1.36	-138	4		
					2						
		1									
Sample Type	Quantity/Co	ntainer Type	Preservative		Analys	is	Sample	Time	Sample Indentification		
Primary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p(VOCs (82) CBSA (EPA 314		1200		MW-13-20151002		

Well ID #	#: MW-1	6		Purging Method	: Low-Flow			Site: Montro	se Chemica	l Superfund		
Well Diam	eter (in): 🗸	+"		Pump Model and	ID: MP5	0-161	6	Date: 0 -	2-15			
Measurem	ent Point:	TOC - North Sid	ie	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015		
nstalled V	Well Depth (ft): 78.00		WQ Meter Mode	I and ID: \	152 X	80UKHAC	Project Num	ber: F205			
Screen Int	terval (ft): 5	9-76					900 865	Client Name: Montrose / demaximis				
	NAPL (ft):	11/1			7.00 7.7700	ox Setting	1 - 0 -	Client Project	t Number:			
		51.30		CPM: AR: L	-			Sampled By:	7 1	No. a b D v a		
		70-6		Weather Conditi		lear		Sampled By: O Johnson				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
825	5130	200	_	_	-	_				Black, Turbid, Odor		
1840	51.41	1	3000	22.34	2.78	7.32	343	0.84	-240	1		
0845	51.41		4000	22.37	2.78	7.33	300	0.84	-241			
	51-41		5000	22.42	278	7.34	305	0.82	-243			
855	51.41		6000	22.43	2.77	7.35	220	0.81	-244			
000	51.41		7000	22.45	2.78	7.35	210	0-81	-246			
20105	51.41	4	8000	22.44	2.78	.78 7.34 198 0.80 -245						
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	Valve	Sample	e Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml)); 1, 125 ml poly	HCL; 4°C		VOCs (8	3260B); 314 Modiified)	0911		MW-14-20151002		

Well ID	#: MW-1 9			Purging Method	: Low-Flow			Site: Montro	se Chemic	al Superfund		
Well Diam	neter (in):	4M" 2	· l	Pump Model and	ID: M+	-50		Date: 9	129/15			
Measuren	nent Point:	TOC - North Si					/4 x LDPE.17x1/4	Sampling Ev				
Installed \	Well Depth ((ft): 80.00		WQ Meter Model	and ID:	SOLIN	35	Project Num	ber: F205			
Screen In	terval (ft): 6	3-79		Minimum Initial	Purge Volui	me (mL):		Client Name: Montrose / demaximis				
Depth to I	LNAPL (ft):	NA			Control B	ox Settings	3	Client Project	t Number:	NA		
Depth to \	Water (ft):	198	57.48	CPM: 4 R: /	0 D: 5	PSI: 4	0	Sampled By:		. 07/4		
Pump Set	mp Set Depth (ft): 7/			Weather Condition								
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
940	57.55	200	2000	20,92	3.15	692	627	1.50	55	RUST COLOR		
945	57.55	1000	B2500	23.04	1.66	7.16	521	2.40	126	PUST COLOR		
950	57.55	100	3000	23.04 1.66 7.20 32			325	2.42	157	EUST COLOR		
955	57.55	100	3500	23.04 167 7.21 320			320	2.44	157	RUST COLOR		
100 U	57.55	100	4000	23,03	1.64	7.23	321	2.43	158	RUST COLOR		
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		1005		MW-19-20150929		

Notes: PURYED 26 HORS BOFORE TAKING TURA DINGS

Well ID	#: MW-22	2		Purging Method	: Low-Flow			Site: Mont	rose Chemic	al Superfund		
Well Diam	neter (in):	4		Pump Model an	d ID: QED	Bladdy	Pump	Date: 9/3	30/15			
Measuren	nent Point:	TOC - North Si	de				(1/4 x LDPE.17x1/4		vent: Septer	nber 2015		
Installed \	Well Depth ((ft): 74.00		WQ Meter Mode	and ID:	1 Pro Pl	us + Flacel)	Project Number: F205				
Screen In	terval (ft): 5	57-73		Minimum Initial				Client Nam	e: Montrose	/ demaximis		
Depth to I	LNAPL (ft):	NA			Control E	ox Settin	gs	Client Proje	ect Number:			
	Water (ft):			CPM: 4 R: /6	D:5	PSI: 4	15	Sampled B	Y: Enc M	NSe.		
	np Set Depth (ft): 65			Weather Condit		~ 86			V-1-1-	1.67		
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1250	52.10	200	1000	31.0	2205	631	>1000	1.34	43	Removed Isystem Dolum		
1255	52.10	200	2000	27.3	2216	6.37	>/000	0.94	16.8	dock red flakes.		
1300	52.08	200	3000	27.2	22.09	6.38	>1000	0.83	-19.0			
1305	52.08	200	4000	27.3					-22.2			
1310	52.08		5000	27.4	2184	6.43	>/000	0.59	26.3			
1315	52.08	200	G000	17.4	2 179	6.43	1/000	0.55	-29.4			
1320	52.08	200	7000	27.4	3131	6.47	>1000	0-60	-34.3			
32.5	62-08	200	800	273	2096 6.50 -1000		6.63	-35.4				
							14		1			
	nary		ntainer Type l); 1, 125 ml poly	Preservative HCL; 4°C		VOCs	ilysis (8260B); 314 Modified)	Samp	ole Time	Sample Indentification MU-22-20150930		

Notes: 1/2 15/16" boths missing 1/2 bent

Well ID #	#: MW-2	3		Purging Method	: Low-Flow			Site: Monti	ose Chemic	cal Superfund		
Well Diam	eter (in):	4		Pump Model an	d ID:QED	Bladde	Pump	Date: 9	18/15			
Measuren	nent Point:	TOC - North Si	de				1/4 x LDPE.17x1/4		vent: Septe	mber 2015		
Installed V	Well Depth	(ft): 80		WQ Meter Mode	and ID:	F PraPla	K Florell	Project Nur	nber: F205			
Screen Int	terval (ft):	60-75		Minimum Initial	Purge Volu	me (mL):	IMP	Client Name: Montrose / demaximis				
Depth to L	NAPL (ft):	NA			Control B		13.54	Client Proje	ct Number:			
Depth to V	Water (ft):	6 47.40)	CPM: 4 R: /	0 D: 5	PSI: 4	0	Sampled By	Eni L	lavse		
Pump Set	Depth (ft):	67.5		Weather Condit		bres			Circy			
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1325	47.60	200	1000	24.1 2837 6.66 >1000				4.92	50.4	rust colored		
1330	47.78	200	2000	24.7	2933	6.70	>1000	4.00	47-1	reduced flow rate to attempt rech		
1335	47.85	100	2500	26.7	2914	676	526	3.37	429			
1340	47.92	200	3500	25.5	2936	6.77	226	3.42	42.6			
1345	47.95	200	4500	25.5	2946	6.75	40.2	3.23	42.3			
1350	47.99	200	5500	254	2956	6.75	38.2	3.34	42.1			
1355	47.99	200	6500	25.5	2946	6.75	36.5	3.19	42.4			
1400	47.99	200	7500	25.4	2940 6.75 35.6			3.28	42-1			
Samp	le Type	Quantity/Co	ntainer Type	Preservative Analysis				Samp	le Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°c	р	VOCs (CBSA (EPA	8260B); 314 Modiified)	1400	5	MW-23-20150928		

Notes:

Notes:

Nall ID #	· mW-	7 4		Purging Method:	Low-Flow			Site: Montro		Superfund		
		~ 1		Pump Model and	ID: QED	Dludd &		Date: 9-2		2045		
vell Diame	eter (in): 🤫	OC North Sir		Tubing Type and	Diameter:	TLPE.17X1/-	4 x LDPE.17x1/4	Sampling Ev		ber 2015		
leasurem	ent Point:	OC - North Sid	ie e	WQ Meter Model	and ID: VS	T PODD	lus flow (el)	Project Num	ber: F205			
	Vell Depth (f			Minimum Initial F	Purge Volun	ne (mL):	200	Client Name		demaximis		
	erval (ft): L			William Inda	ox Settings	Variation of the second	Client Project Number:					
	NAPL (ft): f			CPM: R:	D:	PSI:		Sampled By	Eru K	Colombies		
	Vater (ft): 3			Weather Condition	-							
oump Set	Depth (ft):	\$ 56.5		vveather Condition								
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
7	(ft)	200	(mL)	23.6	4818	6.67	5.04	1.17	101.5	1 system Vil removed		
1018	33.06	Loc			4815	6.66	4.72	1-15	95.3			
1023	33.10		1400	23.7		6.66	4.91	1.14	91.8			
1028	33.10		1(00	23.6	4816			1.13 88.7				
1033	33.10		1860	235	4825	6.66	4.09					
1038	33.10		2000	23.5	4820	6.66	4.24	1.12 88.3				
1000	100											
									1 =			
		H.					A Ba					
				1				+				
							le l					
						Analy	veie	Samp	le Time	Sample Indentification		
Samp	ple Type	Quantity/C	ontainer Type	Preservative	1	VOCs (8				MW-24-20150928		
Dr	imary	3. VOAs (40 n	nl): 1, 125 ml poly	HCL; 4°C		pCBSA (EPA 3		104	0	27 20100/28		

Well ID #	#: MW-25			Purging Method				Site: Montre	ose Chemica	al Superfun	d	
Well Diam	eter (in):	4		Pump Model and	ID: WY-	50-14	16	Date: 0	-7-15			
Measurem	nent Point:	TOC - North Sie	de	Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Ev	vent: Septem	ber 2015		
nstalled V	Well Depth (ft): 75		WQ Meter Mode	and ID: ()	52/x4	FOUKHAC	Project Num	ber: F205			
Screen Int	terval (ft): 5	6-71		Minimum Initial	Purge Volui	ne (mL):		Client Name	: Montrose	/ demaximi	S	
Depth to L	NAPL (ft):	NA			Control B	ox Settings	S	Client Proje	ct Number:			
epth to V	Nater (ft):	43-18'		CPM: A R: L	O D: 5	PSI:	55	Sampled By	() o	hnson	\	
oump Set	Depth (ft):	PUMP IN	WELL	Weather Conditi	ons:	(2v,	Hot					
		17 1										
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	Water	(mL/min)	Purged	(deg C)	(mS/cm)	pH	(NTU)	(mg/L)	(mV)		Observations	
	(ft)		(mL)			1 1		11.462.00	1. 31.12		1000000000000	
215	43-18	200	_		_	-	_		_	Clea	21	
230	43.20	-	3000	22.27	2.27	7.20	0.0	344	-(0			
235	43.20		4000	22.18	2.27	7.16	0.0	1.79	-16			
740	45.20		5000	21.88	2.26	7.19	0.0	1.22	-33			
140		-						1 19				
145	43.20		(0000)	21.87	2.26	7.19	0.0		-36			
17.50	43.20	4	7000	21.85	2.26	7.19	0.0	1.17	-37	N N		
									-			
Samp	le Type	Quantity/Co	ntainer Type	Preservative Analysis					e Time		Sample Indentification	
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C		VOCs (8		1253		MALL 1	25-2015 1007	
-2.24	11000	C2 04 100 1 14 100	ALL DESCRIPTION OF THE PROPERTY OF THE PROPERT	7.15,81 7.18	p	CBSA (EPA 3	14 Modiified)	1 - 2	/	11/00-	C7- CN12 100 1	

Notes:

OC - North Side t): 80.00		Pump Model and Tubing Type and		D Bla	deler	Site: Montrose Chemical Superfund Date: 7-28-15 A Sampling Event: September 2015			
t): 80.00		Tubing Type and	200 / P		T. N. T. I. T. M.				
* * * * * * * * * * * * * * * * * * * *			Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	PE.17x1/4 Sampling Event: September 2015 Flow (*11) Project Number: F205			
		WQ Meter Model	and ID:	SI Pa	Bus Flow Cell	Client Name: Montrose / demaximis			
9-74		Minimum Initial	Purge Volun			Client Name	: Montrose /	/ demaximis	
NA			Control B	ox Settings	ì	Client Proje	ct Number:		
49.22		CPM: R:	D:	PSI: 54		Sampled By	· Encil	Wolmbea	
66.5		Weather Conditi	ons: Cle	ca / N	lot				
(mL/min) F	2-2-10-2-10-2	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations	
200 1	200	24.3	2863	6-64	9.87	1.25	37.1	1 system Voli. removed	
1 2	206	23.7	2919	6.59		0.92	48.3	9	
3	200	23.6	2920	6.56	9.35	1.03	53.0		
4:	206	23.7	2924	654	8.63	1.12	55.6		
1 52	200	23.6	2927	6-54	8.23	1,18	58.9		
		Preservative						Sample Indentification MCJ - 2 6-20/50928	
	Flow Rate (mL/min) 2 00 i	Flow Rate (mL/min) Total Volume Purged (mL)	Flow Rate (mL/min)	Weather Conditions: C	Cond. Cond. Purged (mL/min) Purged (mL) 200 24.3 2863 6.69 2206 23.7 2919 6.59 2920 6.56 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.59 2920 6.50 2920 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 6.50 2920 29	Flow Rate (mL/min)	Flow Rate (mL/min)	Cond.	

Well ID #	#: MW-3			Purging Method	: Low-Flow			Site: Montro	se Chemic	al Superfund		
Well Diam	eter (in):	4"		Pump Model and	d ID: MP-	50-1	6/16	Date: 9 -	28-1	5		
Measurem	nent Point:	TOC - North Sie	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Ev	ent: Septer	mber 2015		
nstalled V	Well Depth (ft): 80.00		WQ Meter Mode	I and ID:			Project Numi	ber: F205			
Screen Int	terval (ft): 5	4-70		Minimum Initial	Purge Volur	ne (mL):	870	Client Name: Montrose / demaximis				
Depth to L	NAPL (ft):	NA			Control B	ox Settings	1	Client Projec	t Number:			
Depth to V	Water (ft):	17.58		CPM: 4 R: [0 p:5	PSI:	38	Sampled By: Cohnson				
Pump Set	Depth (ft):	62	11	Weather Conditi								
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1320	47.98	100		-	-				_	Slightly (loudy		
1340	47.60		2000	23.94	265	6.88	36.5	1.84	62	Clear		
1345	47.65		2500	23.91	2.65							
1350	47.65		3000	23.92	2.65	6-89	18.5	1.63	1.58 65			
1395	47.65		3500	23.92	244	6.89	12-9					
1400	47.45	4	4000	23.93 2.66 6.90 11.0				1.55	66	4		
Sampl	le Type	Quantity/Co	ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification		
	mary	2 1/0As /40 ml); 1, 125 ml poly	HCL; 4°C		VOCs (82	260B);	1400		MW.30-20150928		

Well ID #	#: BF-02			Purging Method	: Low-Flow			Site: Montro	se Chemica	l Superfund		
Well Diam	eter (in): 4			Pump Model and	d ID: MW	50-1	617	Date: 9	30-16	5		
Measurem	nent Point:	TOC - North Sid	de				/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015		
nstalled V	Well Depth ((ft): 128.00		WQ Meter Mode	l and ID: 🔰	52/x9	OUKHAC.	Project Num	ber: F205			
Screen Int	terval (ft): 1	114-124.5		Minimum Initial			1390	Client Name: Montrose / demaximis Client Project Number:				
Depth to L	NAPL (ft):	NA			Control B	ox Setting	1					
Depth to V	Vater (ft):	59.57	2	CPM: A R: /	Q D: 5	PSI:	80	Sampled By:	()0	husen		
ump Set	Depth (ft):	119		Weather Conditi	10	7						
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
0840	5952	200	~	_	=	_	_	-	-	clear strong dor		
1850	59.56		2000	22.12	2.03	7.16	0.5	4.30	-221	1		
2858	59.56		3000	22.08	2.04	7.16	0.3	3.75	-230			
0900	59.56		4000	22.07 2.05 7.16 0.0		2.96	-227					
0905	59.56		5000	22.08 2.05 7.14 0.0		2.90	-228					
0910	59.56	4	4000	22.09	2.09 2.05 7.14 0.0			2.87	-229	4		
Sampl	e Type	Quantity/Cor	ntainer Type	iner Type Preservative		Analy	rsis	Sample	Time	Sample Indentification		
	nary		; 1, 125 ml poly	HCL; 4°C	VOCs (8260B):			0915 BF-02-2015				

	#: BF-03			Purging Method	: Low-Flow	5		Site: Montre	ose Chemic	cal Superfund		
Well Diam	eter (in):	4"		Pump Model an	d ID: MP	50-16	17		.30 -			
Measurem	nent Point:	TOC - North Si	de				1/4 x LDPE.17x1/4	Sampling Ev				
nstalled V	Well Depth	(ft): 125.5		WQ Meter Mode	and ID:\J	52/xx	OUKHAC			mber 2013		
Screen Int	terval (ft):	113.5-124		Minimum Initial	Purge Volum	ma (ml.):	200 1200	Project Number: F205 Client Name: Montrose / demaximis				
	NAPL (ft):	NA		- Indian				The state of the s				
Mark the second		58.51	/	1 ,		ox Setting		Client Project	1			
	Depth (ft):	1189			0 D: 5			Sampled By:	C .	Johnson		
amp oct	Deptii (it).	111.	1	Weather Conditi	ons:	105r	Hot					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
305	58.51		-	_	_				_	transfer Classics De		
325	58.51	theo	_	_	_	_	_			inspected then resorted		
345	58.51		2400	24.83	0.953	7.48	51.5	4.09	49	, , , , , , , , , , , , , , , , , , ,		
350	58.51		3000	24.67	0.944	7.56	46		41	Clear		
355	58.51		3400	2473	0.949	7.54	43.9					
400	58.51		4200	2474	0-948	7.56	39.6	2.67 34				
	58.51	4	4800	24.72	0.948	7.57	34.6	2.61	28			
				- 1: 1-	0.100	1	79.0	2.58	26	▼		
						-						
			1									
Sample	Туре	Quantity/Container Type Preserv	Preservative		Analys	sis	Sample	Time	Sample Indentification			
Prim	ary	3, VOAs (40 ml);	1, 125 ml poly	HCL; 4°C	20	VOCs (82 BSA (EPA 314		1410		Sample Indentification BE-03-2015 0930		

well ID	#: BF-04			Purging Method	: Low-Flow			Site: Montre	ose Chemic	al Superfund				
Well Dian	neter (in):	4"	Pump Model and ID: MPGO-1G1G Date: 10-1-15											
Measurer	nent Point:	TOC - North Si	ide					Sampling Event: September 2015						
Installed	Well Depth	(ft): 124.50					SOUKHAC	Project Number: F205						
Screen In	terval (ft):	112-123		Minimum Initial			1375		14					
Depth to I	LNAPL (ft):	N/A				lox Setting	. / /	Client Project Number:		Client Name: Montrose / demaximis				
Depth to \	Nater (ft):	57.77	/	CPM: A R: 0 D: 5 PSI: 90				• · · · · · · · · · · · · · · · · · · ·						
oump Set	Depth (ft):	117.5		Weather Conditi		PSI: (0	Sampled By: Ohns		ohnsen				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations				
1220	51.77	120	-		_	s <u></u> .				Clear				
240	51.11		2400	25.49	1.05	7.57	84.7	4.42	40	Citer				
295	57.77		3000	25.28	1.07	7.50	96.3	7.77	29					
1250	51-11		3600	25.26	1.08	7.47	96.5	2.08	21					
1255	5177		4200	25.28	1.08	746	98.1	1.99	19					
1300	51.11	d	4800	25.25	1.09	7.45	100.1	1.95	17	*				
									L 1					
Sample	Туре	ype Quantity/Container Type		Preservative		Analys	ie	6	T					
Prim	ary	3, VOAs (40 ml);		HCL; 4°C		VOCs (82)	60B);	Sample 1305	Sec. YALL	Sample Indentification BF-04-20151001				

Well ID	#: BF-04			Purging Method	: Low-Flow			Site: Montre	ose Chemic	cal Superfund			
Well Dian	neter (in):	4"		Pump Model an	d ID: MAC	70-11-05	160	Date: 10 - 1 - 1 5					
Measuren	nent Point:	TOC - North Si	ide				1/4 x LDPE.17x1/4	Sampling Event: September 2015					
Installed	Well Depth	(ft): 124.50					SOUKHAC	Project Num		mber 2015			
Screen In	terval (ft):	112-123		Minimum Initial			1375			se / demaximis			
Depth to I	LNAPL (ft):	N/A				ox Setting	. / 1 /	Client Projec		demaximis			
Depth to \	Water (ft):	57.77	/	CPM: 4 R:			-	Sampled By:	7				
Pump Set	Depth (ft):	117.5		Weather Conditi		PSI:	0	Sampled By: Ohnsen					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
1220	51.77	120	-	_	_	- 1				Clear			
240 57.77			2400	25.49	1.05	7.57	84.7	4.42	40	Citar			
145	57.77	1		3000	25.28	1.07	7.50	96.3	7.77	29			
1250	51-11		3600	25.26	1.08	7.47	96.5	2.08	21				
1255	51.77		4200	25.28	1.08	746	98.1	1.99	19				
1300	157.11	di	4800	25.25	1.09	7.45	1001	1.95	17	*			
									L = 1				
Sample	Sample Type Quantity/Container Type		tainer Type	Preservative		Analys	ie		_				
Prim	ary			10.13.54.04.01	7.	VOCs (82	60B);	Sample	VALCTON L.	Sample Indentification			
Primotes:	nary	3, VOAs (40 ml);	1, 125 ml poly	HCL; 4°C	рС	VOCs (826 BSA (EPA 314		1309	5	BF-04-20151001			

Well ID #	#: BF-05			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	eter (in):	4		Pump Model an	d ID: 🔍	ED BL	adoler	Date: 9-28-15					
Measurem	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Event: September 2015					
Installed V	Well Depth	(ft): 135.00		WQ Meter Mode	and ID:	ISI Pro	Sever Awall	Project Nun	nber: F205				
Screen Int	terval (ft):	122-132		Minimum Initial	Purge Volu			Client Name	e: Montrose	/ demaximis			
Depth to L	to LNAPL (ft): NA				Control B	ox Settings	3	Client Proje	ct Number:				
Depth to V	th to Water (ft): 49.49			CPM: R:	D:	PSI: 17	S	Sampled By	" Enc 1	Volmber			
Pump Set	np Set Depth (ft): 127			Weather Condit									
Time (hh:mm)	hh:mm) Water (mL/min) Purged (ft) (mL)			Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
1411	49.48	200	1000	23.7	522	7.51	5.72	1.58	-7.8				
1446	49.48	1	2000	23.3	521	7.40	5.60	2.56	3.9				
1421	49.48		9.48	3000 4000	23.3	521	7.38	4.99	3.80	11.4			
1426	49.48		12 7 7 7 7 7			4000	4000	23.2	521	7.35	4.86	3.97	20.7
14131	49.48		5000	23.2	521	7.33	4.71	4.51	27.9				
1436	49.48		6000	23.2	521	7.33	4.55	4.65	33.2				
1441	49.58	حا	7000	23.2	521	7.32	4.01	4.72	35.8				
Samp	Sample Type		Quantity/Container Type		Analysis			Sampl	le Time	Sample Indentification			
	mary	3 VOAc (40 m)); 1, 125 ml poly	HCL; 4°C		VOCs (8) CBSA (EPA 3)		144	1	BF-05-20150928			

Well ID #				Purging Method	: Low-Flow			Site: Montrose Chemical Superfund				
Well Diam		Loll		Pump Model an		50-141	٦	Date: 9-30-15				
		TOC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Event: September 2015				
	Vell Depth			WQ Meter Mode	and ID: 1	52/XX	DUKHAL	Project Num	ber: F205	ibel 2013		
Screen Int		107-12	8	Minimum Initial	Purge Volur	ne (mL):	1345			/ demaximis		
	NAPL (ft):	P/A		1,000	Control B	ox Settings				7 demaximis		
Depth to V		58.95	2	CPM: AR:	CPM: 4 R: 0 D: 5 PSI: 75 Control Box Settings Client Project Number: Sampled By: C Johnson							
Pump Set	Depth (ft):	114.5		Weather Condit	eather Conditions: Clear Hot							
Time	D 11 1											
Time (hh:mm)	Depth to Water (ft)	(mL/min)	(mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1005	58.95	200		-	_	_		-	_	Clear, Odor		
1015	5 58.95 2000		2000	2283	3.87	7.55	1.3	(1.00	-207	Cicer, basi		
1020	5895		3000	23.00	3.87	7.57	2 4	637	-211			
1025	025 5895	4000	22.90	3.88	752	15	4.43	-218				
1040			22.51		7.56	0.3		-234				
1035	5895		6000	22.44	3.85	7.55						
1040	5895		7000	22.43	385	7.53		2.70	-240			
045	5895		8000	22.44	/ 4 -		0.0	2.63	-244			
	10.17		0000	22.77	3.85	7.52	00	2.59	-2AS			
-												
						1						
Sample	Туре	Quantity/Cor	ntainer Type	Preservative		Analysi	9	Sample	Time			
Prim	ary	3, VOAs (40 ml)		HCL; 4°C		VOCs (826			Time	Sample Indentification		
		-, 1.0.10 (10 1111)	, ., .20 iii poiy	HUL, 4 C	pC	BSA (EPA 314		1050		BF-09-2015 0930		

Notes:

Well ID #	#: BF-10			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	eter (in): 4			Pump Model and	d ID: OF D	Bladd	er fump	Date: q	19/15				
Measurem	nent Point:	ΓΟC - North Si	de				/4 x LDPE.17x1/4		vent: Septer	nber 2015			
Installed \	Well Depth (ft): 131.00		WQ Meter Mode	I and ID:\/s	r Papla	Flacell	Project Nu	mber: F205				
Screen Int	terval (ft): 1	20-130		Minimum Initial	Purge Volu	me (mL):	(MZ)	Client Nam	e: Montrose	/ demaximis			
Depth to L	NAPL (ft):	NA			ox Setting	990	Client Proj	ect Number:					
	Nater (ft):	- 111		CPM: 4 R: 10	CPM: 4 R: 10 D: 5 PSI: 78 Sampled By: Eric Morse								
	imp Set Depth (ft): 125			Weather Conditi	ons: Cles	26			CITE PIG				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
845	40.30	200	1000	22.3	866	6.99	7.72	1.61	39.7				
850	40.30	200	2000	22.3	916	7.15	6.49	1.28	22.6				
855	40.30	200	3000	22.2	926	7.23	7.08	0-96	0.2				
900	40.30	200	4000	22.0	932	7.25	7.35	0.89	-4.3				
905	40.30	200	5000	22.0	933	7.26	8.88	0.71	-11.2				
910	40.30	200	6000	22.0	934	7.31	6.42	0.61	-19.7				
915	40.30	200	7000	22.0	934	7.33	5-81	0.60	-22.0				
920	40.30	200	8000	22.0	936	7.33	5.87	0.56	-25.3				
Samp	le Type	Quantity/Co	entainer Type	Preservative		Analy	ysis .	Sam	ole Time	Sample Indentification			
Pri	mary	3, VOAs (40 m	I); 1, 125 ml poly	HCL; 4°C	t	VOCs (8 CBSA (EPA 3		92	0	BF-10-20150929			

Notes: Bladder booken upon removal.

Well ID #	#: BF-11			Purging Method	: Low-Flow			Site: Montro	ose Chemica	l Superfun	d
Well Diam	eter (in):	4"		Pump Model an	d ID: MA	50 - 16	16	Date: / O	-7-1	5	
Measurem	ent Point:	TOC - North Sid	de	Tubing Type an	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015	
Installed V	Well Depth (ft): 124		WQ Meter Mode	and ID: U	52-X9	500 KHAC	Project Num	ber: F205		
Screen Int	terval (ft): 1	04-124		Minimum Initial			1340	Client Name	: Montrose /	demaximi	s
Depth to L	NAPL (ft):	N/A			Control B	ox Settings	-	Client Project	ct Number:		
Depth to V	Vater (ft):	49.42	1	CPM: A R:	10 p: 5	PSI: 8	0	Sampled By	C 10	ynse	10
Pump Set	Depth (ft):	Pump 1		Weather Condit			warn		0 2 5	4,100	
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations
0950	45.42	200	_					-	_	Cle	er
1005	45.64	1	3000	22.36	0.232	7.10	0.0	1.70	-138	1	
1010	45.64		4000	22.22	0.229	7.06	0.0	1.29	-137		
1015	45.64		5000	21.74	0.228	7.11	0.0	1.11	-145		
1020	45.6A		0999	21.25	0.229	7-11	0.0	1.01	-148		
1025	45.64	7	7000	21.23	0229	7.12	0.0	1.00	-151		
1030	45.64	4	8000	22.22	0.229	7.13	0.0	0.98	-152	4	
Sama	le Type	Quantity/Co	ntainer Type	Preservative		Analys	sie	Sample	Time		Sample Indentification
	mary	3, VOAs (40 ml)		HCL; 4°C	p	VOCs (82 CBSA (EPA 31	60B);	1039		11 -2015 1007	

Well ID #	#: BF-12			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	eter (in):	Ч		Pump Model and	d ID: QE	D Blad	der	Date: 9-29-15					
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Event: September 2015					
Installed \	Well Depth ((ft): 120		WQ Meter Mode	l and ID: Y	SI Po	Series Flaw (el	Project Num	ber: F205				
Screen Int	terval (ft): 1	110-120		Minimum Initial				Client Name	: Montrose	/ demaximis			
Depth to L	LNAPL (ft):	NAPL (ft): NA			Control Box Settings Client Project Number:								
Depth to V	Water (ft):	34-20	20 CPM: 4 R: 9 D: 6 PSI: 75 Sampled By: File Klolmber		Klolmber								
Pump Set	mp Set Depth (ft): 115				Veather Conditions: (Lear								
Time (hh:mm)				Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
1444	34.20	260	1000	23.3	1089	6.75	14.3	101	35.5	remard 1 syst vol.			
1449	34.20	1	2000	23.2	1094	6.74	13.0	0.94	31.0				
1454	3420		3000	23.1	1101	675	16.2	0.77	31-5				
1459	34.20		4000	23.0	1107	6.76	9.88	0.72	28.5				
1504	34.20	1	5000	23.0	1161	6.76	9.70	6.71	27.5				
	-												
					1								
		14 =				1							
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analys	sis	Sampl	e Time	Sample Indentification			
Pri	mary	3, VOAs (40 m); 1, 125 ml poly	HCL; 4°C		VOCs (82 CBSA (EPA 31		150	6	BF-12-20150929			

Well ID #	#: BF-14			Purging Method:	Low-Flow			Site: Montrose Chemical Superfund				
Well Diam	eter (in): 4			Pump Model and	ID:QED	Bladde	Pump	Date: 9/28/15				
Measurem	ent Point:	ΓΟC - North Si	de				/4 x LDPE.17x1/4	Sampling Event: September 2015				
Installed V	Vell Depth (ft): 122		WQ Meter Mode	and ID: YS	1 Pro Plu	s Flowcell	Project Nur	nber: F205			
Screen Int	terval (ft): 1	11-121		Minimum Initial				Client Name	e: Montrose	e / demaximis		
Depth to L	NAPL (ft):	_			Control B	ox Setting	S	Client Proje	ct Number:			
Depth to V	200.000	47.31		CPM: R:	D:	D: PSI: Sampled By: Eric Mors						
	mp Set Depth (ft): 16			Weather Conditi	91°F							
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1230	47.33	150	1000	24.5	1798	6.78	6.60	1.64	34.3	Isystem Volume romany		
1235	47.31	150	1750	24.3	1845	6.83	6.55	0.99	29.3			
1240	47.31	150	2500	24.2	1856	6.87	6.62	0.78	27.0			
1245	47.31	150	3250	24.1	1860	6.88	5.37	0.70	25.3			
1250	47.31	150	4000	24.0	1860	6.90	5.86	0.61	23.7			
1255	47.31	150	4750	24.1	1860	6A1	5.54	0.57	22.4			
1300	47.31	150	5500	24.1	1862	6.92	5.49	0.56	22.1			
Samp	ole Type	Quantity/Co	ontainer Type	Preservative		Anal	ysis	Samp	ole Time	Sample Indentification		
Pri	imary	3, VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C		VOCs (pCBSA (EPA	8260B); 314 Modiified)	130	0	BF-14-20150928		

Notes:

Well ID	#: BF-15			Purging Method		11.5111	SAWIFLING F	Site: Montrose Chemical Superfund				
	neter (in):	u*		The second second	The state of the state of	0) 1	1					
			Α.	Pump Model an				Date: 9 (28)15				
		TOC - North Si	de			12 1 27 120 1	1/4 x LDPE.17x1/4		vent: Septe	mber 2015		
	Well Depth			WQ Meter Model and ID: 151 Flocall Proplus					mber; F205			
Screen In	terval (ft):	111-121_98	-113	Minimum Initial	Purge Volu	me (mL):		Client Nam	e: Montros	e / demaximis		
Depth to I	LNAPL (ft):	NA -	_		Control B	ox Setting	<u>as</u>	Client Proje	ect Number:			
Depth to \	Water (ft):	34.24		CPM: R:	0101:00							
	Depth (ft):			Weather Condit	ions: class	478	rf.					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
218	34.75	200	1000	23.0	2257	6.41	5.10	1.92	39.3	1 system volume remodel		
12/	34.60	100	1300	23.1	2324	6.47	2.75	1.13	38.4	reduced floor rate to 100 ml/n.		
124	34.51	100	1600			1.03	34.7					
127	34.25	100	1900	22.9	2344	6.54	3.09	0.96	32.9			
930	34-24	100	2200	23.0	234/	6.55	2.49	0.94	31.3			
933	34.24	100	2500	23-1	2342	6.57	2.47	0.93	30.2			
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal		Samp	le Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	р	VOCs (8 CBSA (EPA 3	8260B); 314 Modiified)	935		BF-15-20150928		

Well ID	#: BF-16			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund				
Well Diam	neter (in):	4		Pump Model and	d ID: QED	Bladd	- Pump	Date: 9/29/15				
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E		mber 2015		
Installed \	Well Depth (ft): 130		WQ Meter Mode	and ID:\(\s\)	Flocell	Pa Plus	Project Nur	nber: F205			
Screen In	terval (ft): 1	03-124		Minimum Initial				Client Name	e: Montros	e / demaximis		
Depth to I	LNAPL (ft):	NA			Control E	lox Setting	<u>ıs</u>	Client Proje	ct Number:			
	Water (ft):	47.00		CPM: 4 R: 9	D: 6	PSI: 9	O	Sampled By	Eni L	lorse		
Pump Set	Depth (ft):	13.5			PM: 4 R: 9 D: 6 PSI: 90 Sampled By Enc Morse Veather Conditions: Clear 75° F							
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
247	47.00	200	1000	23.5	1265	722	7.77	1.50	23.1	I sample volume removed		
252	47.00	200	2000	22.9	1355	7.19	7.05	0.99	22.4			
1257	47.00	200	3000	22.8	1371	7.21	5.91	0.78	19.9			
	47.00	200	4000	22.7	1373 7.23	5.44	0.70	18.3				
1307	47.00	200	5000	22.7	1371	7.24	7.79	0.65	17.0			
1312	47.00	200	6000	22.7	1368	7.27	6.29	0.58	14.9			
1317	47.00	200	7000	22.7	1365	7.28	7.55	0.54	13.7			
1322	47.00	200	8000	22.7	1365	7.29	6.94	0.53	13.1			
1327	47.00	200	0 9000 22.7 1366 7.29 6.15		6.15	0.50	12.9					
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Samp	le Time	Sample Indentification		
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p	VOCs (8 CBSA (EPA 3	3260B); 314 Modiified)	1327	(c)	BF-16-20150929		

Well ID #	#: BF-17			Purging Method	: Low-Flow			Site: Montre	ose Chemica	l Superfu	nd
Well Diam	eter (in):	4"		Pump Model and	ID: MP	50-141	6	Date: \ ()	7-15		
Measuren	nent Point:	TOC - North Sid	de	Tubing Type and				Sampling Ev	vent: Septem	ber 2015	
Installed V	Well Depth ((ft): 124	1	WQ Meter Mode	and ID: U	52-X8	OUKHAC	Project Num	ber: F205		
Screen Int	terval (ft): 1	100-120				lume (mL): 700 1300 Client Name: Montrose / demaximis				nis	
Depth to L	NAPL (ft):	N/A			Control B	in the second	Client Project	ect Number:			
Depth to V	Nater (ft):	34.80	5'	CPM: 4 R: L	0 D: 5	PSI: 7	0	Sampled By	()	hnso	n
Pump Set	Set Depth (ft): Pump IN WOU Weather Conditions					(ezr		•			
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations
0900	34.85	200	_	~	-		-	-		Cle	2
0995	34.87	1	3000	2136	1.30	7.35	0.0	2.39	-128	1	
0920	34.87		4000	21.25	1.29	7.32	0.0	1.70	-129		
0925	34.87		5000	21.21	1.29	7.32	0-0	1.34	-129		
0930	34.87		6000	21.20	1.30	7.33	0.0	1.31	-130		
6935	34.87	4	7000	21.20	1.30	7.33	0.0	1.29	-130	4	
Samp	Sample Type Quantity/Container Type		Preservative		Analys	sis	Sampl	e Time		Sample Indentification	
Pri	mary	3, VOAs (40 ml)); 1, 125 ml poly	HCL; 4°C	р	VOCs (82 CBSA (EPA 31		094	Q	BF.	17-20151007

Well ID #	#: BF-19			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	eter (in): 2	4"		Pump Model and	HID: MP	D-10	16	Date: 0-1-15					
Measurem	nent Point:	OC - North Sid	de	Tubing Type and	Diameter:	TLPE.17X1	1/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015			
Installed V	Well Depth (ft): 135		WQ Meter Mode	l and ID: 🔰	52/x9	BOUKHAC	Project Num	ber: F205				
Screen Int	terval (ft): 1	28-133		Minimum Initial	T-12-11-11-11-11-11-11-11-11-11-11-11-11-		1500	Client Name	: Montrose	demaximis			
Depth to L	NAPL (ft):	NIA			Control B	ox Setting	<u>s</u>	Client Project	ct Number:				
Depth to V	Nater (ft):	50.65	-	CPM: 4 R: 19	D: 5	PSI:	Sampled By: Sohnson						
Pump Set	Depth (ft):	130		Weather Conditi									
Time (hh:mm)	Time Depth to Flow Rate Total Volume			Temp. (deg C)	Cond. (mS/cm)	Cond.	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
0820	50.65	200			_	-	_	_		Clear			
0835	50.71	1	3000	21.49	0.481	7.26	38,5	3.48	-110				
0840	50.71		4000	21.53	0.461	7.30	29.4	2.62	-121				
0845	50.71	-	5000	21.54	0.448	7.41	23.7	2.08	-125				
0850	50.71		(1000	21.53	0.442	7.40	22.1	1.93	-124				
0855	50.71	~	7000	21.52	0.439	7.39	21.3	1.89	-125	4			
Samp	ole Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Sampl	e Time	Sample Indentification			
		12.722.122.0	i); 1, 125 ml poly	HCL; 4°C		VOCs (8	8260B);	090	0	BF-19-20151001			

Well ID	#: BF-21			Purging Method				Site: Montr	ose Chemic	al Superfund
Well Diam	neter (in):	4		Pump Model an	d ID: QED	Bladde	c Pump	Date: 9/20	1/15	
Measuren	nent Point:	TOC - North Si					1/4 x LDPE.17x1/4		vent: Septen	nber 2015
Installed \	Well Depth	ft): 123		WQ Meter Mode	and ID: VS	1 Poplus	Flocell	Project Nur	nber: F205	
Screen In	terval (ft): 9	6-121		Minimum Initial				Client Name	e: Montrose	/ demaximis
Depth to	Depth to So.56 200 So.					ox Setting		Client Proje	ct Number:	
	Depth to Flow Rate (mL/min) Purged (mL) 50-53 200 /000			CPM:2 R: /8	D:12	PSI:70		Sampled By	E. Hors	e
				Weather Condit	ions:Clew	- 88-				
Time (hh:mm)	Depth to Water	Flow Rate	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
1448		200		23.4	1199	7.11	2.85	1.02	-14.4	System Volume removed
1453	50.56	200	2000	23.4	12.09	7.20	3.29	094	-4.4	
1458	50-56	200	3000	23.2	1207	7.13	3.00	0.63	-1.0	
1503	50.56	200	4000	23.3	1211	7.14	2.96	0.58	-1.2	
1508	50.56	200	5000	23.2	1214	7.15	3.03	0.55	-1.4	
1513	50.56	200	6000	23.2	1211	7.15	3.00	0.53	-2.0	
	11									
Samp	Sample Type Quantity/Container Type		ontainer Type	Preservative		Ana	lysis	Samp	ole Time	Sample Indentification
Pr	Primary 3, VOAs (40 ml); 1, 125 ml poly		HCL; 4°C	VOCs (8260B):			1515 BF-21-20150929			

Well ID #	#: BF-22			Purging Method	: Low-Flow		1	Site: Monte	ose Chemic	al Superfund		
Well Diam	Set Depth (ft): /02' e			Pump Model and	ID: PED	Bladder	Pume	Date: 9/2	9/16			
Measuren	iameter (in): 4 rement Point: TOC - North Side ed Well Depth (ft): 120 In Interval (ft): 87-117 to LNAPL (ft):)) A to Water (ft): 45.92 Set Depth (ft): 102 e Depth to Water (mL/min) Pur (m						/4 x LDPE.17x1/4	Sampling E	vent: Septer	mber 2015		
Installed V	ameter (in): 4 rement Point: TOC - North Side ed Well Depth (ft): 120 Interval (ft): 87-117 to LNAPL (ft):)) A to Water (ft): 45.92 Set Depth (ft): 102 Depth to Water (mL/min) Purge (mL) (ft) 45.96 200 [000 - 46.93 200 3000 - 45.93 200 5000 - 45.93 200 5000			WQ Meter Mode	and ID: VS	1 ProPlis	Florell	Project Nur	nber: F205			
Screen Int	iameter (in): 4 rement Point: TOC - North Side ed Well Depth (ft): 120 Interval (ft): 87-117 to LNAPL (ft): NA to Water (ft): 45.92 Set Depth (ft): 102 e Depth to Water (mL/min) Purge (mL) 7 45.95 200 1000 7 45.93 200 3000 7 45.93 200 5000 7 45.93 200 5000			Minimum Initial				Client Nam	e: Montrose	demaximis		
Depth to I	rement Point: TOC - North Side ed Well Depth (ft): 120 In Interval (ft): 87-117 to LNAPL (ft):)) A to Water (ft): 45.92 Set Depth (ft): 02' e Depth to Water (ft) (mL/min) Purger (mL) 7 45.95 200 2000 7 45.93 200 3000 7 45.93 200 5000 7 45.93 200 5000				Control B	lox Setting	<u>s</u>	Client Project Number:				
Depth to V	Nater (ft):	14.4.		CPM: 4 R: 9	D: 6	PSI:		Sampled B	Eric Mo	æ		
Pump Set	to Water (ft): 45.92 Set Depth (ft): 62 Pe Depth to Water (mL/min) Purged (mL) 7 45.95 200 1000 7 45.93 200 2000 7 45.93 200 3000			Weather Conditi		r 86° F						
Time (hh:mm)	Depth to Water	Flow Rate	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1207		200	1	26.4	¥38	7.89	3.05	1.89	-34.6			
1212			Traver -	23.9	863	7.72	2.48	0.98	-18.0			
1217		- A CA A A CA	0	23.4	863	7.75	2.68	0.70	-15.0			
1222			4000	23.5	862	7.78	2.77	0.60	-15.2			
1227	14593			23.5	862	7.81	2.63	0.57	-16.1			
1230	45.93	200	6000	23.5	862	7.83	2.57	0.55	- 18.4			
Samp	le Type	Quantity/Co	ontainer Type	Preservative		Anal		Samp	ole Time	Sample Indentification		
Pri	mary	3, VOAs (40 m	il); 1, 125 ml poly	HCL: 4°C		VOCs (i pCBSA (EPA (123	0	BF-12-20150929		

Notes:

show in amy

Well ID #	#: BF-23			Purging Method	: Low-Flow			Site: Montro	se Chemical	Superfund	t I
Well Diam	neter (in):	4"		Pump Model an	d ID: MYC	DI-00	No	Date:	-7-15		
		TOC - North Sid	de				/4 x LDPE.17x1/4	Sampling Ev	ent: Septemb	per 2015	
Installed \	Well Depth (ft): 122		WQ Meter Mode	I and ID: V	52-X	BOUKHAC	Project Num	ber: F205		
Screen In	terval (ft): 1	01-116		Minimum Initial				Client Name	: Montrose /	demaximi	s
Depth to I	LNAPL (ft):	N/A			Control B	ox Settings	1	Client Project	t Number:		
Depth to \	Water (ft):	34.95	/	CPM: 4 R: 1	0 p: S	PSI: 9	30	Sampled By:	C. J.	shins	06
Pump Set	Depth (ft):	PUMP - NU	Noul	Weather Condit		ezri	Hot				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations
1095	36.95	100		* —		11/2	_	_	_	Cle	ar
1115	36.96	1	2000	22.81	0.580	7.45	0.0	1.46	-127	1	
1120	3694		2500	22.72	0.593	7.40	0.0	1.17	-143		
1125	36.96		3000	22.15	0.616	7.59	0.0	1.01	-140		
1130	36.96		3500	22.52	0.642	7.49	0.0	0.94	-138		
1135	36.96		4000	22.51	0.648	7.48	0.0	0.92	-137		
1140	36.96	4	4500	22.49	0.650	7.47	0.0	0.92	-136	4	
			1				(Pa				
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy		Sample	Time		Sample Indentification
Pri	Primary 3, VOAs (40 ml); 1, 125 ml poly		HCL; 4°C	VOCs (8260B); pCBSA (EPA 314 Modiified)			1145 BF-			3-20151007	

Well ID #	: BF-24			Purging Method:	Low-Flow			Site: Montro		Supertund
	eter (in): 2	4		Pump Model and	ID: QE	D Blo	ndder	Date: 9-3	-1	
2 1 1 1 1 1 1 1 1 1		OC - North Sid	de	Tubing Type and	Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Ev	ent: Septemb	er 2015
	Vell Depth (1			WQ Meter Model			4	Project Num	ber: F205	
W. C. O. L. C. C. C.	erval (ft): 9	201		Minimum Initial F				Client Name	: Montrose /	demaximis
	NAPL (ft):				Control B	ox Settings		Client Project	t Number:	
	Vater (ft):			CPM: 4 R: 9	D: (PSI: 7	5	Sampled By	En L	6 Im beg
	Depth (ft):	3.00		Weather Condition				,		J
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
1133	(ft) 42.52	260	(mL)	22.8	1501	7.52	3.50	0.75	-205.9	1 system Vol. removed
1138	42.52	- V	2000	22.6	1520	7.38	3.61	0.85	-204.3	<u> </u>
1143	42.52		3000	22.5	1538	7.34	3.17	0.47	-206.2	
1148	42.52		4000	22.6	1544	7.32	3,24	0.45	-207.1	
1153	42.52	1	5600	22.5	1549	731	2.91	0.40	-2099	
								6	la Time	Sample Indentification
	ple Type		ontainer Type	Preservative HCL; 4°C		VOCs (pCBSA (EPA	8260B);	1155	le Time	BF-24-20150929

Well ID #	#: BF-25			Purging Method:	Low-Flow			Site: Montro	se Chemica	I Superfur	nd
Well Diam	eter (in):	4"		Pump Model and	ID: MA	50 - 14	elle	Date: 10	7-15	>	
Measuren	ent Point:	TOC - North Sid	de	Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015	
Installed \	Well Depth ((ft): 110		WQ Meter Model	and ID: V	52-X8	SOUKHAC	Project Num	ber: F205		
Screen Int	terval (ft): 9	94-104		Minimum Initial				Client Name	: Montrose	demaxim	is
Depth to L	NAPL (ft):	NA			Control B	ox Settings	S	Client Project	ct Number:		
Depth to V	Vater (ft):	34.21		CPM: AR: 1	0 D: 5	PSI: L	lo	Sampled By:	CJO	hnson	2
Pump Set	Depth (ft):	PUMP. WW		Weather Condition		lear					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations
0740	34-21	200		-	_	-		_	_	Cle	31
0755	36.22	1	3000	20-90	1.45	7.30	0.0	3.40	-146	1	
0800	36.22		4000	20-92	1.45	7-35	0.0	2.43	-180		
0805	36.22		5000	20.93	1.45	7.36	0.0	1.61	-189		
0810	36.22		4000	20.91	1.45	7.36	0.0	1.58	-190		
0815	34.22	4	7000	20.90	1.45	7.34	0.0	1,55	-189	4	
Samo	le Type	Quantity/Co	ntainer Tyne	Preservative		Analy	reis	Sample	e Time		Sample Indentification
33	Sample Type Quantity/Container Type Primary 3, VOAs (40 ml); 1, 125 ml poly			HCL; 4°C	p	ve Analysis VOCs (8260B); pCBSA (EPA 314 Modiffed)			O	25-20151007	

	#: BF-27			Purging Method				Site: Monti	rose Chemic	al Superfund
	neter (in):			Pump Model an	d ID: QED	Bladd	er	Date: 9-		What is the control of the second of the sec
		TOC - North Si	ide	Tubing Type an	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4		vent: Septen	nber 2015
	Well Depth			WQ Meter Mode	al and ID: y	SI POS	enes	Project Nur		
	terval (ft):			Minimum Initial	Purge Volu	me (mL):	705			/ demaximis
	LNAPL (ft):				Control B	ox Settings			ct Number:	, womaning
	Water (ft):			CPM: 4 R:	D: 6	PSI: %0		Sampled By		Walon bes
Pump Set	Depth (ft):	111		Weather Condit						Valmag
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
944	36.38	200	1000	22.9	1760	7.00	1,27	1.01	43.0	1 system vol removed
949	36.38	1	2000	22.8	1759	6.98	1.26	0.70	25.8	J
954	36.38		3000	22.7	1758	698	1.13	017	22.0	
959	36.38		4000	22.7	1756	6.78	1.18	6.12	19.1	
1004	36.38	+	5660	22.8	1758	6.97	1,13	0.61	17.8	
						3.41				
Sampl	le Type	Quantity/Cor	ntainer Type	Preservative		Analys	sis	Sampl	e Time	Sample Indentification
Prin	mary	3, VOAs (40 ml)); 1, 125 ml poly	HCL; 4°C	p(VOCs (82 CBSA (EPA 314		100	5	BF-27-20150936

Well ID a	#: BF-28			Purging Method	: Low-Flow			Site: Montr	ose Chemica	I Superfund
Well Diam	eter (in): *	7		Pump Model an		D Bla	dder	Date: 9-3		
		TOC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X	1/4 x LDPE 17x1/4		vent: Septem	ber 2015
	Well Depth			WQ Meter Mode	el and ID: y	SI P	o Series Floridal	Project Nun		3. 2010
	terval (ft): 9			Minimum Initial	Purge Volu	me (mL):	755		: Montrose	demaximis
	NAPL (ft):			0.00	Control B	ox Setting	gs	Client Proje		
	Nater (ft):			CPM: 4 R: 9	D: (PSI: <	0	Sampled By		Colombian
Pump Set	Depth (ft):	92-110		Weather Condit	ions:				016	STEAS CALL
Time (hh:mm)	Depth to Water (ft)	The state of the s		Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
856	46.28	2,00		221	1858	7.26	3,35	0.98	71.6	1 System rol remarka
901	46.28	,		22.1	1870	7.24	3.09	0.81	66.9	, ,
906	46.28		2000	22.0	1480	7.22	2.76	676	62.0	
911	4624		4008	22.0	1987	7-19	2.80	0.57	£ 57.4	
916	46.26		5000	72.0	1890	7.17	2.66	0.55	55.7	
421	46.25		1000	22.0	1294	7.17	2.52	0.51	54.4	
				220	1811	75.4	2.0-	0.51	3-1-7	
		1 (600								
	7									
Sampl	e Type	Quantity/Cor	ntainer Tyne	Preservative		Amel	ata.			
Jampi	1364	add.iiiiy/001	namer Type	rieservative		Analy		Sample	Time	Sample Indentification
Prin	nary	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°C	p(VOCs (8 CBSA (EPA 3	3260B); 14 Modiified)	925		BF-28-20150930
1										

Notes: 3/3 baffs missing 1/3 tabs brocken

Well ID #	#: BF-29			Purging Method	: Low-Flow					cal Superfund
Well Diam	eter (in):	43		Pump Model and	HIDORD 1	Bladder	Pump	Date: 9/30	15	
		OC - North Sid	de	Tubing Type and	Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015
	Well Depth (WQ Meter Mode	and ID: YS	Pro Plus		Project Nun		
Screen Int	terval (ft): 1	00-120		Minimum Initial			00			e / demaximis
	NAPL (ft):			books to a	Control E	ox Settings		Client Proje		
Depth to V	Vater (ft):	50,5N		CPM:4 R: 9		PSI: 75		Sampled By	EricHo	(S)
Pump Set	Depth (ft):	110		Weather Conditi	ons: ((w	BROWN	1 86.			
					TOTAL STREET	U		4		
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.	17-5-1	Turbidity	DO	ORP	01
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	pН	(NTU)	(mg/L)	(mV)	Observations
1430	50.51	200	(000)	23.1	1084	7.43	18.2	2.17	24.2	Romand System Volume
1435	50.51	200	2000	22.6	1218	7.46	11.0	1.15	12.8	
1440	5051	240	3000	22.4	1226	2.47	10.0	1.0)	8.3	
1445	50.51	200	4000	224	1229	7,49	8.44	0.81	0.1	
1450	50.51	200	5000	22.4	1234	7.49	7.20	0.69	-5.7	
1455	50.51	200	6000	22.3	1248	7.49	5.21	1.57	-15.4	
1545	50.51	200	7000	22.3	1256	7,49	4-65	0.53	21.4	
1505	50.51	200	8000	22.2	1255	7.49	4.95	0.51	-25.7	
1510	50.51	200	9000	22.3	1255	7.49	5.14	0.49	-29.6	
		-								
Samo	le Type	Quantity/Co	ntainer Type	Preservative		Analys	sis	Samp	le Time	Sample Indentification
100	Primary 3, VOAs (40 ml); 1, 125 ml poly			HCL; 4°C		VOCs (82 oCBSA (EPA 31		1510		BF-29-20150930

	#: BF-30			Purging Method	: Low-Flow			Site: Monti	ose Chemic	cal Superfund
Well Diam		4		Pump Model an			er Pomp	Date: 9 2	9 15	
		TOC - North Si				TLPE.17X1	/4 x LDPE.17x1/4	Sampling E		mber 2015
	Nell Depth (WQ Meter Mode	I and ID: YS	1		Project Nur		
	terval (ft): 8			Minimum Initial	Purge Volu	me (mL):	1000	Client Name	e: Montros	e / demaximis
	NAPL (ft):	NA -				Sox Setting	<u>s</u>	Client Proje	ct Number:	
	Nater (ft):	36.12		CPM:4 R: 9	D: 6	PSI:		Sampled By	Eric M	ioise
Pump Set	Depth (ft):	97.51		Weather Condit	ions: Clea	C 85°F				
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	
(bh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
1045	36.20	200	1000	23.5	701	7.46	4.00	1.68	35.9	System vulupe removed
1050	36.22	200	2000	23.3	711	7.47	3.73	1.07	23.5	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	36.20	200	3000	23.2	713	7.50	3.37	0.90	14.5	
1100	36.20	2.00	4000	23.2	714	7.54	3.10	0.75	3.7	
1105	36.20	200	5000	23.2	714	7.59	3.15	0.65	-6.9	
1110	36.20	200	6000	23.1	714	7.61	3.11	0.57	-15.5	
1115	36.20	200	7000	23.1	714	7.63	2.99	0.52	-23.3	
1120	36.20	900	8000	23.2	714	7.64	2.89	0.50	-26.6	
(25	36.20	200	9000	23.2	714	7.69	2.95	0.48	-28.5	
						_				
Sampl	e Type	Quantity/Cor	ntainer Type	Preservative		Analy	sis	Sampl	e Time	Sample Indentification
Prin	Primary 3, VOAs (40 ml); 1, 125 ml poly		HCL; 4°C	p	VOCs (8: CBSA (EPA 3:		1125 BF-30-2050929			

Well ID	#: BF-31			Purging Method	: Low-Flow				ose Chemic	al Superfun	d
Well Diam	neter (in):	40		Pump Model and	d ID: OEI	Blad	by Pump	Date: 9/3	olis		
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septen	nber 2015	
	Well Depth			WQ Meter Mode	l and ID: YS	I Pro Pl	us Florell	Project Nun			
	terval (ft):			Minimum Initial			1000		e: Montrose	/ demaximi	s
	LNAPL (ft):			C 10		ox Setting		Client Proje			
	(mL/min) Purge (ft) (mL) (mL)			CPM: 2 R:21		PSI: 8	5	Sampled By	Eric Mar	SL	
Pump Set	Depth (ft):	12.3		Weather Condit	ions: Clear	8.					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	Ť	
(hh:mm)	Water	The second secon	Purged	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)		Observations
1017		200	1000	23.1	1278	7.55	4.06	1.21	-110.8	(emove	System Volume
1022	48.38	200	2000	22.8	1322	3.64	3.00	0.64	-183.6		
027	48.36	200	3000	22.8	1325	7.64	3.20	0.60	184.9		
032	48.38	200	4000	22.9	1327	7.64	3.14	0.53	-187.8		
037	48.38	200	5000	22.7	1331	764	2.71	0.48	-189.5		
1042	48.38	200	6000	22.8	1329	7.65	2.29	0.43	-191.7		
047	48.38	200	7000	22.8	1328	7.65	2.00	0.39	-1913		
1053	48.38	200	8000	22.8	1332	7.66	1:82	0.34	-191.0		
657	48.38	200	9000	22.8	1329	7.67	1.77	10.33	-191.5		
1102	48.38		10000	22.8	1328	7.67	1.85	0.33	-192.8		
Samn	ole Type	Quantity/Co	ontainer Type	Preservative		Analy	vsis	Samp	le Time		Sample Indentification
	mary		l); 1, 125 ml poly	HCL; 4°C	p	VOCs (8 CBSA (EPA 3	260B);	1102		BF-31-	3 0150930

Well ID	#: BF-32	4		Purging Method	: Low-Flow					cal Superfund
Well Dian	neter (in):	4		Pump Model and	ID: OED	Blade	le Pump	Date: 9 30	115	
		TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17>	(1/4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015
	Well Depth			WQ Meter Mode	I and ID: YS	I Pro PI	15 + Florell	Project Num	ber: F205	
	terval (ft):			Minimum Initial	Purge Volú	me (mL):	1000	Client Name	: Montros	e / demaximis
	LNAPL (ft):			ATT TO LATE	Control B	ox Settin	gs	Client Proje		
Depth to	Water (ft): (60.30		CPM: 4 R: 9		PSI:		Sampled By	E. MOT	a
Pump Set	Water (ft): 60.30 t Depth (ft): 90' Depth to Water (mL/min) (mL) 60.33 200 (000 60.34 200 200 60.40 200 300 60.40 200 500 60.40 200 600		Weather Conditi	ons: Clear	- 74º F					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.	_	Turbidity	DO	ORP	
(hh:mm)	Water	(mL/min)	Purged	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
735			(000	23.0	2275	6.89	2/000	2.80	163.8	Sylam volum removed.
740	60.34	200	2000	23.0	2346	6.90	21000	2.45	166.4	Very dark, Sity orange
145		200	3000	230	2385	6.89	2/000	2.17	168.6	, said and a said
150	60.41	900	4000	22.2	2388	6.87	>1000	1.85	123.1	less turbid sity still > 100
165		200	5000	22.5	2394	6.85	>1000	2.12	172.5	TICS TOTAL STITLY STITLE STORE
800	60.40	900		22.6	2315	6.89	2/000	2.08	168.8	
805	60.40	200	7000	22.6	2394	6.89	>/000	2.0	167.3	
Samo	le Type	Quantity/Co.	ntainer Type	Preservative		Δna	lysis	Sample	o Timo	Samuel Indo-155 - 1
	mary	3, VOAs (40 ml)	Towns Towns	HCL; 4°C	p	VOCs	(8260B); 314 Modiified)	805	e Time	Sample Indentification BF-32A-21150930

Map incorrectly displays Location, swapped w/6-33. Confirmed measuring total depth of well-

Notes:

Well ID	#: BF-33			Purging Method						cal Superfund		
Well Diam	neter (in):	4					Pump Sample Are	Date: 9 31				
Measuren	nent Point:	TOC - North Sid	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015		
- Committee and the contract of	Well Depth (WQ Meter Mode	I and ID: YS	1 Pro Pli	es flocell	Project Nun	ber: F205			
Screen In	terval (ft): 6	0-100		Minimum Initial	Purge Volu	me (mL):	000	Client Name	: Montros	e / demaximis		
Depth to I	LNAPL (ft):	NA		No. 1	Control B	ox Setting	<u>IS</u>	Client Proje				
Depth to \	to Water (ft): 46.5) Set Depth (ft): 82' e Depth to Flow Rate (mL/min) (ft) b 46.5/ 300			CPM: 4 R: 10	D:5	PSI:		Sampled By	Enc M	ar se		
Pump Set	Set Depth (ft): 80 ' e			Weather Conditi	ons: Clear	bre	nh 820					
						-	-0					
Time	100000000000000000000000000000000000000		Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	6.6/2//5/2.00	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations		
1530		900	1000	25.0	1672	6.61	-/000	1.86	-1.1	I system volume removed.		
1535	46.51	200	2000	25.5	1819	6.70	27.2	1.83	18.7	1		
1540	46.51	200	3000	24.1	1900	6.71	24.8	1.03	13.0			
545	46.51	200	4000	24.1	1904	6.72	20.7	0.93	124			
1560	46.51	200	5000	24.0	1912	6.75	18.81	0.85	9.1			
1555	46.51	200	6000	24.0	1913	6.77	18.2	0.83	8.5			
1600	46.51	200	7000	24.0	1913	6.78	17.7	0.80	8.0			
	19-											
						II W			1			
								-				
			4									
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Sampl	e Time	Sample Indentification		
Pri	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°€	p	VOCs (3260B); 314 Modified)	1600		BF-33-21130930		

Well ID #	#: BF-35			Purging Method	: Low-Flow			Site: Monti	rose Chemica	al Superfund
Well Diam	eter (in): 🥎			Pump Model and	d ID: QET	Blado	ler	Date: 10		
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septen	nber 2015
Installed V	Well Depth (ft): 126		WQ Meter Mode	I and ID: Y	SI Pal	Senies Flow Cell	Project Nur		
Screen Int	terval (ft): 1	05.5-126		Minimum Initial				Client Name	e: Montrose	/ demaximis
Depth to L	NAPL (ft):	~A		The Action	Control B	ox Settings	3		ect Number:	
Depth to V	Depth (ft): 66.53 Depth to Flow Rate Total Vol Water (mL/min) Purge (ft) (6.54 200 1660 66.54 200 460 66.54 4000		CPM: 4 R: 4	D: 7	PSI: io	0	Sampled By	y: Enc N	Imben	
Pump Set	Depth (ft): 1/5.5 Depth to Water (mL/min) Purge (mL) 66.54 200 1660 7 66.54 3005 66.54 4000			Weather Conditi	ons:					
Time	Donth to	Flow Pote	Total Valuma	Tomp	Cond.	LESCH OF	Trubidita	DO	ORP	
(hh:mm)	Water		Purged	Temp. (deg C)	(mS/cm)	рН	Turbidity (NTU)	(mg/L)	(mV)	Observations
1432		200	1660	229	869	7.07	4.63	1.07	-115.2	1 system Vol. removed
1437	60.54	1	2000	22.8	873	6.91	4.58	0.73	-86.0	
1742	66.54		3006	22.9	872	6.92	4.36	0.68	-81.2	
ירצו	66.54		9000	22.7	881	6.93	3.79	0.59	-77.2	
1452	66.54		3650	22.7	883	694	3.72	0.57	-77.1	
Samp	Sample Type Quantity/Container Type		ntainer Type	Preservative		Analy	sis	Samp	le Time	Sample Indentification
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		143	55	BF-35-2015/401

Vell ID 7	#: BF-36			Purging Method	: Low-Flow			Site: Mont	rose Chemic	al Superfund
Well Diam	neter (in): 4	1		Pump Model and	d ID: QED	Bladde	ACCURATE THE PARTY OF THE PARTY	Date: 9-3	0-15	
		ΓOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4		vent: Septer	nber 2015
				WQ Meter Mode	and ID: ye	ST Pro S	series Flow Cell	Project Nur	nber: F205	
	Depth to Water (ft): 18.5 Depth to Water (mL/min) (mL) 18.31 200 1000 18.31 200 1000 18.41 3006 18.41 4005 18.41 5004 18.41 5004		Minimum Initial	Purge Volui	me (mL):	842.5	Client Nam	e: Montrose	/ demaximis	
	O LNAPL (ft): NA O Water (mL/min) (mL/min) (mL/min) O Mater (ft) (mL/min) (mL/min) O Mater (mL/min) (mL/min) (mL/min) O Mater (mL/min)		CD14.1/ D. 9	Control B	ox Setting			ect Number:		
	Depth to Flow Rate Total Volument Water (mL/min) Purger (mL)	19.26	CPM: TR:	D: 6	PSI: 70		Sampled B	y: Enc H	Windows	
Pump Set	Depth (ft): 118.5 Depth to Flow Rate Multiple (mL/min) Purge (mL)			Weather Conditi	ions:	ar / Ho	4			
Time (hh:mm)	Water		Total Volume Purged (ml.)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
1037	48.31	200		23.5	814	7.36	2.53	1.29	-77.1	1 system vol. removed
042	48.38	9	2000	23.4	817	7.31	2.31	0.98	-61.1	J
1047	48.41		3608	23.3	816	7.30	5.13	0.84	-51.9	
052	48.41		4005	23-6	816	7.29	4.22	6.74	-460	
1057	49.41		- B	23.0	810	7.28	1.48	0.62	-36.1	
102	48.41		6666	23.2	807	7.29	3.81	6.57 -34.3		
107	48.41		7600	23.1	805	7.29	4.26	0.54 -33.1		
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Samp	le Time	Sample Indentification
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	р	VOCs (8 CBSA (EPA 3	3260B); 314 Modiified)	111	0	BF-36-20150930

Notes:

Well ID	#: BF-OW	-4		Purging Method:				The same of the sa		al Superfund
Well Diam	eter (in):	L		Pump Model and	1DQED	Bladdy	rfump	Date: 9 2		
		TOC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E		mber 2015
	Well Depth (WQ Meter Model	and ID:	1 ProPlu	s Flocell	Project Num		
	terval (ft): 1			Minimum Initial	Purge Volu	me (mL): 1	000	Client Name	: Montrose	e / demaximis
	NAPL (ft):					ox Setting		Client Proje		
	Nater (ft):			CPM: 4 R: JC	D: 5	PSI:		Sampled By	Eni Mo	10%
	Depth (ft):			Weather Conditi	ons: Clea	- 88	bross			W-II
	Depth to Flow Rate Total Volu				The same of the sa	, 00				
Time (hh:mm)	Water		Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
535		200		23.3	996	7.38	127	0.86	83	System volume removed.
1540	100			23.2	9-1014	7.39	22.1	0.75	4.9	
				23.2	1024	7.41	17.0	0.63	0.4	
1545	52.25 200 3000 2		23.1	1034	7.9)	14.2	0.56	-2.9		
1555				23.1	1039	7.44	13.6	0.53	-5.7	
1000	52.25 200 5000			23.1	1041	7.45	12.2	0.49	-7.3	
1600	52.25 200 6000				7.46	13.5	0.48	-8.8		
605	52.25	200	(800)	23.1	1043	1.40	15.0	0.10	- 470	
					1					
Sami	ole Type	Quantity/Co	ontainer Type	Preservative		Anal		Samp	le Time	Sample Indentification
	imary	3, VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C		VOCs (pCBSA (EPA :	8260B); 314 Modiified)	91600	1605	BF-0W-4-20150929

Well ID #	#: SWL00	11		Purging Method	: Low-Flow			Site: Montro	se Çhemic	cal Superfund	
Well Diam	eter (in):	4		Pump Model an	d ID: 60	n). mp. 3	50	Date: /	0/7/15	5	
Measurem	nent Point: T	OC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X1/4	4 x LDPE.17x1/4	Sampling Ev	ent: Septe	mber 2015	
Installed V	Well Depth (f	ft): ,		WQ Meter Mode	el and ID: /	HORIBH	4.52	Project Num	ber: F205		
Screen Int		N/A.		Minimum Initial				Client Name:	Montros	e / demaximis	
	NAPL (ft):	1 N/A			Control B	ox Settings	1 11	Client Projec	t Number:	F 705	
Depth to V		42.98			0 D:5	PSI: 7	6	Sampled By:	(h		
Pump Set	Depth (ft):	66		Weather Condit	ions:						
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP		
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)		Observations
1030	43.01	200	Z000	72		-	-			5 PARTS	or Purgial 1021
1035	43.02	200	3000	25.11	0.542	6.34	6.7	7.21	180	CUMR	NO GOOR
1040	43.02	SOO	4000	25.03	0.526	6.99	0.0	1.00	135	i	1
1045	43.02	200	5000	25.02			00	0.60	131		
1050	43,02	200	6000	25.01	0.523	7.07	000	6.58	131		
1055	43.02	200	7000	24.90	0.523	7.08	0.0	0.57	130	CLEAR	NO DOOR
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analys		Sample	Time		Sample Indentification
Prir	mary	3, VOAs (40 m	i); 1, 125 ml poly	HCL; 4°C	р	VOCs (826 CBSA (EPA 314		//00)	SWLO	011-2015/007

Notes:

Well ID #	#: SWL00	11		Purging Method	: Low-Flow			Site: Montro	se Çhemic	cal Superfund	
Well Diam	eter (in):	4		Pump Model an	d ID: 60	n). mp. 3	50	Date: /	0/7/15	5	
Measurem	nent Point: T	OC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X1/4	4 x LDPE.17x1/4	Sampling Ev	ent: Septe	mber 2015	
Installed V	Well Depth (f	ft): ,		WQ Meter Mode	el and ID: /	HORIBH	4.52	Project Num	ber: F205		
Screen Int		N/A.		Minimum Initial				Client Name:	Montros	e / demaximis	
	NAPL (ft):	1 N/A			Control B	ox Settings	1 11	Client Projec	t Number:	F 705	
Depth to V		42.98			0 D:5	PSI: 7	6	Sampled By:	(h		
Pump Set	Depth (ft):	66		Weather Condit	ions:						
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP		
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)		Observations
1030	43.01	200	Z000	72		-	-			5 PARTS	or Purgial 1021
1035	43.02	200	3000	25.11	0.542	6.34	6.7	7.21	180	CUMR	NO GOOR
1040	43.02	SOO	4000	25.03	0.526	6.99	0.0	1.00	135	i	1
1045	43.02	200	5000	25.02			00	0.60	131		
1050	43,02	200	6000	25.01	0.523	7.07	000	6.58	131		
1055	43.02	200	7000	24.90	0.523	7.08	0.0	0.57	130	CLEAR	NO DOOR
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analys		Sample	Time		Sample Indentification
Prir	mary	3, VOAs (40 m	i); 1, 125 ml poly	HCL; 4°C	р	VOCs (826 CBSA (EPA 314		//00)	SWLO	011-2015/007

Notes:

Notes:

Well ID #	: SWL00	26		Purging Method:	Low-Flow			Section 1 - Company of	ose Chemica	Superfund
	eter (in): *-			Pump Model and	ID: QE	D Blo	dder	Date: 9-2*		
		OC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1	4 x LDPE.17x1/4		vent: Septem	ber 2015
	Vell Depth (WQ Meter Model				Project Nun		
	terval (ft): 1			Minimum Initial				Client Name	: Montrose /	demaximis
	NAPL (ft):					ox Settings		Client Proje	ct Number:	
	Depth (ft): 35.48		CPM: 4 R: 9		PSI: 15		Sampled By	Enc H	olmbeg	
Pump Set	Depth (ft):	167.5		Weather Condition		ear				
ump oct	Beptii (it):									9
Time (hh:mm)	Water		Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
746		200	1100	22.3	574	7.26	4.12	1.17	-37.8	i system Vol. removed
751			2100	22.2	577	7.33	4.01	0,97	-61.9	
756			3100	22.3	548	7.35	3.98	0.89	-70.7	
801			4100	272	571	7.39	3.61	0.83	-76.1	
806	35.48	1	5100	22.3	574	7.39	3,44	0.79	-78.3	
						1 1				
										l .
Samp	le Type	Quantity/Co	ontainer Type	Preservative		Analy	sis	Samp	le Time	Sample Indentification
Pri	mary	3, VOAs (40 m	i); 1, 125 ml poly	HCL; 4°C		VOCs (8 CBSA (EPA 3		810		5660026-20150929

Well ID #	#: SWL00	27		Purging Method	: Low-Flow			The Tark Control of the Control	ose Chemica	l Superfund
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	eter (in):			Pump Model and				Date: 9-2		
		TOC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4		vent: Septem	ber 2015
	Well Depth (WQ Meter Mode				Project Nun		
	terval (ft): 1			Minimum Initial	Purge Volur	me (mL):	885	Client Name	e: Montrose	/ demaximis
	NAPL (ft):					ox Setting:		Client Proje		
	Nater (ft):	33.94		CPM: 4 R: 9	D: 6	PSI: 7	5	Sampled By	1. Eni N.	ilm b cy
	Depth (ft):	127		Weather Conditi	ons:	6-V				
							T 11.00	DO	ORP	
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	(mg/L)	(mV)	Observations
855	33.94	200	1600	23.0	1295	6.99	9.79	0.89	-53.6	1 system vol. removed
900	33.94	4	2000	23.0	1301	6.91	8.59	0.79	-57.2	3-2-4
905	33.94		3000	23.6	1304	6.92	8.00	0.67	-61.7	
910	33.94		4000	23.0	1363	6.92	7.76	0.63	-63.4	
415	33.91			23.0	1302	6.93	7.44	0.59	-65.0	
Samp	le Type	Quantity/Co	ontainer Type	Preservative		Analy	ysis	Samp	le Time	Sample Indentification
Pri	mary	3, VOAs (40 m	I); 1, 125 ml poly	HCL; 4°C	F	VOCs (8 CBSA (EPA 3		920		SW20027-20150929

Notes:

GROUNDWATER SAMPLING FORM

Vell ID #	#: SWL00	34		Purging Method	: Low-Flow			Site: Montr	ose Chemica	al Superfund
Vell Diam	eter (in):	4	*	Pump Model and			de	Date: 10		
		OC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septem	nber 2015
	Well Depth (WQ Meter Mode	I and ID: V	SIPO	Series	Project Nur		
	terval (ft): 1			Minimum Initial	Purge Volur	me (mL):	940	LEADING COLUMN TO COLUMN TO THE	e: Montrose	/ demaximis
Depth to L	NAPL (ft):	NA		100 × 100	Control B				ct Number:	
Depth to V	to Water (ft): 47.27 Set Depth (ft): 168 The Depth to Water (mL/min) (ft) 1 47.25 250 1 47.25 250 1 47.25 47.25 49 1 47.25 49 1 47.25 49		CPM: - R: 1		PSI: L	50	Sampled By	r. Erec 6	Vilmbey	
Pump Set	Depth (ft): \68 Depth to Flow Rate (mL/min) (ft) T 47.25 250 11 47.25 250 4 47.25 0		Weather Conditi	ions:						
			I=	-	0		Turkidik	DO	ORP	
Time (hh:mm)	Water		Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	(mg/L)	(mV)	Observations
1137		250	1000	23.1	1668	(.97	1.64	1.21	-94.8	1 system vol. removed
1141		- 1	2000	23:1	1699	6.95	1.60	1.13	-88.5	3
1145	47.25		3000	23.2	1716	6.98	1.41	0.93	-87-7	5
1149			4000	23.0	1722	7.01	1.33	0.85	-87.9	
1153	47.23	2	5000	23,1	1721	7.01	1.24	6.80	-88.5	
Samp	le Type	Quantity/Co	ontainer Type	Preservative		VOCs (lysis		le Time	Sample Indentification
Pri	mary	3, VOAs (40 m	l); 1, 125 ml poly	HCL; 4°C	p		314 Modified)	115	5	SWL0034 - 20151001

41

Well ID	#: SWL00	49		Purging Method	: Low-Flow			Site: Montre	ose Chemic	cal Superfund
Well Diam	eter (in):	4		Pump Model an	d ID: Q€	D Blac	lder	Date: 7-	28-15	
Measuren	nent Point:	TOC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X1	1/4 x LDPE.17x1/4	Sampling E		mber 2015
Installed \	Well Depth ((ft):		WQ Meter Mode	and ID:	T Pro	Series Flow (ell	Project Num	ber: F205	
Screen In	terval (ft): 4	12-66		Minimum Initial	Purge Volum	ne (mL):	1000	Client Name	: Montros	e / demaximis
Depth to I	to LNAPL (ft): NA to Water (ft): 42.67 Set Depth (ft): 54 e Depth to Water (mL/min) Purg (mL 1 42.74 200 1000 42.74 200 4000 7 42.74 5000 42.74 5000			Control B	ox Setting	<u>s</u>	Client Proje	ct Number:		
Depth to \	to Water (ft): 42.67 Set Depth (ft): 54 Depth to Water (mL/min) Purg (mL 42.74 200 1000 4000 4000 4000 4000 4000 4000		CPM: R:	D:	PSI: (Sampled By	· En	Nolmber	
Pump Set	Set Depth (ft): 54 Depth to Water (mL/min) Purge (mL) 7 42.74 200 1000 42.74 3000 7 42.74 4000 7 42.74 5000 1 42.74 5000		Weather Condit	ions:						
Time (hh:mm)	Water	The state of the s	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
1507	42.74	200	1000	23.5	2010	6.51	3.98	0.55	31.1	
1512	42.74	-1-	2000	23.5	2020	6.48	3.07	0.66	38.3	
1517	42.74		3000	23.4	2044	6.44	2.91	0.94	38.1	
1522	42.74		4000	23.4	2062	642	2.5/	109	36.3	
1527	,		5000	23.3	2081	6.41	2.34	1.47	34.0	
1537			6000	23.4	2100	6.40	3.01	1.62	30.7	
1537	42.74		7000	23.3	2 101	640	2.97	1.69	36.6	
Samp	е Туре	Quantity/Co	ntainer Type	Preservative		Analy		Sampl	e Time	Sample Indentification
	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C		VOCs (8	260B); 14 Modiified)	1540	A	56,20049-20150928

Well ID a	#: G-01			Purging Method	d. Low-Flow			lo:		W 2 1
Well Diam	eter (in):	411		Pump Model an			2			al Superfund
		TOC - North Si	de	Tubing Type an	d Diameter:	TI DE 17V	1/4 x LDPE.17x1/4		1-1-15	
Installed \	Well Depth	(ft): 164.5		WO Meter Mode	al and ID:	TLPE I/A	OUKHAC	Sampling Ev	ent: Septer	nber 2015
Screen Int	terval (ft):	140.5-161		Minimum Initial	Purgo Volum	JUIXT	TOURANC	Project Num		
Depth to L	NAPL (ft):	NA		Minimum minual	Control B	me (mL):	,707.5	Client Name	: Montrose	/ demaximis
Depth to V	Vater (ft):	5748		CPM: A R:	O D: 5	ox Setting	110	Client Project		
	Depth (ft):	150.75		Weather Condit		PSI:	ALC: NO.	Sampled By	()0	unson
		170.15		Weather Condit	ions: 13	tehy (louds, W	MAC	_ ~	
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond					
(hh:mm)	Water	(mL/min)	Purged	(deg C)	Cond.	100	Turbidity	DO	ORP	
	F215	57.48	(mL)	(deg C)	(mS/cm)	pН	(NTU)	(mg/L)	(mV)	Observations
1005	150.75	120	(2)	_	_				4 - 11 - 1	
1030	57.56		3000	23.81		_	7		-	Clear
1035	57.56				0.580	8.13	21.7	1.77	-43	
			3600	23.83	0.577	8.15	19.8	1.44	-57	
1040		1.56 4200	4200	23,85	0.576	8.14	17.6	127	-66	
1045	51.56		4800	23.84	0.575		16.4	1.24	00	
1050	57.50	A.	5400	23.85	0.515			1	-67	
			7.00	V1-00	0.213	8.16	16-2	1.22	-69	▼
			- 1							
								-		
	_	Addison to a		A. K. S. C.					_	
Sample	mple Type Quantity/Container Type	tainer Type	Preservative Analysis Sample Time					Time	Samuel L. L. Maria	
Prim	ary	3, VOAs (40 ml);	1, 125 ml poly	HCL; 4°C		VOCs (82	60B);	700		Sample Indentification
		135 1100	, .25 m poly	HOL, 4 C	pC	BSA (EPA 31	4 Modiified)	1055	7	6-01-20151001
			17	The second second						
otes:										

				Purging Method:	Low-Flow	77.1.1		Site: Montro	ose Chemica	l Superfund
Vell ID #				Pump Model and	ID: 36 7 <	Augle Pro	Blader Rima	Date:		
Well Diame	eter (in):	4		Tubing Type and	Diameter:	TI PF 17X1/	4 x LDPE.17x1/4	Sampling Ev	vent: Septem	ber 2015
Measurem	ent Point: T	OC - North Sic	de	WQ Meter Model	and ID: V	Da Phat	Flacell	Project Num	ber: F205	
nstalled V	Vell Depth (f	t): 180		Minimum Initial F	and ID. 13	no (ml):	1/0000	Client Name	: Montrose	/ demaximis
Screen Int	erval (ft): 15	55-175.5		Minimum Initial F	Cantrol B	ox Settings		Client Proje		
Depth to L	NAPL (ft):	N(A		U D. 14				Sampled By		
Depth to V	Vater (ft):	4.80		CPM: Y R: 10 Weather Condition						
Pump Set	Depth (ft):	165'		Weather Condition	ons. Clea					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP (mV)	Observations
(hh:mm)	Water	(mL/min)	Purged	(deg C)	(mS/cm)	pH	(NTU)	(mg/L)	(1114)	
(mi.mi)	(ft)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mL)	9	III A	011	111	1.73	-108.4	removed System volume.
209	54.88	200	1000	20.6249	475.9	9.65	20.6		-119.6	1900
1214	54.96	200	2000	24.9	475.8	9.68	8.45	0.93	-128.6	
1219	54.98	200	3000	24.8	475.8	9.76	7.69	0.79	1 - 4 14	
	54.98	200	4000	8.4.8	476.0	9.80	5.58			
1224	54.98	200	5000	24.8	480.5	9.74	6.57	0.71	-35.9	
1229	54.98	200	6000	24.7	487.8	9.60	7.01	0.66	-137.8	
1234		200	7000	24.7	498.7	9.63	7.18	0.55	-138.8	
1239	54.98		8000	24.7	503	9.48	6.83	0.52	-139.4	
1244	54.98	200	9000	247	507	9.45	6.84	0.49	-140.4	
1249	54.98	200	10000	24.7	510	9.40	7.03	0.47	-1405	
1254	54.98	200	Joseph							
										Sample Indentification
Com	nlo Tuna	Quantity/C	ontainer Type	Preservative		Anal	ysis	Sam	ple Time	Sample indendication
	ple Type imary		ml): 1, 125 ml poly	HCL; 4°C		VOCs (125	4	6-07-9012001

porp in well

Well ID #	#: G-03			Purging Method	: Low-Flow			Site: Montre	ose Chemica	al Superfund	
Well Diam	eter (in):			Pump Model and)- MP.5			0/7/15		
		TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Ev	vént: Septen	nber 2015	
	Vell Depth (WQ Meter Mode			.52	Project Num			
	terval (ft): 1			Minimum Initial				Client Name		/ demaximis	
	NAPL (ft):			./ .	Control B	ox Settings	. 6	Client Proje	ct Number:		
	Vater (ft):	101.10		CPM: 4 R: /		PSI: /	20"	Sampled By	: 4		
Pump Set	Depth (ft):	15.	5.0	Weather Conditi	ions: Su	NUY					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP		
(hh:mm)	Water	(mL/min)	Purged	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)		Observations
	(ft)		(mL)							-2223	
1200	61.13	200	2000		-	0 /5			_	START	D, PURGING
1215	61.14	200	3000	20.55	0494	8.62	0.0	2.19	-89	CLOAR	/ NO ONOR
1220	61-14	700	4000	26.40	0.496	8.50	0.0	1.10	-90	1	1 1
1225	101.14	200	5000	26.40	0.497	8.44	0.0	1.00	-89		
1230	61.14	700	6000	26.39	0.497	8.44	0.0	0.98	-90		
1235	(01.14	200	7 000	74.39	0.497	8.43	0.0	0.98	-90	0100	NO ODOR
1032	01.1		7 000	1	0.77	7.73		0.70	1	Commy	no ogore
						1					
			-						1		
						1					
Samol	le Type	Quantity/Co	ntainer Type	Preservative		Analys	ie	Sample	e Time		Sample Indentification
	Sample Type				1	VOCs (82					
Prin	Primary	3. VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p	CBSA (EPA 314		124	0	19-03	-20151007
W. W.			-		1			1 1	10	7	

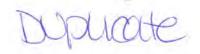
Vell ID #:				Purging Method				Site: Montro	ose Chemica	I Superfun	d
ell Diame		411		Pump Model an	d ID: MP5	0-1666			-7-15		
		TOC - North Sid	de	Tubing Type an	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Ev		ber 2015	
stalled We				WQ Meter Mode	l and ID: 🔱	S2/X8	MUKHAC	Project Num			
creen Inte				Minimum Initial	Purge Volur	ne (mL):	1940	Client Name		demaximi	S
epth to LN		N/A		1 .	Control B	ox Settings		Client Project			
		5170		CPM: 4 R: 1		PSI:	001	Sampled By	امل کاما	nnson	
ump Set D	epth (ft):	pump in w	u	Weather Condit	ions:						
Time hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations
	51.70	200		~	-	~	_	_	_	Clea	r
	51.79	1	2000	22.98	0400	7.12	0.0	1.70	-153		
330 6	51.79		3000	22.83	0.390	7.94	0.0	1.26	-191		
	51.79		4000	22.73	0.386	8.25	0.0	1.06	-221		
	51.79		5000	22.47	0.384		0.0	1.00	-234		
345	51.79		0000	22.64	0.383		0.0	0.96	-236		
	51.79	4	7000	22.62	0.393		0.0	0.94	-238	V	
Sample	Туре	Quantity/Cor	ntainer Type	Preservative		Analy		Sample	e Time		Sample Indentification
Prima	агу	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°C	po	VOCs (82 CBSA (EPA 31		1355	>	G-	04-2015 1007
otes:											

II ID #: G-05			Purging Method	: Low-Flow			Site: Montro	se Chemical	Superfund			
I Diameter (in):	An		Pump Model and		2011/01	D		2-15				
asurement Point:		de	Tubing Type and	Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling Ev	ent: Septemi	ber 2015			
talled Well Depth (ue	WQ Meter Mode	I and ID: V	521 X80	DUKHAC	Project Num					
een Interval (ft): 1			Minimum Initial			1915	Client Name: Montrose / demaximis					
oth to LNAPL (ft):	N/A				ox Settings	*	Client Project Number:					
oth to Water (ft):	53-21		CPM: A R:			05	Sampled By:	Calak	inson			
np Set Depth (ft):	170.5		Weather Conditi			to T						
ip det beptil (it).	1100				1							
Time Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP				
h:mm) Water	(mL/min)	Purged	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations			
(ft)	,,,,,,	(mL)	10,507			25.3 2.3		1 1 1				
35 53.21	200	200			_				Clear			
55 53.21	1	4,000	17360	0519	7.00	0.0	1,00	-153				
00 72 21			12-37	0.519	8.03	0-0	0.93	-159				
57.61		5000			8.01	0.0	0.89	-160				
05 54.61		6000							*			
40 5321		7000	22.36				0.87	-icel				
315 53.21	4	8000	22-36	0519 8.03 0-0			0.86	-162				
							-	-				
								411				
				37.7								
Sample Type	ample Type Quantity/Container Type		Preservative		Analy	sis	Sampl	e Time	Sample Indentification			
Primary		l); 1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		132	0	4-05-20151002			
Sample Type Primary				p	VOCs (82	260B);	Sampl	e Time				

Well ID	#: G-08			Purging Method						al Superfund		
Well Diam	neter (in):			Pump Model an	d ID: QED	Blad	w Pump	Date: 9/2	28/15			
Measuren	nent Point:	TOC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015		
Installed \	Well Depth	(ft): 181		WQ Meter Mode	I and ID:VS	I		Project Nur	nber: F205			
Screen In	terval (ft):	140-180		Minimum Initial	Purge Volu	me (mL):	1000	Client Name: Montrose / demaximis				
	LNAPL (ft):		-		Control E	ox Setting	S	Client Proje	ect Number:			
Depth to \	Water (ft):	34.65		CPM: R: /C		PSI: 8	3	Sampled By	V. Grie A	Norse		
Pump Set	Depth (ft):	165		Weather Condit	ions: Cles	, 85	F					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations		
1035	34.65	200	1000	25.3	44).5	7.47	4.36	2.06	30.5	1 sytem watere removed		
1040	34.65	200	2000	25.7	491.9	7.59	4.74	1.53	2.8			
1045	34.65	200	3000	25.4	507.0	7.68	5.31	1.36	-14.8			
1050	34,65	200	4000	25.7	515	7.76	4.43	118	-37.6			
1055	34.65	200	5000	25.4	517	7.80	3.88	1.10	-46.1			
100	34.65	200	6000	25.5	518	7.80	3.94	1-04	-54.0			
1105	34.65	200	7000	25.4	519	7.82	3.99	1.02	-55.7			
									1007			
						/						
Samp	mple Type			Preservative		Analy	ysis	Samp	le Time	Sample Indentification		
Pri	mary	3, VOAs (40 m)); 1, 125 ml poly	HCL; 4°C	F	VOCs (8 CBSA (EPA 3	3260B);	1105		6-08-20150928		

Well ID	#: G-09			Purging Method	: Low-Flow					al Superfund		
Well Diam	neter (in):	4		Pump Model and				Date: 9	29 115			
Measuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septer	nber 2015		
Installed \	Well Depth (ft): 213		WQ Meter Mode				Project Nur				
	terval (ft): 1	71-213		Minimum Initial	Purge Volu	me (mL):	1100	Client Name: Montrose / demaximis				
	LNAPL (ft):	NA				ox Setting			ct Number:			
Depth to \	Water (ft): *	40 41.55		CPM:2 R: 17	D: 13		0	Sampled By	V.E. Mor	se		
Pump Set	Depth (ft):	111		Weather Conditi								
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations		
940	41.55	200	1100	224	671	7.99	4.16	1.97	-55.0			
945	41.55	200	2100	22.2	663	7.96	3.37	1.69	-73.3			
950	41.55	200	3100	22.0	662	7.98	3.14	1.30	-82.9			
955	41.55	200	4100	22.2		662 8.01 3.73		1.00	-100.2			
1000	41.55	200	5100	22.3	661	8.03	3.56	1.03	=105.5			
1005	41.55	1.55 200 6/00		22.3	662	8.05	3.29	0.99	-109.8			
	1											
	-						5		-			
								+				
Samp	le Type	Quantity/Co	ntainer Type	Preservative	T	Anal	ysis	Samp	le Time	Sample Indentification		
	mary	i Didectores); 1, 125 ml poly	HCL; 4°C	ţ.	VOCs (8 CBSA (EPA 3	3260B);	1005	15 77008	6-09-2015 0929		

Notes: 6-09 needs 4" cap,



Well ID #	#: G-12			Purging Method	: Low-Flow			Site: Montr	ose Chemica	l Superfund		
Vell Diam	eter (in):	P		Pump Model and				Date: /o				
		TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septem	ber 2015		
	Well Depth			WQ Meter Mode	I and ID:	ST Pro	Senies Flow (ell	Project Number: F205				
Screen Int	terval (ft):	58-198		Minimum Initial	Purge Volum	me (mL):	96	Client Name: Montrose / demaximis				
Depth to L	NAPL (ft):	NA				ox Settings	<u>S</u>	Client Proje	ct Number:			
	Vater (ft):			CPM: - R: 1		PSI:	50	Sampled By	1. Fai h	Minhen		
ump Set	Depth (ft):	178		Weather Conditi	ons: (le	a						
		****							1			
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	(deg C) (mS	Cond. (mS/cm)	(mS/cm) pH	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1234	38.14	200	1000	23.4	1106	7.30	7.94	1.57	-116.2	1 sistem VII. remord		
239	38.14		2000	230	1116	7.26	8.24	1.46	-111.4			
1244				22.9	1115	7.26	8.39	1.36	-1121			
249	9 38.14 4000		4000	21.7	1115	7.24	8.26 0.92	-119.5				
1254							8.11	0.71	-123.9			
1259	9 39.14 - 6000		600>	22.5	1115	7.2(8.20	0.69	-125.3			
						1						
		- 6 - 12 - 5					The second second					
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy		Samp	le Time	Sample Indentification		
Pri	mary	3, VOAs (40 m); 1, 125 ml poly	HCL; 4°C	p	VOCs (8 CBSA (EPA 3		1300	0	6-12-2015/001		

Well ID #	#: G-12			Purging Method	: Low-Flow			Site: Montr	ose Chemica	l Superfund		
Vell Diam	eter (in):	P		Pump Model and				Date: /o				
		TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septem	ber 2015		
	Well Depth			WQ Meter Mode	I and ID:	ST Pro	Senies Flow (ell	Project Number: F205				
Screen Int	terval (ft):	58-198		Minimum Initial	Purge Volum	me (mL):	96	Client Name: Montrose / demaximis				
Depth to L	NAPL (ft):	NA				ox Settings	<u>S</u>	Client Proje	ct Number:			
	Vater (ft):			CPM: - R: 1		PSI:	50	Sampled By	1. Fai h	Minhen		
ump Set	Depth (ft):	178		Weather Conditi	ons: (le	a						
		****							1			
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	(deg C) (mS	Cond. (mS/cm)	(mS/cm) pH	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1234	38.14	200	1000	23.4	1106	7.30	7.94	1.57	-116.2	1 sistem VII. remord		
239	38.14		2000	230	1116	7.26	8.24	1.46	-111.4			
1244				22.9	1115	7.26	8.39	1.36	-1121			
249	9 38.14 4000		4000	21.7	1115	7.24	8.26 0.92	-119.5				
1254							8.11	0.71	-123.9			
1259	9 39.14 - 6000		600>	22.5	1115	7.2(8.20	0.69	-125.3			
						1						
		- 6 - 12 - 5					The second second					
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy		Samp	le Time	Sample Indentification		
Pri	mary	3, VOAs (40 m); 1, 125 ml poly	HCL; 4°C	p	VOCs (8 CBSA (EPA 3		1300	0	6-12-2015/001		

Well ID #: G-13			Purging Method:	Low-Flow				THE DESIGNATION OF THE PARTY.	al Superfund		
Well Diameter (in):			Pump Model and	ID: WED	Rladder	Pump	Date: 9 128	15			
Measurement Point:	TOC - North Sic		Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E		nber 2015		
nstalled Well Depth	(ft): 197	3	WQ Meter Model	and ID:VS	I Proples	Florell	Project Num				
Screen Interval (ft):			Minimum Initial P	urge Volui	me (mL):	995	Client Name: Montrose / demaximis				
Depth to LNAPL (ft):		_		Control B	ox Settings	3	Client Project Number:				
Depth to Water (ft):			CPM: R: 9		PSI: /0	0	Sampled By	Eric May	186		
Pump Set Depth (ft)		1	Weather Condition	ons: Clay							
2000											
Time Depth to (hh:mm) Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
1/35 48.55	125	1000	25.2	645	7.87	4.23	2.17	-1.1	System Volume removed,		
	200	2000	26.1	694	7.86	5.38	1.57	16.5	*/		
	-	3000	25.5	644	7.89	4.29	1.29	-39.8			
1145 48.53		4000		645	8.01		1.25	-52.6			
1150 4852			26.4	646	8.05	4.97	1.29	-56.4			
1155 48.53		6000	26.5	647	8.00	4.55	30	-55.0			
12.00 48.53	9.00	0000			8.00						
Sample Type	Ouantity/Co	ontainer Type	Preservative		Anal	vsis	Samp	le Time	Sample Indentification		
Primary		I); 1, 125 ml poly	HCL; 4°C		VOCs (8 pCBSA (EPA 3	3260B);	1200		G-13-20150928 Dup sample ID- G-13-00-20150926 C 1215		

Well ID	#: G-14			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund Date: 9-30-16				
	neter (in):	4		Pump Model an	dID: OF) Blad	de-					
easuren	nent Point:	TOC - North S	ide	Tubing Type an	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4	Sampling E	vent: Septem	ber 2015		
stalled	Well Depth (ft): 196		WQ Meter Mode	el and ID: >	15+ Pm S	sen'es flow (e)	Project Number: F205				
creen In	terval (ft): 1	55-195		Minimum Initial	Purge Volu	me (mL):	2 6	Client Name: Montrose / demaximis				
epth to I	LNAPL (ft):	NA			Control B	ox Settings			ct Number:	demaximis		
epth to	Water (ft):	51.78		CPM: 2 R: 1	D: 14	PSI: I C			Eric K	11 1-2.		
	Depth (ft):			Weather Condit	ions: (e	acl Tres	KZM	Journal of	Cric N	1 moti		
						1 510	-					
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
543	51,80	200	1200	23.7	506	7.20	146	1.18	-66-1	1 system Vol. removed		
SUR	51.86	4	2700	23.9	508	7-17	13.6	1-14	-53.0	Ja Ca T. I CHOVE		
553	51.80		3200	23.6	507	7.19	13.1	0.96	-59.9			
558	5140		4200	23.5	607	7.71	12,2	0.92	- (4.8			
603	51.80		5200	23.6	508			1	-			
608	51.80					7-23	12.8	6.79 -67.7				
600	01.80		6266	23.4	568	7.24	12.3	0.75	-678			
	1								1			
								1-				
			1									
	-	1000										
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analys	is	Sampl	e Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	pt	VOCs (826 CBSA (EPA 314		161	0	6-14-20150938		

Nell ID #	#: G-15			Purging Method:	: Low-Flow			Site: Monti	ose Chemica	Superfund			
Nell Diam	eter (in):	U		Pump Model and	ID: OF	D 13/00	doler	Date: 9-	36-15				
Measuren	nent Point:	ell Depth (ft): 184 WQ Meter Mo				TLPE.17X1	/4 x LDPE.17x1/4		vent: Septem	ber 2015			
				WQ Meter Model	and ID: y	SI Pa	Series Flow Cell	Project Nur					
Screen Int	erval (ft): 1	42-182		Minimum Initial	Purge Volui	me (mL):	060	Client Name	e: Montrose	demaximis			
	NAPL (ft):			11 -	Control B	ox Settings		Client Project Number:					
	Vater (ft):			CPM: 4 R: 7	D: 6		5	Sampled By	1. FILE IV	olabea			
Pump Set	Depth (ft):	162		Weather Condition	ons: Clea	XT							
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP				
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations			
1327	5955	200	1100	24.8	489	8.06	38.3	1.68	-150.8	1 system Vol Removed			
1332	59.55	1	2100	24.4	493	7.66	23.1	1.26	445.8	J			
1337	59.55		3166	24.3	494	7.56	19.7		.62 445.3				
342	5155		4100	24.3	493	7.56	18.8	6.95	-147.2				
1397	59.55		5100	24.5	492	7.57	18.5	0.94	-148.3				
Sampl	е Туре	Quantity/Co	ntainer Type	Preservative		Analy		Samp	le Time	Sample Indentification			
Prin	nary	3, VOAs (40 ml)); 1, 125 ml poly	HCL; 4°C	р	VOCs (82 CBSA (EPA 31		135	0	6-15-20150930			

Well ID #	#: G-16			Purging Method	: Low-Flow			The state of the s	ose Chemical	Superfund
Well Diam	eter (in): 🕒	1		Pump Model and	d ID: QE	D 1310	dde	Date: 7-	28.15	
Measurem	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septemi	per 2015
Installed V	Well Depth (ft): 187		WQ Meter Mode	I and ID: Y	SI PL	o Plus Flow Go	Project Nur	nber: F205	
Screen Int	terval (ft): 1	45-185		Minimum Initial	Purge Volu	me (mL):	1075	Client Nam	e: Montrose /	demaximis
Depth to L	_NAPL (ft):	AN		7777	Control B	ox Setting	S		ct Number:	
	Nater (ft):			CPM: R:	D:	PSI:		Sampled B	1: Eric W	Imber
Pump Set	Depth (ft):	165		Weather Conditi	ons: C(er / N	1.4			
Time	Depth to	Flow Rate	Total Volume		Cond.		Turbidity	DO	ORP	
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
ilsl	48.87	200	1075	23.6	448	8,90	60.8	0.86	-182.9	1 system Vol. removed
1156	48.87	1	2075	23.5	451	7.94	90.8	0.76	-181.2	0
1201	48.87		3075	23.9	452	7.79	54.7	0.60	-177.9	
206	48.87		4075	23.9	452	7.78	55.0	0.57	-177.7	
211	48.87	1	5075	23.4	452	7.76	53.1	0.53	-177.6	
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Anal	ysis	Samp	le Time	Sample Indentification
Prir	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	р	VOCs (8 CBSA (EPA 3		1215		6-16-20150928

Well ID #: G-18			Purging Method	: Low-Flow			The second second	ose Chemical	Superfund			
Well Diameter (in):	L		Pump Model and	d ID: QE	D Blade	der	Date: 7-2					
Measurement Point:		ide	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4		vent: Septeml	ber 2015			
nstalled Well Depth			WQ Meter Mode	I and ID: 🏏	SI Pro	Series Flow (el)	Project Num					
Screen Interval (ft):			Minimum Initial	Purge Volur	ne (mL):	1155	Client Name: Montrose / demaximis					
Depth to LNAPL (ft):			10.70	Control B	ox Settings		Client Project Number:					
Depth to Water (ft):			CPM: 4 R: 7	D: 6	PSI: /	50	Sampled By	: File h	10 lmbtra			
Pump Set Depth (ft):			Weather Conditi	ons:	ar							
								4				
Time Depth to (hh:mm) Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
933 34.50	200	1200	22.7	496	7.75	17.0	1.52	-74.0	1 system Vol. remard			
938 34.50	1	2200	224	487	7.71	16.9	10,99	-82.2				
143 34.50		3200	22.4	498	7.69	17.6	0.95	-85.7				
948 34.50		4200	27.4	488	7.68	16.5	6.79	-87.7				
	34.50 5200		22.4	488	7.67	16.5	0.75	-89.8				
Sample Type	Quantity/Co	ontainer Type	Preservative		Analy	ysis	Samp	le Time	Sample Indentification			
Primary	3, VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C		VOCs (8 CBSA (EPA 3		755		6-18-20150929			

/- U ID #-	G-19A			Purging Method:	Low-Flow	51		Date: d-	se Chemical			
				- 44 1-1	ID.) Blue	lder	Compling Fy	ent: Septemb	er 2015		
ell Diame	ter (in): 🛶	20 11 11 01	lo.	Tubing Type and	Diameter:	TLPE.1/X1/	4 X LUPE. ITXII	Project Num	her: F205			
easureme	ent Point: To	OC - North Sig	ie	WO Meter Model	and ID: 🌿	I ras	sen a right of it	Project Num	Montrose /	demaximis		
stalled W	ell Depth (ft	:): 204		Minimum Initial P	urge Volun	ne (mL): ;1	150	Client Name: Montrose / demaximis Client Project Number:				
creen Inte	erval (ft): 16	0-200		William Micros	Control B	ox Settings	3	Client Projec	t Number.	1 1		
epth to L	NAPL (ft):	VA		CPM: H R: 9	D: 6	PSI:	50	Sampled By:	FIL No	mbeg		
epth to W	later (ft):	7.90		Weather Condition	ne Clor	x /						
ump Set	Depth (ft):	80		Weather Condition	iis. Cle	W / 190-1						
Time	Depth to	Flow Rate	Total Volume		Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations		
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	1000		1.000	1.14	-103.8	1 sixten Vol. removed		
026	47.96	200	1150	23.5	482	7.87	12:2		-106.0	J		
035		200	2150	73.9	443	746	1.	1.04	1000			
1040	47.96	-		23.5	463	7.78	10-55	0.93	-109.8			
045	4796		3150			7.95	9.26	0,79	-111.2			
050	47.96		9150	23.4	484			.11 0.77 -113.0	-113.0			
	47.96		5150	23.6	483	7.84						
655			6150	23.5	482	7.85	7.97	0.76	-112.0			
1100	47.96		500	73.7			L = 1	11				
					-							
	4											
									-			
						1		177				
140			14		-	-						
			A STATE OF THE PARTY OF THE PAR				Lucia	Sam	ple Time	Sample Indentification		
Cam	ple Type	Quantity/0	Container Type	Preservative			lysis			G-19A-20150929		
Sam	pie Type			HCL; 4°C		VOCs	(8260B); 314 Modified)	110	10	G-17H-20130121		
Pr	imary	3, VOAs (40	ml); 1, 125 ml poly	HOL, 4 C		pCBSA (EPA	314 Modified)		W. 7. 7.			

Well ID	#: G-21			Purging Method	: Low-Flow			Site: Monte	rose Chemic	cal Superfund
Well Dian	neter (in):	2		Pump Model and	ID:OED S	jample Pro	Bladdy Pump	Date: [0])		
		TOC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015
Installed	Well Depth ((ft): 171		WQ Meter Mode	I and ID: YS	1 Pro Pl	us + Flocall	Project Nur	nber: F205	
	terval (ft): 1			Minimum Initial	Purge Volu	me (mL):		Client Nam	e: Montrose	e / demaximis
	LNAPL (ft):			S. F. A. T. L.		ox Setting		Client Proje	ct Number:	
Depth to	Water (ft): 4	8.83		CPM: 4 R: 9		PSI: %	5	Sampled B	Soil Ma	rsi
Pump Set	Depth (ft):	159		Weather Conditi	ons: Clc	~				
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.	1	Turbidity	DO	ORP	
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	pН	(NTU)	(mg/L)	(mV)	Observations
1114	58.86	200	1000	23.	695	7.60	12.2	1.17	-100.9	1 system volume runni
1119	68.86	200	2000	23.1	698	7.62	11.9	1.03	-106.5	7
1124	58.86	200	3000	23.1	701	7.66	13.3	0.91	-110.9	
1129	58.86	200	4000	23.	70)	2.67	10.47	0.84 -113.4		
1134	58.86	200	5000	23.1	702	7.71	8.69	0.78 -117.0		
1139	58.86	200	6000	23.1	703	7.74	8,16	0.72 -119.1		
1144	58.86	200	7000	23.	704	7.74	7.77	0.69 -1257		
1149	58.86	200	8000	23.1	704	7.74	7.92	0.65	121.5	
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy		Samp	le Time	Sample Indentification
Pri	mary	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°C	р	VOCs (8 CBSA (EPA 3		1150		6-21-20151001

Notes:10- 168-73 mesured

easurement stalled Wareen Interpth to Least to Ware pth to Wareen to Ware	ter (in):	18-178 NA 17.30	de	Purging Method: Pump Model and Tubing Type and WQ Meter Model a Minimum Initial P CPM: R: Weather Conditio	Diameter: 1 and ID: urge Volun Control Bo D: urs: (ne (mL): 1 ox Settings	4 x LDPE.17x1/4	Sampling Ev Project Num Client Name Client Project Sampled By:	Date: 9-29-15 Sampling Event: September 2015 Project Number: F205 Client Name: Montrose / demaximis Client Project Number: Sampled By: Crit Malmbers		
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	(mg/L)	(mV)	Observations	
((ft)	44.0	(mL)	22.0	334	8.42	55.3	0.56	-101.6	1 system vol. remived	
1340	47.30	200	1100	22.0	335	8.07	51.2	0.52	-97.8		
1345	47.30	1	2100	22.1	335	7.97	33.7	0.51	-100.9		
1350	47.30		3100		333	7.99	31.3	0.46	-101.7		
355	47.30	1	4100 \$100	22.0	333	7.99	32.8	0.42	-108.1		
1406	47.30										
				D resting		Ana	lysis	Samı	ple Time	Sample Indentification	
	ple Type rimary	3 VOAs (40)	ontainer Type ml); 1, 125 ml poly	Preservative HCL; 4°C		VOCs pCBSA (EPA	(8260B); 314 Modiified)	140		able to free pump after sed the pump to get s	

vell ID #	#: G-24			Purging Method				The state of the s	rose Chemic	al Superfu	nd
Nell Diam	eter (in):	n		Pump Model and	d ID:0ED	Bladd	ner Pump	Date: 9/2			
/leasurem	ent Point:	OC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E	vent: Septe	mber 2015	
nstalled V	Well Depth (ft): 182		WQ Meter Mode	I and ID: 1	1 ProPli	s Flocel	Project Nur	nber: F205		
	terval (ft): 1			Minimum Initial	Purge Volu	me (mL):	000	Client Name	e: Montrose	e / demaxin	nis
epth to L	NAPL (ft):	NA				ox Setting			ct Number:		
	Vater (ft): 5			CPM: 2 R: 1	7 D: 13	PSI: 8	0	Sampled By	V.E. MM	se	
ump Set	Depth (ft):	158'		Weather Conditi	ions: Clca	~					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	1	
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)		Observations
	52.06	200	1000	25.9	1040	7.69	6-08	2.38	-51.0	Remod	System Volume
355	52.05	3.00	2000	24.4	1070	7.60	3.31	2.18	-44.9		, ,
1400	52.05	900	3000	24.3	1107	7.64	3.35	1.23	-56.9		
	52.05	200	4000	24.1	1111	7.66	3.48	1.03	-62.9		
	52.05	900	5000	24.0	1113	7.67	3.80	0.87	-68.7		
1465	52.05	200	6000	24.1	lia	7.69	3.79	0.83	-71.9	+	
	205	900	7000	29.0	1113	7.70		0.80	-74.7		
17202	250	900	1000	27.0	1112	7.10	3.69	0.00	17.1		
		-									
) I =			
Sample	lo Turno	Quantitu/Co	ntainer Type	Preservative		Anal	and a	Same.	la Timo		0 111 00 0
Sample	етуре	Quantity/C0	manier Type	Preservative				Samp	le Time	1	Sample Indentification
Prin	nary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C		VOCs (I	3260B); 314 Modiified)	1420)	G.74.	20150929

Well ID #	: G-25			Purging Method	: Low-Flow				ose Chemica	l Superfund
	eter (in):	1		Pump Model and	d ID: 600	Bladde		Date:/8-7-		
		FOC - North Sid	е	Tubing Type and	d Diameter:	TLPE.17X1/	4 x LDPE.17x1/4		vent: Septem	ber 2015
	Vell Depth (WQ Meter Mode				Project Nun		
	erval (ft): 1			Minimum Initial					e: Montrose	/ demaximis
	NAPL (ft):					ox Settings		Client Proje		
	Vater (ft): <			CPM: 2 R: 1	6 D: 14	PSI: (5	0	Sampled By	" Ear 6	Winber
100000	Depth (ft):			Weather Conditi	ions:					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	tel an elec-
(hh:mm)	Water	(mL/min)	Purged	(deg C)	(mS/cm)	pH	(NTU)	(mg/L)	(mV)	Observations
	(ft)		(mL)	1 2 2 7 7 7 7 7				1		, , , ,
1073	51.60	200 250	1000	23.1	1036	7.19	2.81	1.31	-75.4	1 system vol remark
1627	56 60	i	2000	23.1	1039	7.17	2.40	6.94	-78.1	J
1031	56.60		3000	23.0	1041	7.16	2,33	0.82	- 78.L	
1635	5660		4000	22.8	1639	7.15	2,17	0.73	-75.6	
	5(.60		3000	22.9	1038	7.14	2.09	0.71	-769	
(039	56.60	_	2000	22.1	1036	1.00	2.01	0.11	1-1	
								0.71 - 10.7		
	/									
Samn	le Type	Quantity/Cor	ntainer Type	Preservative		Analy	sis	Sample Time		Sample Indentification
		7.55 (1.5				VOCs (82	260B);	1640		
Pri	mary	3, VOAs (40 ml)	, 1, 125 ml poly	HCL; 4°C	F	CBSA (EPA 31	4 Modiified)	1070		G-25-20151001

Vell ID #: G-26			Purging Method						al Superfund
/ell Diameter (in):	4		Pump Model and	d ID: Blad	der PUN	10	Date: 9 30),5	
leasurement Poin		ide	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E		mber 2015
stalled Well Dept			WQ Meter Mode	I and ID: YS	1 Pro Plu	s Floce 11	Project Num		
creen Interval (ft)			Minimum Initial	Purge Volum	me (mL):	1600+2	and the second second second second		e / demaximis
epth to LNAPL (f					ox Setting		Client Proje		
epth to Water (ft)			CPM: 2 R: 15	8 D: 12			Sampled By	E. Mors	
ump Set Depth (f			Weather Condit	ions: Cler	83				
Time Depth t	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	1. 7. 7. 7. 7.
(hh:mm) Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
130 46.9	200	1000	22.7	844	7.80	4.26	1.50	-19.0	Isystem yourse removal
135 46-9		2000	22.5	889	7.78	5.10	1.12	-37.9	
140 46.9		3000	22.5	896	7.79	3.66	0.92	-52.1	
1145 46.93		4000	22.4	896	7.80	3.53	0.87	-58.0	
150 46.9		5000	22.4	898	7.84	3.43	0.81	-63.6	
155 469		6000	224	900	7.90	3.29	0.74	169.9	
260 46.9		7000	224	900	7.90	3.77	0.63	-75.2	
205 46.93		8000	224	902	7.91	3.55	0.60	-79.4	
210 46.93		9000	22.4	903	7.89	3.20	0.58	-81.5	
70.73		1000		100			-		
								In Time	Samula Industification
Sample Type	Quantity/Co	ontainer Type	Preservative			lysis	Samp	le Time	Sample Indentification
Primary	Primary 3, VOAs (40 m	nl); 1, 125 ml poly	HCL; 4°C	ļ	VOCs (oCBSA (EPA	8260B); 314 Modiified)	1210		6-26-20150930

Well ID #	#: G-27			Purging Method				ACTIVITY IN THE PARTY OF THE PARTY	THE WALL CONTRACTOR	al Superfund
Well Diam	eter (in):	1		Pump Model and	ID: QED	Bladd	er Pump	Date: 9 2		
Measuren	ent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4	Sampling E		mber 2015
	Well Depth (WQ Meter Mode	I and ID: YS	CPRO PIV	us & Flocell	Project Nun		
	terval (ft): 1			Minimum Initial						e / demaximis
	NAPL (ft):			- N 10 10 10 10 10 10 10 10 10 10 10 10 10		ox Setting		Client Proje		
	Water (ft):			CPM: 4 R: 9		PSI:	10	Sampled By	E. Mor	Se
	Depth (ft):			Weather Conditi	ons: Clea					
								_		
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.	100	Turbidity	DO	ORP	#100
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
130	36.65	200	1000	23.3	654	7.60	3.76	1.40	-12.6	
1/35	36.65	200	2000	23.0	668	7.67	3.62	0.77	-43.8	
1140	36.65	200	3000	22.9	668	7.71	4.50	0.68	-52.5	
1145	36.65	200	4000	22.9	668	7.72	4.00	0.66	56.8	
1150	36.65	200	5000	22.4	668	7.73	3.79	0.65 -57.7		
(100	36.63	200	5000	24.1	800	1.15	3.1.1	0.65 -5/./		
			+							
			+							
									+	
				/						
				4 -						
	Co. C.						tion to	S	In Time	Comple Indentification
Samp	le Type	Quantity/Container Type Preservative Analysis VOCs (8260B);		Samp	le Time	Sample Indentification				
Pri	mary	3, VOAs (40 m	l); 1, 125 ml poly	HCL; 4°C	1 10		(8260B); 314 Modiified)	1150		6-27-20150929

Well ID #	#: G-28			Purging Method	: Low-Flow			Site: Montr	ose Chemica	al Superfund
Well Diam	eter (in):	4		Pump Model an	d ID: QE	Blac	lder	Date:	1-15	
/leasuren	nent Point:	TOC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septen	nber 2015
nstalled V	Well Depth (ft): 195		WQ Meter Mode	l and ID: 4	to YST	Pro Sois Flow Ce	Project Nun	nber: F205	
creen Int	terval (ft): 1	48-188		Minimum Initial	Purge Volui	me (mL): 9	40		e: Montrose	/ demaximis
Depth to L	NAPL (ft):			The American	Control B	ox Settings		Client Proje	ct Number:	
epth to V	Water (ft):	48.65		CPM: 2 R: 14		PSI: 15	0	Sampled By	1: Eren	Klolmher
ump Set	Depth (ft):	168		Weather Conditi	ions: (/e	ar				
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	
(mi.min)	(ft)	(IIIL/IIIIII)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
828	48.70	200	1000	22.2	911	7.04	5.74	1.43	-21.0	1 system vil removes
833	48.70	1	2000	22.2	814	7.09	5.87	1.26	-35.7	0
38	44.70		3000	22.1	913	7.14	4.86	1.04	-501	
843	48.70		4006	22.0	812	7.19	4.70	0.87	- 59.7	
848	46.70	- 1	5000	22.1	812	7.20	4.66	6.45	-62.4	
853	48.70	-	6000	22.0	812	7.21	431	0.90	- 65.0	
Sampl	le Type	e Quantity/Container Type Preservative Analysis		sis	Sampl	le Time	Sample Indentification			
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	р	VOCs (82 CBSA (EPA 31		85	S	6-28-20151061

Well ID #: G-29			Purging Method	: Low-Flow			Site: Montro	se Chemic	al Superfund
Well Diameter (in):	4		Pump Model and	1D: 6	(FI) - 1/	UP.50	Date: /	0/2/15	
Measurement Point:	TOC - North Sic	de .	Tubing Type and	Diameter:	TLPE.17X1/-	4 x LDPE.17x1/4	Sampling Ev	ent: Septen	nber 2015
nstalled Well Depth			WQ Meter Mode	and ID:	HORIBA	452	Project Num	ber: F205	
Screen Interval (ft):			Minimum Initial	Purge Volur	me (mL):				/ demaximis
Depth to LNAPL (ft):			./		ox Settings		Client Project	t Number:	NA
Depth to Water (ft):	47.92		CPM: 7 R: 7	.5 D:7.5		20	Sampled By:	CW	
Pump Set Depth (ft):	177'		Weather Conditi	ons: 50	Nay 82	sef			
The Park Park Inches					,				
Time Depth to (hh:mm) Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations
700 47.92	, 200	2000	73.52	0.980	6.21	0.0	0.72	150	CUSAR/NO U)OR
9105 48.16	700	3000	22.96	0.960		0.0	0.10	113	CLOAR I NO ODUR
910 48.16	200	4000	72,96	0.953	6.49	0.0	0.00	113	CLOPR / NO COOR
920 48.16	200	5000	27.95	0.951	6.99	0.0	0,00	114	CLETHE / NO ODOR
930 48.16	200	6000	22.94	0.953	7.00	00	0.00	11/2	CLEAR 1, NO ODER
940 48.16	Zo Ow	7000	22.95	0.952	7.01	0.0	0.00	114	CLOPE/NO ODDE
Sample Type	Quantity/Cor	ntainer Type	Preservative		Analys		Sample	Time	Sample Indentification
Primary	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°C	p	VOCs (82) CBSA (EPA 314		945		6-29-2015/002

Well ID	#: G-30			Purging Method	: Low-Flow					al Superfund	
Well Dian	neter (in):	4		Pump Model and		Bladde		Date: 9/3	0/15		
Measuren	nent Point:	TOC - North Si	de				1/4 x LDPE.17x1/4	Sampling E	vent: Septer	nber 2015	
Installed 1	Well Depth	(ft): 202		WQ Meter Mode	I and ID: YS	I POP	lus + Flocell	Project Nun	nber: F205		
	terval (ft):			Minimum Initial	Purge Volui	me (mL):	1000			/ demaximis	
	LNAPL (ft):			ALC: NO	Control B	ox Setting	S	Client Proje	ct Number:		
Depth to	Water (ft):	55-60		CPM: 2 R: 20	D: 10	PSI:	5	Sampled By	E. Mors	e	
	Depth (ft):			Weather Condit	ions: C ea	(
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP		
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations	
922	55.68	200	1000	222	1119	7.17	8.37	1.99	47.2	I system volume remove	
927	55.68	200	2000	22:2	11)8	7.19	6.96	1.70	46.8		
932	55.68	200	3000	22.2	1118.	7.23	6.80	1.57	45.9		
937	55-68	200	4000	22.2	1118	7.24	4.9 4	1.54	45.6		
942	55.68	200	5000	22.2	1119	1.27	4.71	1.37 46.0			
947	55.68	200	6000	22.2	1120	7.26	4.69	1.33 46.4			
952	55.68	200	7000	22.2	1120	7.26	4.	1.30 47.2			
Samp	ole Type	Quantity/Container Type Preservativ		Preservative		Anal	ysis	Sample Time Sample Indentification			
Pri	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°€	р	VOCs (8 CBSA (EPA 3	3260B); 314 Modiified)	952		6-30-20/50930	

			Purging Method	N.			Site: Montro	se Chemica	al Superfund
Vell Diameter (in):	4		Pump Model an	d ID: OG	7) · mp	.50		12/15	
Measurement Point:	TOC - North S	ide	Tubing Type an			/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	nber 2015
nstalled Well Depth	(ft): 211		WQ Meter Mode	and ID:	HORIAA	- U-52	Project Num		
Screen Interval (ft):	145-175		Minimum Initial				Client Name		/ demaximis
epth to LNAPL (ft):	N/t		.1	Control B	ox Settings	3	Client Projec	t Number:	F.205
Depth to Water (ft):	57.95		CPM: 7 R: 7	.5 D:7.		120'	Sampled By:		
Pump Set Depth (ft):	165		Weather Condit	ions:					
Time Depth to	Flow Rate	Total Volume	Tomp	Cond		T. and Salte.	1 00	000	
(hh:mm) Water	(mL/min)	Purged	Temp.	Cond.		Turbidity	DO	ORP	72
(ft)	(meaning	(mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
1030 53.01	200	2000	75.89	0.754	7.28	94.1	0.00	90	CLORR/NO ODOR
1035 53.02	260	3000	26.59	0.753		40.2	0.00	68	CLER / NO ODER
1040 53.02	200	4000	26.70	0.752	7.17	124.6	0,00	63	CLEAR! NOODOR
1045 53.02	200	5000	26.70	0.251	7.16	22.4	0.00	63	CLEAR ! NO ODOR
1050 53.02	200	6000	26.70	0.751	7.17	22.2	0:00	62	CLEAR! NO ODOR
1055 53.02	200	7000	26.71	0.751	7.16	22.2	6.00	62	CLEAR/NO DOR
			0,						7
	1-2								
		1							
		1							
			1						
Sample Type	Quantity/Co	ontainer Type	Preservative		Analy	sis	Sample	Time	, Şample Indentification
Primary	3, VOAs (40 m	i); 1, 125 ml poly	HCL; 4°C	р	VOCs (82 CBSA (EPA 31		1100)	6-30 631-2015/00

	#: G-32			Purging Method	: Low-Flow			Site: Montr	ose Chemic	al Superfund			
	eter (in):			Pump Model and	d ID: QED	Bladde		Date: 9-3					
		TOC - North Sid	le	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E	vent: Septen	nber 2015			
	Well Depth (WQ Meter Mode	I and ID: 🏋	SI Pro S	entes Flow (ell	Project Num					
	terval (ft): 1			Minimum Initial	Purge Volum	me (mL): j	125	Client Name	: Montrose	/ demaximis			
	NAPL (ft):					ox Settings		Client Proje	ct Number:				
		49.43		CPM: TR:		PSI: /	45	Sampled By	: Ercc	Holmben			
Pump Set	Depth (ft):	175		Weather Conditi	ons: Cl	iar							
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations		
1153	49.43	2004 200	1200	23.7	559	7.55	39.7	1.63	-11.5	1 system	vel remarel		
1159	49.43	1	2400	23.5	564	7.33	37.2	1.28	- 7.5	J			
1205	49.43		3600	23.5	564	7.22	31.9	1.05	-7.5				
1211	49.43		4800	23.3	566	7.24	22.6	0.96	-14.2				
1217	49.43		6000	23.4	365	7.26	20.1	0.84	-15.1	1			
223	49.43	10	7700	23.4	566	726	19.2	0.83 -14.8					
					L =								
Sampl	е Туре	Quantity/Con	tainer Type	Preservative		Analy	sis	Sample	e Time	San	nple Indentification		
Prin	nary	3, VOAs (40 ml);	1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		127	25		20150936		

MACII ID 4	#: G-33			Purging Method:						cal Superfund
	neter (in): 6	1		Pump Model and				Date: 9 30))5	
		OC - North Sid	de	Tubing Type and				Sampling E		mber 2015
	Well Depth (f			WQ Meter Model	and ID: 15	I Proflus	Flocell	Project Nun		
	terval (ft): 1			Minimum Initial I	Purge Volu	me (mL):	(000)		the second second second second	e / demaximis
	LNAPL (ft):			Dally to the		ox Settings		Client Proje		
Depth to \	Water (ft): 6 Depth (ft):	0.92		CPM: R: /8		PSI: 80		Sampled By	Eric Ma	v8
Pump Set	Depth (ft):	158'		Weather Condition	ons:					
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations
820	60.84	200	1000	23.0	623	7.34	14,3	2.06	41.6	1 System volume removed
825	6884	200	2000	23.0	638	7.33	6.56	1.34	-17.6	1,500
530	60.84	200	3000	22.9	643	7.38	4.12	1.09	-32.2	
835	60.89	200	4000	22.9	643	7.39	4.14	0.97	-54.3	
840	60.84	200	5000	22.9	645	7.43	3.33	0.85	-67.9	
846	60.84	200	6000	22.9	646	7.46	3.20	0.75	-81.6	
846	60-84	200	7000	22.9	646	7.47	3.17	0.80	-83.9	
855	60.84	200	8000	22.9	646	7.47	3.04	0.73	-85.7	
	00.0	200	OWN	00.1	010	1.1/	3-01	0.13	021/	
					1, -,1					
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analys	sis	Samp	le Time	Sample Indentification
Pri	mary	3, VOAs (40 ml)); 1, 125 ml poly	HCL; 4°C	р	VOCs (82 CBSA (EPA 31		855		6-33-201509.30

				Purging Method:	Low-Flow			Site: Montro	se Chemical	Superfund		
ell ID#:				- 11 1-1	ID. G	Badd	e	Date: 0 -	- ()	er 2015		
ell Diame	ter (in): 🤫			T. Line Tunn and	Diameter:	ILPE.IIAII	4 X LUI L. IIXIII	Sampling Ev	ent: Septemb	61 2010		
easureme	ent Point: To	OC - North Sid	ie	WO Meter Model	and ID: YS	I TOO SY	en is thou be	Project Number: F205 Client Name: Montrose / demaximis				
stalled W	ell Depth (f	1): 198		Minimum Initial P	urge Volun	ne (mL): 4	35	Client Name	. Worthose /	doma.n.		
creen Inte	erval (ft): 14	17-107			Control B	Erce No	6 621					
epth to Li	NAPL (ft):	JA VI		CPM: 2 R: 16	D: 14	PSI: 15	6	Sampled by	· Erce iv	TO TO THE PARTY OF		
epth to W	/ater (ft): < Depth (ft):	177		Weather Condition	ns: Clea	1						
ump Set	Depth (it).	6					T. A. Lalido	DO	ORP			
Time	Depth to Water	Flow Rate (mL/min)	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	(mg/L)	(mV)	Observations		
(hh:mm)	(ft)	(IIIIIIIII)	(mL)		673	7.47	7.06	1.61	-41.0	1 system Vol. removed		
916	52.53	200	1000	23.1	673	7.46	6.68	1.23	-54.6	V		
179	52,53	Y-	2600	23.1		7.46	6.02	107	-57.3			
126	52.53		3000	23.1	673			0.98	-61.6			
931	52.53		4000	23.1	6-14	7.46	5.88	0.94	-62.9			
	52.53	_	5000	23.1	673	7.91	3, 1,	0.11	0 8.1			
936	22.22			~								
									+			
									1			
								1	1			
			-									
			1					140				
									I. Time	Sample Indentification		
	Sample Type Quantity/Container Type			Preservative			lysis	-	ple Time			
Sam	ple Type					VOCs	(8260B);	940 6-34-20151001				
Pr	imary	3, VOAs (40 t	ml); 1, 125 ml poly	HCL; 4°C		pCBSA (EPA	314 Modified)		-			

Notes:

	#: G-35			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund Date: 9-26-15				
	neter (in):	+		Pump Model and	d ID:	D Bla	delar	Date: 9-7	10-15			
		TOC - North Si		Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling E		mber 2015		
	Well Depth (WQ Meter Mode	l and ID: y	SI Pho	Senes Flower	Project Nun				
	terval (ft): 1			Minimum Initial	Purge Volur	me (mL):	100	Client Name: Montrose / demaximis				
	LNAPL (ft):			211	Control B	ox Setting		Client Proje				
		4448		CPM: 4 R: 9 D: 6 PSI: 145 Sampled By: File Wilmhous								
Pump Set	Depth (ft):	170		Weather Conditi	ions: Cleo	V						
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations		
805	44.48	200	1100	23.2	1244	6.89	9.43	1.84	59.0	1 system vol. remard		
810	44.48	-	2100	22.7	1267	6.91	8.72	1.32	59.5	0		
818	44.48		3100	22.7	1269	6.92	6.75	1.11	57.4			
820	44.48		4100	22.7	1270	691	6.41	0.97	55.1			
828 825	44.48		5100	22.7	1271	6.92	6.27	0.95	50.0			
836	44-48		6100	22.7	1276	(92	5,77	0.81	48.9			
Samp	le Type	Quantity/Co	ntainer Type	Preservative		Analy	rsis	Sampl	e Time	Sample Indentification		
Prir	mary	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°c	p	VOCs (8 CBSA (EPA 3		835		G-35-20150936		

Notes:

Nell ID #	: G-OW-3	3		Purging Method	: Low-Flow			Site: Montrose Chemical Superfund Date: 7-29-15					
	eter (in):			Pump Model and	ID: OF	D Blad	der						
		OC - North Si	de	Tubing Type and				Sampling E	vent: Septembe	er 2015			
	Vell Depth (40	WQ Meter Mode	and ID: V	ST PO	Series Flow (ell	Project Nun					
	erval (ft): 1			Minimum Initial	Purge Volur	me (mL): 10	000	Client Name: Montrose / demaximis					
	NAPL (ft):				Control B	ox Settings		Client Proje	ct Number:				
		41.70		CPM: 4 R:	D: (PSI: 12	5	Sampled By	1. Erec No	Imbera			
	Depth (ft):			Weather Conditi		ear							
unip out		13											
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
1214	41.98	200	1600	23.7	540	7.55	51.7	1.28	-132.6	1 system vol. removed			
12 79	41.98		2000	23.5	546	7.38	47.2	1.02	- 127.8	0			
1224	41.98		3000	23.4	547	7.29	45.5	0.87	-124.4				
1229	4198		4000	23.3	550	7.25	48.3	0.78	-124.6				
234	41.98		5000	23.3	550	7.29	47.1	0.78	-125.1				
Samp	Sample Type Quantity/Container Type			Preservative		Analy	sis	Samp	ole Time	Sample Indentification			
	mary	71.1	nl); 1, 125 ml poly	HCL; 4°C		VOCs (82 oCBSA (EPA 31		12.	35	6-0W-3-20150929			

	#: LG-01			Purging Method	The second secon			Site: Mont	rose Chemic	al Superfu	nd	
	neter (in): L			Pump Model an	d ID:067	Sample	Pro Bladder Romo	Date: [0]	116			
		TOC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X	1/4 x LDPE.17x1/4		vent: Septer	mber 2015		
	Well Depth			WQ Meter Mode	el and ID: 1/5	1) Proth	US + Flocell	Project Nu				
	terval (ft):			Minimum Initial	Purge Volu	me (mL):	1000	Client Name: Montrose / demaximis				
	LNAPL (ft):					Box Setting		Client Proje	ect Number:			
	Water (ft):			CPM: 2 R:/								
Pump Set	Depth (ft):	149		Weather Condit	ions:Clea	-			~			
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.	-	T 1:10	-		-		
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)		Observations	
949	54.58	250	1260	24.3 0	8.20	8.20	5.73	0.96	-7.6	removed	1 system volum.	
954	54.89	250	2500	24.3	320.9	8.27	4.38	0.58	-19.0	reduced	6/	
959-	55.00	250_200	3750350	24.7	321.2	8.36	7.24	1.11	-22.2	Chack re	charge node: 0. 03 is 5 mi	
1004	55.28	250 200	5000-4500		320.1	8.25	7.94	0.74	-29.9	Purco to	o Stabilization	
1004	5.47	250 200	6250.550	24.3	320.2	8.25	7.21	0.62	-47.2	10.30	S S S S S S S S S S S S S S S S S S S	
1026	55.68	200	6500	24.4	319.9	8-27	7.08	0.55	-65.3	dhe con	times totall.	
1025	55.78	200	7500	24.4	320.0	8.26	7.22	0.49	-82.2		roge until offen Stabilities, the	
	56.31	150	120002	24.5	320.0	8.38	6.36	0.42	-128.0	Paramit	A STABILITY TO	
1043	56.31	150	12750	24.5	320.1	8.40	6.25	0.45	-127.0	1	2	
1048	56.31	150	13500	24.5	32 0.3	8.40	6.67	0.47	-125.0			
1053	56.31	150	14250	24.5	320.6	8.40	6.94	0.46	-124.8.			
058	56.3/	150	15000	24.5	321.3	8.40	6.99	0.47	-124.8			
Sampl	le Type	Quantity/Cor	ntainer Type	Preservative		Anal	ysis	Samp	le Time		Sample Indentification	
Prin	mary	3, VOAs (40 ml)	; 1, 125 ml poly	HCL; 4°c	р	VOCs (8 CBSA (EPA 3	8260B); 314 Modiified)	1058		16-01-	2015/00/	

Notes: [49 tubing @ 5 ml/1 = 745 ml + 100 m B/mldr = 845 system volum -

	10.00			Purging Method:	Low-Flow			Site: Montro	se Chemica	Superfund			
Vell Diam	t: LG-02 eter (in):	1		Pump Model and	ID:Φ€D S	Sample Pro	4 x LDPE. 17x1/4	Date: 0/1/ Sampling Ev	ent: Septem	ber 2015			
nstalled V	Vell Depth (f	OC - North Sid		WQ Meter Model Minimum Initial F	and ID: YS	1 Profly	s Flocell	Client Name: Montrose / demaximis					
Depth to L	erval (ft): 18 NAPL (ft): / Vater (ft):	VA		CPM: 2 R: 17	Control B	ox Settings PSI: O	0	Client Projection Sampled By	E. Morg	<u> </u>			
Pump Set	Depth (ft):	195		Weather Condition	ons: Clarc	may							
Time (hh:mm)	Depth to Water	Flow Rate (mL/min)	Total Volume Purged	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
210	(ft)	200	(mL)	24.7	684	7.91	6.63	1.73	-60.6	removed System Volum			
1330	55.80 55.80	900	2000	24.8	681	7.93	6.25	1.55	-69.9 -73.3				
1340	55.80	2.00	3000	24.6	679	7.95	5.63	1.37	-82.5				
1345	55 8D	200	4000	24.6	677	7.98 8-01	5.96	1.63	-90.9				
1350	55.80 55.80	200	6000	24.6	678	8.03	4.84	0.96	-94.5				
1355	55.80	200	2000	24.5	678	8.04	4.55	0.93	-95.8				
1405	5580	200	8000	24.5	677	8.05	9.73	0.12	16.1				
						4							
		Quantity/C	ontainer Type	Preservative		Ana	lysis	Sam	ple Time	Sample Indentification			
	ple Type rimary		nl); 1, 125 ml poly	HCL, 4°C		VOCs (pCBSA (EPA	8260B); 314 Modiified)	140	5	16-02-2015/00]			

Notes:

L6-02002015/00/ Dup taken e1420

Well ID #	t: LW-01			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Well Diam	eter (in): 4			Pump Model an	d ID: OED	Bladdy	er	Date: / 6 -	1-15				
		OC - North Si	de	Tubing Type an	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4		vent: Septen	nber 2015			
	Vell Depth (WQ Meter Mode	l and ID: Y	SI Pas	sents Flow Cel	Project Nur	nber: F205				
Screen Int	erval (ft): 2	30-250		Minimum Initial	Purge Volum	me (mL): /	300	Client Name: Montrose / demaximis					
	NAPL (ft):			Value Communication	Control B	ox Setting		Client Proje	ect Number:				
Depth to V	Vater (ft):	64.64		CPM: 2 R: 1	Walnberg								
oump Set	Depth (ft):	240		Weather Condit	ions: (/	ear				J			
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	рН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
1339	69.14	200	1300	25.2	365	7.53	82 3	2.60	-18.8	isystem us removed			
1344	64.64	1-	2300	25.0	365	7.32	462	2.20	-51.8	9			
1349	641.4	1	3300	25/	364	723	47.9	7.90	-55.8				
355	64.64	225	4650	25.2	364	7.22	45.3	1.93	-60,5				
401	[4.14	1	6000	25.0	365	7.23	45.0	1.76	- (4.8				
Sampl	Sample Type Quantity/Container Type			Preservative		Analy	rsis	Samp	le Time	Sample Indentification			
Prir	Primary 3, VOAs (40 ml); 1, 125 ml poly			VOCs (8260B):				1405 LW-01-20151001					

Notes:

Vell ID #: LW-02			Purging Method	: Low-Flow			Site: Montre	ose Chemica	al Superfund		
Vell Diameter (in):	4		Pump Model an	dID: 9	(mp	-50	Date: /0/	2/15			
leasurement Point:	TOC - North Si	de		d Diameter:	TLPE,17X1/	4 x LDPE.17x1/4	Sampling Ev	vent: Septen	nber 2015		
stalled Well Depth	(ft): 253		WQ Meter Mode	I and ID: /	LORIDA	4.52	Project Num	ber: F205			
creen Interval (ft):			Minimum Initial	Purge Volur	ne (mĹ):		Client Name: Montrose / demaximis				
epth to LNAPL (ft):	NA		.1	Control B	ox Settings		Client Project Number: NA				
epth to Water (ft):	61.99		CPM: # R: /6	D: 5	PSI: /	20.	Sampled By: UW				
ump Set Depth (ft):	' '2'	10:	Weather Condit	ons:	SUMNY /	788 F					
Time Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
hh:mm) Water	(mL/min)	Purged	(deg C)	(mS/cm)	pH	(NTU)	(mg/L)	(mV)	Observations		
(ft)		(mL)	(3-7	turnerand.	P.1.	(······)	(5/	()	,		
234 62.03	150	2100	28.21	0.2,53	7.45	17.10	0.00	-116	CUSTAR/ NO GOOR		
1241 62.04	150	2050	29.67	0.353	7.45	14.8	0.00	-127	CUENCINO ODOR		
1248 62.04	150	3800	30.02	0.353	7.46	14.0	0.00	-130	CLUTE INO ODER		
255 62.04	150	4550	30.02	0.352	7.46	15.6	0.00	731	CLUTAR /NO ODUR		
7.07 62.04	150	5400	30.01	0.35)	7.46	15.5	0.00	-132	CUTAL I NO ODOR		
1344 62.04	150	6250	30.0	0-35/	7.46	15.4	0.00	0-132			
1309 62 04	150						1				
in or				1	1 - 3 - 1			T a T			
				7							
					7						
Sample Type	Quantity/Co	ntainer Type	Preservative	1	Analys	sis	Sampl	and the second s	Sample Indentification		
Primary	Primary 3, VOAs (40 ml); 1, 125 ml poly			HCL; 4°C VOCs. (8260B); pCBSA (EPA 314 Modiffied)					16 LW-02-205/00		

0

Notes:

Well ID #	#: LW-04			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund					
Vell Diam	eter (in):	4		Pump Model and	d ID: QED	Bladd	2.5	Date: 7-3	0-15				
leasurem	ent Point:	TOC - North Sie	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Ev	ent: Septem	ber 2015			
	Well Depth (WQ Meter Mode	I and ID: Y	SI Pro S	series Flow Cell	Project Number: F205					
	terval (ft): 2			Minimum Initial	Purge Volu	ne (mL):	425	Client Name	: Montrose /	demaximis			
	NAPL (ft):			July and A		ox Settings		Client Proje					
	Nater (ft):	62.38		12 (14 (17) 1)	6 D: 15	I OI.		Sampled By	: En Wal	Inbeg			
Pump Set	Depth (ft):	735		Weather Conditi	Veather Conditions: Clear / Hot								
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP	9			
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	pH 6,5((NTU)	(mg/L)	(mV)	Observations			
1421	62.38	300	1500	24.6	399	-77.6	6.27	2.27	-77.5	1 system vol removed			
1426	6238		3000	24.7	399	6.57	6.11	2.07	-761	. 0			
431	62.38		4500	24.7	398	6.56	6.02	1.84	-77.8				
1426	62.38		6000	24.5	399	6.58	5.79	1.67	-80.0				
441	62.38		7508	24.6	400	6.59	5.63	1.55	-81.7				
446	(2.38	L	9006	24.5	391	6.60	5.61	1-50	-42.3				
Sampl	Sample Type Quantity/Container Type			Preservative		Analy		Sample	e Time	Sample Indentification			
Prin	mary	3, VOAs (40 ml); 1, 125 ml poly	HCL; 4°C	p	VOCs (82 CBSA (EPA 31		1450	,	LW-04-20156930			

Well ID	#: LW-05			Purging Method						al Superfund			
Well Diam	eter (in):	4		Pump Model and	d ID: QED	Sample	ProBladdor Por	Date: 9 3	30/15				
		TOC - North Sid	le	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4		vent: Septer	mber 2015			
	Well Depth			WQ Meter Mode	I and ID: YS:	I Pro Plu	us Flocell	Project Nur					
Screen In	terval (ft):	230-250		Minimum Initial	Purge Volui	ne (mL):	1300	Client Name: Montrose / demaximis					
Depth to I	NAPL (ft):	NA				ox Settings			ct Number:				
Depth to \	Nater (ft):	66.10			CPM: 2 R: 17 D: 13 PSI: 150 Sampled By: Enic Mark								
Pump Set	Depth (ft):	240		Weather Conditi	Veather Conditions: Cler								
		217 224			Temp. Cond. Turbidity DO ORP								
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	pH	Turbidity (NTU)	(mg/L)	(mV)	Observations			
850	66.10	250	2000	24.8	435.8	7.24	19.4	3.73	41.3	Removed System Valune			
	66.10	250	3250	24.8	432.6	726	8.63	2.87	7.2				
855 900	66.10	250	4500	24.9	432.5	7.29	4.37	2 38	-17.3				
905	66-10	250	5750	24.8	432.6	7.31	3.96	1.96	-39.9				
	66-10		W800-	24.8	4325	7.32	3-69	1.65	-44.6				
915	66-10		8050-	24.8	432.5	7.32	3.55	1.68	-42.6				
200	666	250 99	8300	24.8	433.5	7.32	3.90	1.63	-40.9				
Samp	le Type	Quantity/Cor	ntainer Type	Preservative		Analy	/sis	Samp	le Time	Sample Indentification			
Pri	mary	3, VOAs (40 ml)	, 1, 125 ml poly	HCL; 4°C		VOCs (8 CBSA (EPA 3		920		41-05-2015/001			

Notes: 839. Pulled from durer

	#: LW-06			Purging Method	: Low-Flow			Site: Montrose Chemical Superfund Date: 9/29/15				
Nell Diam		4		Pump Model and	d ID: QE). MP .	50	Date: 9	129/15			
		OC - North Si	de	Tubing Type and	d Diameter:	TLPE.17X1	/4 x LDPE.17x1/4	Sampling Eve	ent: Septem	ber 2015		
	Well Depth (WQ Meter Mode		40R1B4.	0.52	Project Numb				
	terval (ft): 2			Minimum Initial	Purge Volur	ne (mL):		Client Name:	Montrose	demaximis		
	_NAPL (ft):	NA		./		ox Setting	<u>s</u> . <i>u</i>	Client Projec	t Number:			
	Nater (ft):	66.35		CPM: 4 R: 7	5 D:7.5	PSI: /	30"	Sampled By:	LW			
Pump Set	Depth (ft):	2451		Weather Conditi	ons:							
Time	Depth to	Flow Rate	Total Volume	Temp.	Cond.		Turbidity	DO	ORP			
(hh:mm)	Water (ft)	(mL/min)	Purged (mL)	(deg C)	(mS/cm)	рН	(NTU)	(mg/L)	(mV)	Observations		
315	66.41	160	2080	29.12	0.512	7.76	20.4	4.40	0	CLEAR ! NO ODOR		
1320	66.41	160	2880	28.61	0.510	7.42	18.6	4.41	-8.2	CLEAR / NO OHOR		
1375	66.42	160	3280	28.47 0.511 7.41 16.8				4.40	- 10.1	CLARY NO ODOR		
1330	66:44	160	4480	28.45	0.511	7.40	110.7	4.38	-9.2	CLEAR/ NO ODOR		
1335	66.44	160	5280	28.47	0.511	7.41	16.0	4.39	-8.1	CLORE/ NO ODOR		
1340	66-44	160	6080	28.47	0.5/1	7.41	15.1	4.40	8.2	CLUTE/ NO ODER		
	1	/				1.11	1 1	1	0.0	COUNTY O UNE		
	. V											
			1									
	- 1											
Sampl	le Type	Quantity/Co	ntainer Type	Preservative		Analy	sis	Sample	Time	Sample Indentification		
	mary	Partie and A); 1, 125 ml poly	HCL; 4°C	p(VOCs (8)	260B);	1345		LW-06-2015 UG 29		

Notes: STARTED PURGING . 1300 PURGO 2000 ML

Well ID #	#: LW-07			Purging Method:	Low-Flow			Site: Montros					
Well Diam	eter (in):	4		Pump Model and				Date: 9	129/15				
		OC - North Si	de	Tubing Type and	Diameter:	TLPE.17X1		Sampling Éve	nt: Septer	mber 2015			
	Well Depth (1			WQ Meter Model	and ID: F	topisa	4.52	Project Numb	er: F205				
	terval (ft): 2			Minimum Initial I	Purge Volun	ne (mL):		Client Name: Montrose / demaximis					
	NAPL (ft):	NA		.1		ox Settings		Client Project	Number:				
	Vater (ft):	68.35		CPM: 4 R: 7.5 D: 7.5 PSI: 10 /30' Sampled By: [W									
	Depth (ft):	240	/	Weather Condition	Weather Conditions:								
								1 50 1	000				
Time (hh:mm)	Depth to Water (ft)	Flow Rate (mL/min)	Total Volume Purged (mL)	Temp. (deg C)	Cond. (mS/cm)	pН	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Observations			
145	68.40	160	4000 37	00 26.92	0.339	8.00	12:3	+1.65	59	CLOPPE/NO ODOR			
1150	68.41	160	4000	26:16	0.39 4	6-63	12.2	1.23	6	CLERR / NO ODOR			
1155	68-41	160	4800	26.12	0.393	6-54	12.1	1.23	3	CLEAR / NO ODOR			
1200	68.41	160	5600	26-10	0.393	6-52	12-1	1.21	3	CLORE/ NO ODOR			
1205	68.41	160	6400	26.11	0.392	6.51	12.1	1.20	2				
								=.5					
					1								
Samp	Sample Type Quantity/Container Type			Preservative		Analy		Sample	Time	Sample Indentification			
Pri	mary	3, VOAs (40 m	I); 1, 125 ml poly	HCL; 4°C	р	VOCs (8: CBSA (EPA 3:		12/6		CW-07-20150929			

Duryer BLANDER of TUBING. STARTED TAKING DATA AFTER GLODD ML 8 TAMERO PURGING 1/30.

DEL AMO FIELD SAMPLING PROCEDURES/LOGS

DEL AMO SUPERFUND GAUGING DATA

TECHNICIA	AN:	SR		DATE:	9-1-15		CLIENT:	AECON	$\overline{}$
Well ID	Well Size (in.)	Time Gauged	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC
PZL0001	Ч	1430		1			35,39	Ped fourp	i i
PZL0006	, management	Pave	1 00	es .		The state of the s		:	
PZL0007	2	0832					29.50	60.36	TOC
PZL0009	2	1430					50.25	57,70	
PZL0010	2	1505					44 28		
PZL0011	2	1300					31.31	52,30 Del Pero Prop	
PZL0012:	2	1150					38,00	Page	
PZL0013	2	1350					41.00	Purp	
PZL0014	2	1445					4.3.81	64,62	
PZL0016	2	0953					47,33	64.41	TOL
PZL0018	2	08.70					44.11	-	0-10-70
PZL0019	S	100 30					50,34	lu-p	TOL
PZL0020	4	0950					46,51	Parp	
PZEOOZZ	21	1135					4524	9	
PZL0024	4	535					46.01	Ded	
PZL0025	41	0955					48,56	Dell	
PZL0026	2	1325					37,49	p-p	
SWL0002	4	0910					49,69	68,00	
SWL0003	4	1033			, i		ì	77.35	- 1
SWL0004	4	y 8 20					47,31		Ded funp TOC
SWL0005	4	0900					38,80	Pana	TOC
SWL0006	14	0933		TE LOCATE T Age			36,86	Parp Ped Parp	
SWL0007	4	1503					50,32	71.33	
SWL0008	LI	1005		ž			42,02	71.33 Ped lup	<i>U</i>

DEL AMO SUPERFUND GAUGING DATA

TECHNICIAN: JAY SIR DATE: 9/1/15 CLIENT: AE COM

	Well Size	Time	Sheen /	Depth to Immiscible	Thickness of Immiscible	Volume of Immiscibles Removed	Depth to	Depth to well	
Well ID	(in.)	Gauged	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	water (ft.)	bottom (ft.)	TOB of TOO
SWL0009	4	1001					30,16	Parp.	
SWL0015	4	1105					34,61	Prop	<u> </u>
SWL0016	4	1455					4283	6205	lang
SWL0017	4	1520					45.88	Prop	TV
SWL0021	4	1055					39, 25	Peng) de la companya de l
SWL0024	4	1045					36 64	Bed	
SWL0028	4	1130					30,96	Bed Pup	
SWL0038	4	1455					4751	7-71	
SWL0042	4/	0920					45,04	ig 20	
SWL0044	4	0820					47,31	Pup	
SWL0046	4	1155				-	36, 8p	Pelly Del Prop Del Prop Del Prop Del	
SWL0051	U	1015				·····	37.78	Rep	
SWL0057	4	1148					37,79	Pup	
SWL0059	4	0930				à	54,89	66,01	
SWL0068	L(1310				.*	3048	40.11	V
XGW-07A	*****	Una	5/2 fo	Locate	, , , , , , , , , , , , , , , , , , , ,				
XMW-01HD	U	1340					39,88	59.42	TVL
XMW-02HD	4	1335					39,41	59.42 Ded Page	Í
XMW-03HD	Ц	1330			7		38,94	Pump	
XMW-04HD	Ч	1405				-	4034	Deel P	ng (issa agam na
XMW-14	4	0900			T control of the second of the		53, 19	7281	
XMW-21	Ч	1030					46.79		
XMW-27	4	1206			Try and try an		50,70	prd	V
XMW-28	And the same of th					والمراجع المراجع المرا	gengrida est Edda delar de applicación de estado de la companya de applicación de estado de la companya de la c		Managed and construct as
XMW-29	4	RUO	Š				49,02	72,79	TOC
XP-02	4	1200					45,80	-	AA A CONTRACTOR
SWL0010	4	10 14					33,64	116.08	V

DEL AMO SUPERFUND GAUGING DATA

TECHNICIA	AN:	5	<u> </u>	DATE:	alilis		CLIENT:	AECO	<u> </u>
	Well Size	Time Gauged	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOP
Well ID	(in.)		Odoi	Diquia (11)			35 67	8981	
SWL0019	17	1000					39,20	0.1	1
SWL0023	9	1056		Λ 0 2	1100115			17	
SWL0029			ELL_	1	NOONE		53.70	88 40	TOC
SWL0032	4	0840		51.55	4.15			Ded lup	1
SWL0037	4	1440					43,48	98,65	
SWL0041	ι/	0940					45.04	Rug	
SWL0047	4	1600					46,20	91,90	
SWL0048	4	1130					4760	70,30	
SWL0050	ij	0945					48,04	Ding	
SWL0052	•		Pa	rkel	0.18	·		,	
SWL0056	4	1656				ALACA CATA TO THE TAXABLE TO THE TAX	3992	84,66	TOC
	1215	1320					35.91	11201	
SWL0060	16	17,49					3778	Ded	
XG-01WC	4						4478	Det	
XG-02WC		1350			j l			17	
XGW-07C		1 Un	51e	1 to	Locat		40.18	ped	TOL
XP-03	14	10914					10.18	Part Pump	1
SWL0013	4	1130					4303	Pump	
SWL0018	14	1150					440	3 8 2 40	
SWL0030	and the second second second second		WELL	AB	ANDONE	=1)		and the street of the street o	
SWL0033	4	102	1				46,26		TOL
SWL0035		1448	\				42.50		4
SWL0040		0930				18	447	1 Pup	TOC
	- 1	1310					33,7	7 Rys	
SWL0053	11						503	1	q
SWL0054		1310	'				47.82	Port Purse	
SWL0055		17					51,05	1 1 1 1	
SWL0058		1345							
SWL006	1 4	0900)				51,02	136.31	

		LUWII	LUVY VV	DI MIOTA	TORRIVO					
Project #:	150938)-RD1	·	Client: A	Com					
Sampler:	B			Gauging D	ate: [D	01/15				
	PZLODO	<u>, </u>		Well Diam	eter (in.)	3	B 36 8	·		
	l Depth (ft		.30	Depth to Water (ft.): 35.49						
	Free Produ			Thickness of Free Product (feet):						
Reference		PVQ	Grade	Flow Cell Type: YCI PRO PLUS						
Purge Metho Sampling M	od:	2" Grundfo	s Pump		Peristaltic Pump New Tubing Other Pump Depth:					
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Depth to Water (ft.)		
10(3	23.6	7.04	1017	108	2.06	-36.6	600	35.66		
1016	23.8	7.04	1026	63	2.07	-65.4	1700	35.66		
1019	24.1	7.04	1042	32	206	-743	1800	35.60		
1022	24.5	7.03	1026	17	1.96	- 80.5	2400	35.66		
1025	24.6	7.03	1018	12	1.95	-81.5	3000	35.66		
(028	24.8	7.03	1018	12	1.96	184.4	3600	35.66 35-66		
1031	24.9	7-03	1020	11	1.96	+86.4	4200	55-6 Cp		
					•			-		
Did well	dewater?	Yes	No.		Amount	actually	evacuated: 42	<u>'00</u>		
Samplin	g Time: (C	32			Samplin	g Date:	10/01/15	•		
	I.D.: 6W				Laborat	ory: CAL	CIENCE			
Analyze		TPH-G		тве трн-р	- Comment					
	ent Blank		@ Time		Duplica	te I.D.:				
Lequipme	ant Diank		111110							

Project #:	1509 30	PD-1		Client:	4 com	@ Dul	Amo	·
Sampler:	Jn			Gauging D	Date: 10/7	dir		
Well I.D.:	PZL 01	06		Well Diam	neter (in.)	: ② 3	4 6 8	3
Total Wel	l Depth (fi	t.):	Come inches inches in the contract of the cont	Depth to V	Vater (ft.)	:43.90	TO Pa	
Depth to F	Free Produ	ıct:	-	Thickness	of Free Pr	roduct (fe	et):	
Reference	d to:	(PVC)	Grade	Flow Cell	Type:	VSI 556		
Purge Metho Sampling Me	ethod:	Dedicated		300 ml	Peristaltic I New Tubin	g	Other_	545tem = 227
Start Purge T	Time: 190		Flow Rate: _	JUJ 4	***************************************		Pump Depth:	2/
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)
1410	23.48	6.59	1837	80	0.20	-228.3	900	44.30
1413	23.69	6.51	1832	10	0.36	-201.4	1800	44.30
14/6	24.03	6.52	1828	8	0.42	-170.2	2700	44.30
1419	24.09	6.53	1827	8	0.36	-/73.5	7600	44.30
1422	24.10	6.54	1828	8	0.35	-175.3	4500	44.30
A. A.			·			. ?		
		·			·			` .
				`	·			
							-	·
Did well	dewater?	Yes	(NO		Amount	actually e	evacuated:	4.5 L
Sampling	Time:	1423	-		Samplin	g Date:	10/2/15	
Sample I.	D.: (FW	{ 	,4		Laborato	ory: (Oscience	
Analyzed		TPH-G	BTEX MT	BE TPH-D		Offer:	8 Year	
Equipme	nt Blank I.	.D.:	@ Time	-	Duplicat	e I.D.:		

		LUW	CLOAL ALI		TIOKING	JUAIA	SHEEL				
Project #	#:150930	-P01		Client: A	ECOW	7					
Sampler				Gauging I							
Well I.D	PZLO	007.		Well Dian	•	, -		3			
1	ell Depth (GC. ;	Depth to V	Depth to Water (ft.): 29.34 TOC						
Depth to	Free Prod	uct:			Thickness of Free Product (feet):						
Reference		eve	Grade	Flow Cell Type: YSI PRO PIUS							
Purge Meth Sampling N		2" Orund Dedicated	,		Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: <u>[30</u>	7	Flow Rate: 2	so wywn	1sys Voli	2480mL	Pump Depth: 5	1.5			
Time	(II.)										
1310	23.5	7.19	1306	7/000	1.88	-/28:/	600	29,54			
(313	24.0	7.12	1334	272	1.76	-106.9	1200	29.54			
1316	24.7	7.10	1339	131	1.75	-94.3	1800	79.54			
1319	24.2	7.07	1351	106	1.76	-91.0	WOD	29.54			
1322	24.6	7.07	1349	44	1-75	-87-6	7000	29.54			
1325	74.8	7.86	1349	45	1.74 .	- 86.6	3600	29.54			
1328	74.9	7.06	1351	43	1.74	-85.7	4200	29.54			
				4							
					-						
			·								
Did well	dewater?	Yes (N ₀		Amount a	ctually ev	/acuated: <i>426</i>	0			
Sampling	Sampling Time: 1329 Sampling Date: jolol/15										
Sample I.	mple I.D.: GIN SO 25 05 Laboratory: (MSC IENCE										
Analyzed			BTEX MTB				c.o.c.				
 Eauinmer	nt Blank I.I) ·	@				· · · · · · · · · · · · · · · · · · ·				

		LOW F	LOW WE	LL MONI	TORING	DATA S	SHEET		
Project #:	150030-	RD1		Client:	4E Com				
Sampler:	JF			Gauging D	ate: 9 /	\$4/15			
Well I.D.:	PZL00	09		Well Diam	eter (in.):	② 3	4 6 8		
Total Wel	l Depth (fi	t.): <i>57</i>	1.70	Depth to V	Vater (ft.) :	49.9	70		
Depth to I	Free Produ	ıct: _		Thickness of Free Product (feet):					
Reference	ed to:	W	Grade	Flow Cell	Туре: У	51556			
Purge Metho Sampling M	ethod:	2" Grundfo Dedicated	Tubing	200 1	Peristaltic P New Tubing	5	Bladder Pump Other Pump Depth:	(dedicated	
Start Purge	Րime: <u>(Ձ Ա</u> (1		Tump Deptil	<u> </u>	
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fil.)	Depth to Water (ft.)	
1244	23.5	6.39	7962	75	0.46	-%.2	600	50.00	
12 47 23.5 6.45 2918 52 0.41 -98.3 1200 50.0								50.00	
12 50	23.5	6.46	2955	35	0.44	-99.9		50.00	
12 53	23.6	6.47	2970	29	0.50	-99.9	2400	50.00	
1256	24.5	6.50	2999	16	0.49	-103.5	3000	50.00	
1259	24.8	6.50	3059	3	0.44	-103.4		5 0.00	
13 02	24.9	6.51	3082	2	0.44	-1039		50.00	
1305	24.8	6.51	3086	2	0.45	-103.9	4800	50.00	
					·				
						,			
Did well	dewater?	actually e	evacuated: 4	800 ML					
Sampling	Time:	1306			Sampling	Date:	9/30/15		
Sample I.	D.: GW	150250) 6		Laborato	ry: <i>Co</i>	al science		
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	see coc		
Equipme	nt Blank I.	.D.:	@ Time		Duplicate	e I.D.:			

		LOWF	LOW WE	LL MON	ITORING	DATA	SHEET			
Project #	:150930	-RDI		Client: A	ECOM .					
Sampler:				Gauging I	Date: 09	30/15				
Well I.D.	: PZLOOI	Ð		Well Dian	neter (in.)	: (2) 3	4 6 8	3		
Total We	ll Depth (f	ft.) : _{6.} K-	84	Depth to V	Water (ft.)	: 44.35	3			
	Free Produ		············	Thickness	of Free Pr	roduct (fe	eet):			
Reference		eve	Grade	Flow Cell	Type: Y	51 PPO	PLUS			
Purge Methors Sampling M		2" Grundf Dedicated	Pubing		Peristaltic I New Tubin	g	Bladder Pump Other			
Start Purge	Time: <u>/ Z56</u>	<u>></u>	Flow Rate: 2	200 ul lu	100 545 Not	j. 2680 ml —	Pump Depth:\$	9.5		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Depth to Water (ft.)		
1259 24.5 6.11 2799 41 2.50 161.0 600 44.44										
1302 75.3 6.12 2926 32 246 144.4 1200 44.44										
1305 26.2 6.13 2978 32 2.33 133.3 1800 4444										
1308	26-3	6.14	2970	31	2.32	134-8	2400	44.44		
1311	26.2	6.15	2984	32	2.33	134.7	9000	44.44		
1314	26.2	6.15	2987	31.	2.33	131:7	3600	44.44		
1317	26.3	6-16	2969	31	2.32	130.9	4200	44.44		
A										
							_			
Did well	dewater?	Yes c	<u>N</u> o		Amount a	actually e	vacuated:420	0		
Sampling	Time: 13	18			Sampling	Date:	69/30/15			
Sample I.	D.: BWS	0250	7		Laborato	ry:calsci	ひに			
Analyzed	for:	TPH-G	BTEX MTE	ве ТРН-D		Other See	c.D.c.			
Equipmen	nt Blank I.	D.:FBSoT	<u>@</u> ひろう Time	1150	Duplicate	: I.D.:				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555 ชรู : F เรียง ได้เนร

					TIOKIN	JUAIA	SHEET			
Project #	: 150930			Client:						
Sampler	JF			Gauging 1		/14 /15				
Well I.D	.: PZL00	11		Well Diar			3 4 6	8		
ì	ell Depth (30	Depth to	· · · · · · · · · · · · · · · · · · ·					
	Free Prod			Thickness of Free Product (feet):						
Referenc		PVC	Grade	Flow Cell Type: YS1 556						
Purge Meth Sampling M	fethod:	2" Grundf Dedicated	os Pum Tubing		Peristaltic Pump New Tubing Other					
Start Purge	Time: <u>09 (</u>	<u>7</u>	Flow Rate: _	500	ml/min		Pump Depth:	45		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of mb)	Depth to Water (ft.)		
0920	24-4	6.65	2003	90	0.38	-50.9	1500	33.01		
0923	25.5	6.65	2067	89	0.18	-42.4	3000	33.05		
0926	26.2	6.65	2104	68	0.14	- 39.5	4500	33.05		
0929	26.4	6.65	2120	57	0.13	-37.5	6000	33.05		
0932	26.6	6.64	2121	49	0.12	-37.5	7500	33.05		
0935	26.7	6.64	2125	47	0.11	-37.0	9000	33.05		
0938	26.7	6.64	2130	4.8	0.12	-36.3	10500	77.05		
4										
`				·		(1.1				
						1				
							·			
Did well d	ewater?	Yes (10	-	Amount a	ctually ev	acuated: In	500 ML		
Sampling '	Time: 0	939			Sampling		0/1/15	JOO ME		
ample I.I).: GWS	02508	**************************************		Laborator		Science			
analyzed i	for:	TPH-G I	ЗТЕХ МТВІ				se co			
quipment	Blank I.D).:	@ Time		Duplicate		5-6 600			

Project #	: 150930)- RD(Client: Account							
Sampler:					Gauging Date: 10/02/15						
Well I.D.	: PZL001	2	-	1	Well Diameter (in.): 2 3 4 6 8						
	ell Depth (1		50 50	Dept	Depth to Water (ft.): 38.50						
	Free Prod	- 52	· · · · · · · · · · · · · · · · · · ·	Thickness of Free Product (feet):							
Reference		ÆVC	Grade	ļ	Flow Cell Type: YSI PPO PLUS						
Purge Meth Sampling M Start Purge		2" Grunds Dedicated	Pubing	∞ ML	Peristaltic Pump Bladder Pump New Tubing Other Mun / SYS Vol: 2180 Pump Depth: 47						
Time											
1447 24.4 6.15 2597 4 2.21 -35.1 600 38.75											
450	24.5	6.15	2595								
1453	24.5	6.15	2595	1		2.21	-35.2	1800	38.76		
1456	24.6	6-15	2591	1		2,20	-35.2	2400	38,76		
1459	24.6	6.15	2593	1		2.16-	35.2	3000	38.76		
1502	24.7	6.15	2592		(2/5.	35.3	3600	38.76		
1505	24.5	6-14	2583			7.15	-34.9	4200	38.76		
,								÷			
						,					
,											
Did well dewater? Yes Amount actually evacuated: 420								200			
Sampling	Time: 16	506				Sampling		-			
· · · · · · · · · · · · · · · · · · ·	D.: GWSo				Laborator		1 1				
	Analyzed for: TPH-G BTEX MTBE TPH-D OTHER: ICE C.O.C.										
Equipmen	nt Blank I.	D.:	@ Time			Duplicate					

]	LOW FI	LOW WE	LL MONIT	<u> </u>	DATA S	HEE'L			
Project #:	150930	-RDI		Client: A	Ecom					
Sampler:	JF			Gauging Da	ate: 9/	14/15		·		
Well I.D.:	BKZ P	ZL0013		Well Diame	eter (in.):	2 3	№ 6 8			
Total Well	Depth (ft	.): Pumpi	n well	Depth to Water (ft.): 40 · 75						
Depth to F				Thickness of	of Free Pr	oduct (fee	et): <u> </u>			
Reference	d to:	evo	Grade	Flow Cell 7	Гуре:У	51 556				
Purge Metho Sampling Me		2" Grundfo			Peristaltic P New Tubing	5		Deducated pur		
Start Purge T	ime: <u>1308</u>		Flow Rate: _	500 ML	- /min		Pump Depth: <u>5</u>			
Time Cond. (mS/cm or Turbidity D.O. ORP Water Removed Depth to Water Cond. (mS/cm) (NTUs) (mg/L) (mV) (gals. or m) (ft.)										
1311 23.6 6.50 2633 108 3.68 -144.6 1500 40.79										
13 14	23.8	6.51	2 6 5 2	29	2.53	-131.6	3000	40.79		
1317	24.8	6.54	2699	19	1.50	-130.0	4500	40.79		
13 20	25.2	6.55	2775	1	1.30	-140-4	60 00	40.79		
13 23	25.2	6.54	2780	0	1.20	-140.9	75 00	40.79		
1326	25.3	6.54	2794	0	1.12	-145.0	9000	40.79		
1329	25.3	6.54	2805	0	1.10	-170.1	10500	40.79		
17 32	25-3	6.54	2810	0	1.09	-176.2	12.000	40-28		
13 35	25.3	6.54	2814	0	[.11	- 176.9	13500	40.79		
·										
	<u></u>				<u> </u>	<u></u>	. 1 / 2	27.0.2		
Did well	dewater?	Yes	(Ng		Amount	actually 6	evacuated: [3	3500 ML		
Sampling Time: 1736 Sampling Date: $10/2/15$										
Sample I	Sample I.D.: GWS02510 Laboratory: Colscience									
Analyzed	Analyzed for: TPH-G BTEX MTBE TPH-D Other: See CoC									
Equipme	nt Blank I	.D.:	@ Time		Duplicat	te I.D.:				

				<u> </u>	<u> </u>			1		
Project #:	150930	-RDI		Client: A	ECOM!		· .			
Sampler:				Gauging D	ate: 09/	30/15				
	PZLOOI	4	·	Well Diam	eter (in.):	Ø 3	4 6 8			
	l Depth (ft		Service March	Depth to W	/ater (ft.)	: 43.8	4			
				Thickness of Free Product (feet):						
Reference	Free Produ	PYE	Grade	Flow Cell Type: YSI Pao Plus						
Purge Metho Sampling M	od:	2"(Grundfö Dedicated	S Pump		Peristaltic Pump Bladder Pump New Tubing Other SW Vol. 2640 ml Pump Depth: 58.5 '					
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1358	25.5	6.51	2090	44	3.34	150-1	600	43.85		
1401	25.7	6.49	2112	44	3.26	122.5	1200	43.85		
1404	27.3	6-46	2158	42	2.23	111.0	1800	43.85		
1407	27-8	6-46	2157	89	3-26	113.8	2400	43.85		
1410	28-1	6.47	2165	123	3-34	119.2	3000	43.85		
1413	28.7	6.47	2180	141	3.26	126.1	3600	43.85		
1416	28.9	6.47	2189	124	3-27	126-8	4200	43.85		
1419	29.0	6.47	2188	102	3.21	124.3	4800	43.85		
1422	29.3	6.47	2187	101	3.22	120.1	5400	43.85		
1425	29.4	6.47	2[87	102	3.21	117.0	6000	43.85		
							·			
Did well	dewater?	Yes	No		Amount	actually 6	evacuated: 60	00		
	t				Samplin	g Date:	9/30/15			
	g Time: (4						, , ,			
Sample	I.D.:GWS	02511			Laboratory: CALSCIENCE					
Analyze	d for:	TPH-G		TBE TPH-D			EE (.D.(.			
Equipmo	ent Blank I	.D.:	@ Time		Duplica	te I.D.:				

· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				
Project #:	150930	-1201		Client: AECOM						
Sampler:				Gauging D	oate: 10 0	2/15				
	PZLOO	16.	-	Well Diam	eter (in.):	② 3	4.68			
	l Depth (ft		.50	Depth to Water (ft.): 47. 🕡						
	ree Produ			Thickness of Free Product (feet):						
Reference		evc	Grade	Flow Cell Type: YSI PROPLUS						
Purge Metho Sampling Me	od: ethod:	2" Grundfe Dedicated	Tubing	300 ml/m (1	Peristaltic P New Tubing	2	Bladder Pump Other_ Pump Depth:5	-) '		
Start Purge T	Time: 135		Çiş _i	1 HUMAN	<u> </u>		Tump Dopun			
Time	Temp. (% or °F)	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Depth to Water (ft.)		
1354	24.3	6-70	1570	412	4.25	108.6	900	47.35		
1357	24.9	6.70	1571	218	4.13	108.9	1880	47.35		
1400	25.1	6-70	1571	192	4.12	111.7	2700	47.35		
1402	75.0	6.70	1575	179	4.00	111.9	7690	47.35		
1405	25.1	6.70	1573	175	3.94	114.3	4500	47.35		
1408	28.2		1576	177	3.91	114.7	5400	47:35		
1411	25.2		1573	177	3.90	115.1	6300	47.25		
								ž.		
				·		·				
Did well	dewater?	Yes	No		Amount	actually o	evacuated:	300		
Sampling	g Time: 14				Samplin	g Date: /	0/02/15			
	.D.: 6 W	•	2_		Laborato	ory: CALS	CIENCE			
				ГВЕ ТРН-D	TPH-D Other:					
	nt Blank I		@ Time		Duplicate I.D.:					

		LOW FI	LOW WE	LL MONI	IORING	DATAS				
Project #:	150930	PDI		Client: AE	com_					
Sampler:				Gauging D	ate:[0 01	15				
	PZLOOI	8		Well Diam	eter (in.) :	ව 3	B 6 8	· .		
	ll Depth (fi		Ge	Depth to Water (ft.): ロリ.og						
				Thickness of Free Product (feet):						
Reference	Free Produ	eve eve	Grade	Flow Cell						
Purge Metho Sampling M	od: (ethod:	2" Grundfo Dedicated	os-Pump	Peristaltic Pump New Tubing Other Sys vol. 2675 w Pump Depth: 58						
Start Purge	Time: 09 15		53							
Time	Temp.	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
0918	22.2 6.78 2310 6 4.40 90.1 600 44.25									
0921	22.1	6.53	2185	7 20 174 1700 44.76						
0924	22-3	6.47	1981	40 2.64 160.1 1800 44.26						
0927	22-9	6.43	2019	17	2.48	127.6	7400	44.26		
0930	23.2	6.43	2018	10	2.49	120.0	3000	4426		
0933	23.5	642	1970	. 7	2.39	101.1	3600	44.26		
0936	23.7	6-41	1969	7	2.38	96.3	4200	44.26		
0939	23-8	6.41	1971	6	2.38	95.4	4800	9426		
	·	,			·	·				
Did well	l dewater?	Yes	EN9		Amount	actually	evacuated: 48	<i>80</i>		
Samplin	Sampling Time: 0940 Sampling Date: 10/01/15									
Sample I.D.: GW507513 Laboratory: CALSCIENCE										
Analyze		TPH-G	BTEX M	ТВЕ ТРН-D		Others 2	TC.D.C.			
			(a),		Duplica	te I.D.:				
Equipm	Equipment Blank I.D.: Fiscold Time DIS Duplicate I.D.:									

	I	LOW FI	LOW WE	LL MONIT	UKING.	DAIAL	THE T		
roject#: 🔨	5 0930	-PDI		Client: AECOW					
ampler:				Gauging Da	ate: 10	0.6/15			
Vell I.D.:		Э		Well.Diame	eter (in.):	2 3	4 6 8		
otal Well			වෙව	Depth to W	ater (ft.):	51.0			
epth to Fr				Thickness of Free Product (feet):					
Referenced		PVC	Grade	Flow Cell Type:					
urge Method ampling Met	: hod:	2" Grundfo Dedicated			Peristattic Pump Bladder Pump New Tubing Other Pump Depth:				
tart Purge Ti	Temp.	рН	Cond. (mS/cm or µS/cm)		D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
Time	15.99	105	DNA	PIDE	TECTE	> W/1	NIERFACE P	rose —	
	2.3	GALL	ons	BAILED	W/ STA	NIESS	STEEL BAI	PR	
_	DONN		HALF	FACE	RESPI	ZATI			
_	分完	ES DIE	P						
	53.9	3					1.	:	
			·			-	:		
\$2.					<u> </u>		:		
		·							
							,		
ŕ									
ď	10	C An	11015	Cold	ECT+	D -			
D: 1 11	downter?		No No	100	Amount	actually	evacuated:		
Did well		165	110		Samplin			/	
Sampling					Laborat				
Sample I.	.D.:				, Edourat	Other:			
Analyzed		TPH-G	BTEX M	итве трн-D	D. 1' -		/		
Equipme	nt Blank	I.D.:	Tin	ne /	Duplica		Δ 95112 (408	3) 573-0555	

	1	JO 44 T. T	70 11 11 22	CEL TATOLAX							
Project #:	15090-1	201		Client: Afcom							
Sampler: 3	JF			Gauging Da	ate: 9	14/15					
Well I.D.: 4	WIZ PZ	10020		Well Diameter (in.): 2 3 4 6 8							
Total Well I				Depth to Water (ft.): 46 · 37							
Depth to Fre				Thickness of Free Product (feet):							
Referenced		₽Ø¢		Flow Cell Type: YSI 556							
Purge Method: Sampling Meth	2	2" Grundfo Dedicated	Fubing		New Tubing						
Start Purge Tin	ne: <u>1150</u>	· .	Flow Rate: _	500 1	ul fouin		Pump Depth:)7			
Time (Time Cond. (mS/cm or Turbidity D.O. ORP Water Removed (ft.) Or °F) pH PS/cm) (NTUs) (mg/L) (mV) (gals. or nL) (ft.)										
	25.1	6.13	6451	0	3.07	-72.7	1500	46.55			
	25.7	6.17	7290	0	1.54	-72.9	3000	46.55			
	26.6	6.50	7890	0	0.86	-74.9	4500	46.55			
	26.8	6.21	8029	0	0.70	-75.7	6000	46.55			
1205	27.0	6.24	8129	0	0.58	-77.4	7500	46.55			
	27.2	6.26	8120	0	0.56	-79.0	9000	46.55			
1211	27.2	6.26	8128	0	0.57	-79.1	10500	46.55			
1214	27.2	6 26	8121	0	0.56	-80.1	12000	46.55			
·											
Did well d	Did well dewater? Yes Amount actually evacuated: (2000										
Sampling '	Time: 12	.15	-		Samplin	g Date:	10/2/15				
Sample I.I	D.: GW	502519	5		Laborato	ory: <i>(</i>	alscience				
Analyzed		TPH-G		ГВЕ ТРН-D		Other:	See CoC				
Equipmen		.D.:	@ Time		Duplicat	te I.D.:					

		LUWE		LL IVIOIVE	CICITO					
Project #:	150930	-ROI		Client: AECOV						
Sampler:				Gauging Date: 15						
	PZL002	2		Well Diameter (in.): 2 3 4 6 8						
	l Depth (f		50	Depth to Water (ft.): 44.05						
	Free Produ			Thickness of Free Product (feet):						
Reference		QVE"	Grade	Flow Cell						
Purge Metho Sampling Me	od:	2" Grundfo Dedicated	os Pump Tubing	Peristaltic Pump Bladder Pump New Tubing Other SYS VOL-2380 M Pump Depth: 52						
Time	Temp.	pН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nL)	Depth to Water (ft.)		
1(26	24.6	6.14	2333	7	2.71	25.2	600	44.13		
1109	24.5	6-14	2331	5	2.70	24.3	1200	44.13		
1112	21.5	6.13	2333	4	2-71	24.1	1800	44.13		
1115	24.5	6.12	2332	3	2.72	23.8	2420	44.13		
1118	24.6	6-12	2332	2	2.73		3000	44.13		
1121	24.6	6-12	2331	e (2.73	24.2	7600	44.13		
					٠.		••			
				2						
						.,	·.			
							·			
₂ s										
Did well dewater? Yes Amount actually evacuated: 3600										
Sampling Time: (122 Sampling Date: 10 0 (15										
Sample I	.D.: G W	507516			Laborato	ory: CALS	CIENCE			
Analyzed		TPH-G	втех мл	ГВЕ ТРН-D		Otherse	€ C.D.C			
	ent Blank l	[.D.:	@ Time		Duplicat	te I.D.:		·		
Danpine							95112 (408)	573-0555		

		DOW, I	0011112			· · · · · · · · · · · · · · · · · · ·				
Project #:	150930	-PDI		Client: AECOM						
Sampler:				Gauging D	ate: 10/	02/15				
	PZLOD	24.		Well Diam	eter (in.):	∂ 3	AP 6 8			
	ll Depth (f		, _D	Depth to Water (ft.): 4606 TOP OF POR						
	Free Produ			Thickness of Free Product (feet):						
Reference		PVC	Grade	Flow Cell Type: YSI PRO AUS						
Purge Metho Sampling M	od:	2" Grundfo Dedicated	ns Pump	3	Peristaltic P	'ump	Bladder Pump Other_ Pump Depth:5			
Time	Temp.	рН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)		
0753	22.2	5.95	2347	38	276	-12.5	900	46.08		
o 756	22.4	5,95	2368	18	2.89	-14.5	1800	46.08		
0759	22.5	5.98	2402	l!	2.68	-9.6	2700	46.08		
0807	23.4	6.05	2416	6	2.33	-25.9	3600	46.08		
0805	23.4	6-06	2410	5		-26-1	4500	46.88		
0808	23-6	6.07	2408	5	2.31	- 27.8	5400	4608		
0811	23:7	6.07	24/0	5	2.31	58.4	6300	46.08		
							·			
				·						
7										
Did well	dewater?	Yes	(No		Amount	actually 6	evacuated:&	300		
					Samplin	g Date:	10/02/15			
Sampling Time: 08/2 Sample I.D.: Gw Sols IT						ory: (ALS				
1	TPH-G	BTEX M	Other:							
	Analyzed for: TPH-G BTEX MTBE TPH-D Equipment Blank I.D.: 75502085 @ Time & 653					Duplicate I.D.:				
Equipme	ent Blank I	·D·H502	USO Time	0655	Duplicate LD					

		LOWE	LOW WE	LL MON	TTORING	J DATA	SHEET		
Project #:	150930	RD-1	·	Client:	AECOM 6	e Oct An	nsis .		
Sampler:	٨			•	Date: 6				
Well I.D.	: PZLO	025		Well Diar	neter (in.)	: 2 3	Ø 6.8	3	
Total We	ll Depth (f	t.):		Depth to '	Water (ft.)	: 48.6	y To	Post	
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):					
Reference	ed to:	KVQ	Grade	Flow Cell	Туре: <u></u> Ү	51 556			
Sampling M	`	Dedicated	Tubing		Peristaltic Pump Bladder Pump White 2065 New Tubing Other				
Start Purge	Time: 123	1	Flow Rate: _	400	mulain		Pump Depth:	53.5'	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of ml)	Depth to Water (ft.)	
1237	23.67	6.18	3559	6	0.48	-167.7	1200	48.85	
1240	24.39	6.24	3619	5	0.36	-155.8	2400	48.85	
1243	24.80	6.30	3645	6	0.29	-1731	3600	48-83	
1246	24.88	6.32	3661	6	0.23	-196.2	4800	48.85	
1249	24.92	6.34	3663	S	0.22	- 199.9	6000	48.85	
1252	24.98	6.36	3663	C	0.21	203.1	1700	48.85	
							•		
				-					
Did well	dewater?	Yes	160		Amount	actually e	vacuated:	7.7.4	
Sampling	Time:	1253		The control of the second of t	Sampling	g Date: C	1/30/15		
Sample I.	D.: 6w 5	502518			Laborato		lscience	- Commence of the Commence of	
Analyzed	for:	TPH-G	BTEX MTI	Other 826013					
Equipmen	nt Blank I.	D.: FB(0	@ 72075 Time	Duplicate I.D.:					

	.]	LOW FI	LOW WE	LL MONIT	CORING	DATAS	HEEL	
Project #:	150930 -	-ROI		Client:	l Ecom			
Sampler:	JF			Gauging Da	ate: 9/	14/15		
Well I.D.:	PZT00	26		Well Diame	eter (in.):	2 3	4) 6 8	
Total Wel	l Depth (ft	.) : Pump	in well	Depth to Water (ft.): 37·15				
Depth to F	ree Produ	ct: ~		Thickness of Free Product (feet): ELT -				
Reference	d to:	PVO	Grade	Flow Cell 7	Гуре:	YS1 53	56	
Purge Metho Sampling Me	ethod:	2" Grundfo Dedicated	Tubing		Peristaltic P	>	Bladder Pump Other_	Pedicated por
Start Purge T	Time: 1456	7	Flow Rate: _	200 M	-/mn		Pump Depth:	77
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	(gals. or MD)	Depth to Water (ft.)
1459	26.3	6.61	2687	68	0.57	-40.5	600 37 80 r	37.80
15 02	26.5	6.63	2685	46	0.33	- 41.1	1200	37.85
1505	27.3	6.65	2733	34	0.25	- 41.4	1800	37.85
1508	28.0	6.65	2794	22	0.27	-42.9	2400	37.85
15 11	27.2	6.63	2738	17	0.19	- 44.6	3000	37.85
15 14	27.5	6.64	2759	16	0.19	- 44.1	3600	37.85
1517	27.5	6.63	2760	16	0.19	- 44.8	4200	37.85
1520	27.5	6.64	2764	15	0.19	-44.1	4800	37.85
			·					
Did well	Did well dewater? Yes (%) Amount actually evacuated: 4\%00							
Sampling	Time: (5 2 \$			Sampling	g Date:	9/30/15	
Sample I	.D.: G-W	502519			Laborato	ry: Ca	Iscience	
Analyzed	l for:	ТРН-G	BTEX MT	BE TPH-D		Other:	See Co(
Equipme	nt Blank I	.D.:	@ Time		Duplicate I.D.:			

	I	LOW FI	OW WE	LL MC)NII	OKING	JAIA S.	1117171		
roject#:(50				Client: AECO W						
ampler: EIS					Gauging Date: 10 07 15					
	100	01.		Well I	Well Diameter (in.): 2 3 4 6 8					
Vell I.D.: <u>5 เป</u> otal Well Dep			90	Depth	Depth to Water (ft.): 75 51.72					
Depth to Free F				Thickr	Thickness of Free Product (feet):					
eferenced to:		(PVC)	Grade	Flow (
urge Method: ampling Method:	,	2" Grundfo Dedicated				Peristałtić Pu New Tubing		Bladder Pump Other_ Pump Depth:		
tart Purge Time:			Cond.	T						
1	np.	"U	(mS/cm or µS/cm)	Turbi (NT)	· 1	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
	or °F)	pH OF		ETEC			INTER	FACE PR	BE_	
		5 ml	OF SPH	REI	MOU	ED W	D1580	SABLE BA	LER-	
120 D	51									
	TW		92							
							<u> </u>			
								,		
							·			
- 2		SAM	PLE	DAK.)				
Did well dew			No	1 1		Amount	actually	evacuated:		
						Samplin	ig Date:		/	
Sampling Ti	116.	/				Laborat	ory:		r	
Sample I.D.:	$-\!\!\!/$		DTEV N	MTBE 7	грн-Д	/	Other:			
Analyzed for	,	TPH-C	@			Duplica	ite I.D.:			
Equipment E	3lank	I.D.:		ime	A	Laproc	lose C	A 95112 (40	8) 573-0555	

		LUWI	LOW WE	TT MON	TIOKING	y DATA	SHEET .				
Project #	150930	~ PD1		Client: A	EOM	. ,					
Sampler:	眧			Gauging I	Date: /º/	105/15	-				
Well I.D.	:SWLOO	02		Well Dian		,)			
	ll Depth (f		00	Depth to V	Depth to Water (ft.): 49.72 Toc						
Depth to	Free Produ	uct:		Thickness of Free Product (feet):							
Reference	ed to:	(PVC)	Grade	Flow Cell	Туре: <u> У</u> С	I PRO P	'CUS				
Purge Methor Sampling M Start Purge		2" Grundf Dedicated	Tubing)	300 iuljuu	Peristaltic Pump New Tubing Other Work ys vol: 2880 ml Pump Depth: 64.5						
Temp. (mS/cm or Turbidity D.O. ORP Water Removed Depth to Water Removed (mV) (gals. or mL) (ft.)											
0927	22.9	6.28	3431	37	2.12	13.7	900	49.73			
0930	23.2	6.78	3435	36	2.31	5.5	1800	49.73			
0933	23.5	6.29	'3430	35	2.11	-0.2	2700	49.73			
0936	23.7	6.30	3430	35	2.50	-5.9	3600	49.73			
0939	23.8	6.30	3430	30	1.90	10-7	4500	49.73			
0942	24.5	6.31	3426	28	1.87 .	14.2	5400	49.73			
cau5	24.5	6.31	3426	24	1.88	-15.9	6300	49.73			
0948	24.6	6.32	3424	20	1,88	-17.7	7200	49.73			
0951	24.6	6.33	3424	21	1.89	-18.7	8100	49.73			
0954	24.7	6.33	3424	71	1.89	-19-6	9000	49.73			
er e											
Did well dewater? Yes No Amount actually evacuated: 9000											
Sampling	Time: 099	55			Sampling Date: 100 sts						
Sample I.	D.: G WS	0252	3		Laboratory: CALSCIENCE						
Analyzed		TPH-G	BTEX MTE	BE TPH-D							

Equipment Blank I.D.: Fiz Sology Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Time 0650

Duplicate P.D.: 6NS02587@/000

		20011	2011 112		X OIXXIIO		ORRESTED &				
Project #	्रिक्ट	-PD1		Client: AE	EM .		٠.	• -			
Sampler:	EB			Gauging D	,	15					
Well I.D.	: SWLOOD	33		Well Dian	neter (in.)	: 2. 3	4 6 8	3.			
Total We	ll Depth (f	it.): -	the control of the co	Depth to V	Depth to Water (ft.): 50.80						
Depth to	Free Produ	act:			Thickness of Free Product (feet):						
Reference		PVC	Grade	Flow Cell Type: Ysl fre flus							
Purge Meth Sampling M		2'/Grundf Dedicated	Tubing	. •	Peristaltic F	g	Bladder Pump Other_				
Start Purge	Time: <u>0958</u>		Flow Rate: _	too pelluin	/ 543 Vel :	2860 mL	Pump Depth: 6	<u>'g'</u>			
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ormin)	Depth to Water (ft.)			
1001	22.7	6.36	1780	76	3.83	-28.7	600	50.92			
1007	22.8	6.37	1779	25	3.75.	- 31.0	1200	90.93			
1007	23.1	6.39	1778	25,	352	- 35.2	1808	50.93			
1010	23-3	6-39	1780	24	337.	- 37.2	7400	50.93			
(0(3	23.2	6.39	1784	75	3.36	-388	3000	50.93			
1016	23.2	6.39	1786	75	3.34 .	- 40.8	3600	50.93			
1019	23.4	6.40	(78a	25	3,31	- 43.1	4200	50.93			
							,				
				٠.							
i						<u></u>					
Did well	dewater?	Yes C	-No		Amount a	ctually e	vacuated: 425	00			
Sampling	Time: 🌝	20			Sampling	Date: (c	06/15				
Sample I.	D.: 5wr	0003			Laborator	y: Ms	CLENCE				
Analyzed	TPH-G	BTEX MTE	Other Sty C.O.C.								
Equipmer	nt Blank I.	D.: ER -	(a)	9030	Duplicate						
			<u>, </u>	J ' P							

	× 6	XX ET.O	w well	MONITO	RING DA	ATA SHE	ET				
	150930 - 1	11.	/ C1	ient: At	COM_						
		NO I	G	Gauging Date: 9/14/15							
	JF SWLOC	04	W	ell Diamet	er (in.) :	2 3	<u>4</u> 6 8				
Well I.D.:	Depth (ft.)	: PUMP I		epth to Wa							
	ree Produc		1 1	Thickness of Free Product (feet): Flow Cell Type: Y5: 556							
Reference		(V)	Grade F				Bladder Pump				
Purge Methor	Purge Method: 2" Grundfos Pump New Tubing Other Dedicated Pump New Tubing Pump Depth: 66:5										
Time 15 11 15 14 15 17 15 20 15 23 15 26	24.8 24.7 24.7 24.8 9 24.8	pH 6·70 6·71 6·72 6·72 6·73 6·73	Cond. (mS/cm or 45/cm) 3053 3000 2937 2944 2948	Turbidity (NTUs) 71000 71000 71000 71000 180 165	D.O. (mg/L) 1·10 0·47 0·27 0·21 0·20 0·19	(mV) -(50·3) -(57·2) -176·7 -(51·1) -(43·8)	Water Removed (gals. or mE) 15 00 30 00 45 00 6000 75 00 9000 10500 12000	Depth to Water (ft.) 51.86 51.86 51.86 51.86 51.86 51.86 51.86			
15 3	2 24.9	6.73				, seement					
Did w	vell dewater	? Yes	(P)			nt actually		12000 ML			
	ling Time:				Sampi	mg Dato.	cal coence	2			

cal science Laboratory: Sample I.D.: G-W502522 see coc Other: MTBE TPH-D BTEX Analyzed for: TPH-G Duplicate I.D.: @

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555 Equipment Blank I.D.:

roject #: 150930 - RD1	Client: AECOM					
ampler:	Gauging Date: 600115					
Vell I.D.:SWLOODS	Well Diameter (in.): 2 3 4 6 8					
	Depth to Water (ft.): 38-86 TOP OF FOR T					
otal Well Depth (ft.): 67-5						
Depth to Free Product:	Thickness of Free Product (feet): Flow Cell Type: YSI PRO PLUC					
Referenced to: Grade						
urge Method: 2" Grundfos Pump ampling Method: Dedicated Tubing	New Tubing Other					
tart Purge Time: 1352 Flow Rate:	ZOULAUN SYS VOL 2300 ML Pump Depth: 50					
Temp. Cond. (mS/cm o Time (°Cor °F) pH μS/cm)	(mV) (gals or mU) \ (mV)					
111111111111111111111111111111111111111	48 1.95 -75.5 600 38.90					
1995 27 1 1 12 7518	12- 12-00					
1401 23.7 6.11 2533	1/20 /1/20 /20 /70 90					
1404 23.9 6.10 2536	2 168 -42.7 2400 38.90					
21. 2.1.	1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
1407 24-1 6-10 2540	1 1.65 - 36.4 3600 38.90					
1413 11.4 6.09 2543	1 1.64-35.1 4200 38.90					
1910						
Did well dewater? Yes	Amount actually evacuated: 4200					
	Sampling Date: (0/01/15					
Sampling Time: 1414						
Sample I.D.: GW SOLS 23	Laboratory: OKISCIENCE					
Analyzed for.	MTBE TPH-D Other: Set C. D. C.					
Equipment Blank I.D.:	Duplicate I.D.: O Barrers Ave. San Jose, CA 95112 (408) 573-0555					

		LOWITE	OW WE	PP MIOIAT	CORGINO				
oject#:	150930	- RO(Client: At	com:	. `			
ampler:				Gauging Date: 10 01 15					
	SM (000	(o ·		Well Diameter (in.): 2 3 (4) 6 8					
	Depth (ft		0	Depth to W	ater (ft.)	36.91	6		
		,	U	Thickness					
eference	ree Produ	PVC)	Grade	Flow Cell					
urge Metho ampling Me	d:	2" Grundfo	s Pump		Peristaltic P	'ump	Bladder Pump Other_ Pump Depth: <u>5/-</u>		
	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or pat)>	Depth to Water (ft.)	
Time 1449		6-54	1548	44	1.76	92-3	600	37.09	
		6-61	1758	12	1.91	25.0	1200	77.10	
455	24.0	6.62	1757	2	1.95	9.6	1800	37.10	
1458	24.3	6.62	1759	2	1.81	4.2	2400	37.10	
1502	24.4	6.62	1765	1	1.80	1.3	3000 3600	37.11	
1505	24.5	6-61	1765		1.78	-1.0	4200	37.11	
(508	24.5	6-61	1767	<u> </u>	1.78	+3.8	7200	1 > /. ()	
				·					
						,			
	``								
ā									
D: 1 11	1 1	Voc	<u>N</u>		Amoun	t actually	evacuated: 42	230	
	dewater?						10/01/15		
Samplin	g Time:	509							
Sample	I.D.: 6W	50252	<u>.4</u>			tory: CA LS			
Analyze	ed for:	TPH-G	BTEX M	MTBE TPH-D			er (.0(·		
Equipm	ent Blank	I.D.:	W Tin	ne		ate I.D.:	A 95112 (408		

LOW FLOW WELL MONITORING DATA SHEET
LOW FLOW WELL MONTO-
iject #: 150930-R) Gauging Date: 0 7/15
mpler: 5W Well Diameter (in.): 2 3 (4)
ell I.D.: SWURD + Don'th to Water (ft.): 10-21
otal Well Depth (ft.): Thickness of Free Product (feet).
Perth to Free Product: Flow Cell Type:
Purge Method: 2" Grundfos Pump New Tubing Pump Depth: 60' Pump Depth: 60'
Start Purge Time: Cond. D.O. ORP Water Removed (ft.)
Temp. $(NTUs)$ (mg/L) (mg/L) $(NTUs)$ (mg/L) $(mg/$
Time (°C) or F) F1 1815 56 0.27 - 27-8 300 50.60
1352 333 693 1814 49 0.20 -31.1 4500 50.60
1358 23.8 6.92 76 0.21 32.0 6000 50.60
P2 1401 24 1 611 1804 22 020 35.0 G000 50.60
1909 100 100 100 100 100 100 100 100 100
1407 19.5 691 1816 19 014 -36.3 12,000 50.80
1410 124.5 6.91 1800 19 011
Amount actually evacuated: 12, 200
C i Corre
Samping 1 6 WSV252 Labora (O)
Sample I.D.: OTTEN MTBE TPH-D
Analyzed for: Duplicate I.D Duplicate 1.D
Equipment Blank I.D.: Time Equipment Blank I.D.: Time Equipment Blank I.D.:

	TONITORING DATA SHEET
LOW FLOW WEL	Client: AFCOM
11111	1 41 1.5
onler: OF	Gauging Date.
ell I.D.: SWL 0008	Well Diameter (in.): 2 3 4 6 6
tal Well Depth (ft.): pump in well	Depth to Water (ft.): 42.00
tal Well Deput (ta). 70	Thickness of Free Product (feet): V51 55 6
epth to Free Product: Grade	Flow Cell Type: VSI 55 6 Peristaltic Pump Other Pedicated Pump
eferenced to. 2" Grundfos Pump	New Tubing
arge Method: Dedicated Tubing	e: 200 ml /mm Pump Depth:
tart Purge Time: 13 50 Flow Rate Cond.	ORD Water Removed Books
(mS/cm	n or Turbidity D.O. (mg/L) (gals. or ml.) (12.30
Time (Oor °F) pH µ5(c)	0.41 -1070 600 42.30
12 53 23.8 6.74 243	$\frac{1}{31}$ $\frac{1}{2}$ 1
13 56 24.1 6.75 240	77 2 0.31 -113.0 180 42.30
1359 251 071 24	03 2 1001 10 E 2000 42.30
1402 25 2 6.71 24	97 LUL-50 LL-50
1405 /3 / 6.71 74	186 1 030 -114-11 3830
1408 20	
JE TAMA	
	1. 2000 01
	Amount actually evacuated: 3600 mL
Did well dewater? Yes	Sampling Date: 9 /30/15
Sampling Time: (409	Laboratory: Cal science
Sample I.D.: GWS02526	Laboratory: Cal Science Other: See Col
	BTEX MTBE TPH-D @ Duplicate I.D.:
Equipment Blank I.D.:	© Duplicate I.D.: Duplicate I.D.: Oc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555
Equipment Diameters, Inc. Tech Services, Inc.	c. 1680 Rogers Ave., 5
Blaine 1001	

		LUWI	LUW WE	THE MICH	TIONING	DAIA	SHEET		
Project #	: 15093	0 RD-	-	Client: AECom					
Sampler:	JM			Gauging Date: 10/1/15					
Well I.D.	: 5WL	10009		Well Diameter (in.): 2 3 4 6 8					
Total We	ell Depth (1	1	_	Depth to V	Water (ft.)	: 30	.13		
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (fe	eet):		
Referenc	ed to:	PVO	Grade	Flow Cell	Type:	VSI 0-10	vlvs		
Purge Meth Sampling M	lethod:	2" Grundi Dedicated			Peristaltic I New Tubin	Pump	Bladder Pump Other		
Start Purge	Time: 1034	·	Flow Rate: _	500 m	Ymin		Pump Depth:	ed Rmp	
Time	Temp.	pН	Cond. (mS/cm or (LS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or n)	Depth to Water (ft.)	
1037	23.3	6.56	2741	4	0.40	-59.6	1500	31.15	
loub	13.3	6.53	2762	3	0.34	-71.1	1000	31.15	
1043	¥.0	6.53	2765	2_	031	65.6	4500	31.17	
1046	24.0	6.53	2770	2	0.28 -	9.4	booo	31.17	
1049	24.0	6.53	2771	2	0.23	-67.)	7500	31.17	
	•								
					-				
		~							
				······································	e				
Did well	dewater?	Yes (No		Amount a	ıctually e	vacuated: 750	oni	
Sampling	Time:	1050			Sampling		10/1/11-	***************************************	
Sample I.	D.: 6h	150257	<u> </u>	- AMARIA SANTA	Laborator		al Svence		
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D		Other 5.0			
 Equipmen	t Blank I.I	D.:	@ Time		Duplicate				
			··						

					TT OTOTIV					
Project #	t: 1509	30-RJ	01	Client: AEcom						
Sampler	: 5m			Gauging Date: O/1/15						
Well I.D	: SWL	~00NO		Well Diameter (in.): 2 3 (4) 6 8						
Total We	ell Depth (ft.): S	5.45	Depth to	Depth to Water (ft.): 33.74					
Depth to	Free Prod	uct:			Thickness of Free Product (feet):					
Referenc	ed to:	(PVC)	Grade	Flow Cell	Type:	3 × 5	sipo plu	\$		
Purge Meth Sampling N	Method:	2" Grund Dedicate	-		Peristaltic New Tubin	Pump	Bladder Pump Other)		
Start Purge	Time: 690'	<u> </u>	Flow Rate: _	500 myn	רומ		Pump Depth:	081		
Time	Temp.	pН	Cond. (mS/cm or (uS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
0912	22.5	7.35	1089	14	0.75	-160.2	1500	33.80		
<u>~15</u>	22.7	7.25	1186	15	0.12	-149.3	3000	33.80		
0918	22.9	7.28	1185	15	6.11	750,3	4500	33-80		
0921	23.1	7.28	1179	15	0.13	-150.8	6000	33.80		
0924	23.0	7.27	1170	14	0.12	-151.9	7500	37.80		
0927	23.0	7.27	1173	14	0.11.	152.7	9010	33.80		
-							48-4			
T				MIN.:						

***************************************								-		
Did well	dewater?	Yes	No		Amount a	ectually e	vacuated: 90	00		
Sampling	Time:	092	8		Sampling	Date:	P/1/15			
Sample I.	D.: 64	15025	48		Laborator	y: Gal	Science			
Analyzed	for:	TPH-G	BTEX MTB	E TPH-D		Ophen: Sec	Science 2 COL	· ·		
Equipmen	t Blank I.I	D.:	@ Time		Duplicate I.D.:					
	·····	***			-					

		LUWFL	TO AA AA IET	LIL IVIOIVI	CHILL	DIXIIX O.				
Project #:	150930RD	· -1		Client: AECOM @ DU Ams						
Sampler:	Jve -			Gauging Date: 9/30/15						
	SWLO	013		Well Diameter (in.): 2 3 4 6 8						
	l Depth (ft		escale finites	Depth to W	Vater (ft.)	: 43.13	To,	TOC		
	ree Produ				Thickness of Free Product (feet):					
Reference	····	PN(C)	Grade	Flow Cell						
Purge Metho Sampling Me	d:	2" Grundfo Dedicated	s Pump Pubing Flow Rate: _	tl.0/2	Peristaltic F New Tubin	Pump g	Bladder Pump Other_ Pump Depth:	545hin 5404 July 1		
Time	Temp.	pН	Cond. (mS/cm or µ&/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or)	Depth to Water (ft.)		
1459	24.21	7.39	578	5	0.34	-162.3	[200	43.23		
1502	24.11	7.24	S85	Ч	0.27	-180.4		43.23		
1505	23.93	7.24	587	Ч	0.23	-171.6	3601	43.23		
1508	23.80	7.21	586	3	0.21	-193.0	4800	43.23		
1511	23.67	7.22	589	3	0.16	196.6	600	43.23		
1514	23.66	7.24	591	3	0.15	-197.5	7200	43.23		
1517	23.64	7.23	592	3	0.14	-199.4	840	42.23		
					·		·			
Did well	dewater?	Yes	M O		Amoun	t actually	evacuated:	8.46		
Sampling	g Time:	1518			Samplin	ng Date:	9/30/18			
Sample	I.D.: Gh	5025	65		Laborat		Calsinn			
Analyze		TPH-G		TBE TPH-D		Other:	6260B			
	ent Blank	I.D.:	@	e	Duplica	ate I.D.:				
1-1-1-1-1-1										

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

removed purp from well

	j	LUWFL		UL IVIOIVE				
roject#:	150930	-RO1			AECOM			
ampler:	RD_			Gauging Da	ate: /	0/2/15		
Vell I.D.:		011		Well Diame	eter (in.):	2 3	4 6 8	
	l Depth (ft		50	Depth to W	ater (ft.):	34.	-5C	
	ree Produ			Thickness	of Free Pr	oduct (fee	et):	
Reference		P(v)	Grade	Flow Cell			roiPlus	
urge Metho	od:	2" Grundfo	s Pump Tubing		Peristaltic P New Tubing	r	Bladder Pump Other_	
Sampling Method: Dedicated Tubing New Tubing Start Purge Time: 0846 Flow Rate: 300 m /mm Pump Depth: 43.5								
Time	Temp.	рН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mag)	Depth to Water (ft.)
0849	22.7	606	2262	6	0.64	-100-6	900	35.43
0852	23-4	6:04		5	0.56	-976	1800	35.45
0855	23-6	6-04	2272	y	0.56	-96-5	2700	35.41
0858	23.7	6.04	2274	4	0.54	- 95-2	3600	35-45
0901	23-8	6-04	2276	3	6.52	-948	4500	35-46
0904	23.9	6-04	2279	3	0-50	-95-0	5460	35-47
Did well	dewater?	Yes	May		Amount	actually	evacuated:	5400 mL
Samplin	g Time:	0905			Samplin	ng Date:	10/2/15	
	I.D.: (w)				Laborat	ory:	(Alschenel	
Analyze		TPH-G	_	ITBE ТРН-D		Other:	10e S	
	ent Blank	ID.	@	ne	Duplica	ite I.D.:		
լուկանիու		***						

			DOTT TYD					
Project #:	150930	-RO.)	Client:	AELOW	\		
Sampler:	511			Gauging D	ate:	10/2/15		
	SWLD			Well Diameter (in.): 2 3 4 6 8				
	1 Depth (fi		~	Depth to W	ater (ft.)	: 42.	-84	
	Free Produ			Thickness				
Reference		PVC	Grade	Flow Cell	Гуре:/	si pro	olvs	
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing				500 mymn	Peristaltic P New Tubing	ump	Bladder Pump Other_ Pump Depth: <i>D</i>	
Start Purge	Гіте: <u>µ23</u>			300 /my1			Pump Depui	1 / 1 5
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mb)	Depth to Water (ft.)
176	122	6.60	2350	ib	0.30	-74.7	1500	43-10
1129	23-D	6.59	9-31-425	9	0.34	-47.8	3000	43.10
1132	23-3	6.60	2427		0.25	-44.9	4500	43.10
1135	23.5	6-60	2442	5	0.19	-429	6000	43-10
1138	23-6	6.60	2434	4		-42.9	7500	43.10
1141	23.7	6.60	294D	4	0-18	-43.3	9000	43-18
	× *							
Did well	dewater?	Yes	(No)		Amount	actually o	evacuated: 90	00 mL
Sampling	g Time:	1142			Sampling	g Date:	10/2/15	
Sample I	~ 9	#5.60	15 0250	28	Laborato	ory: Ca	al Science	
Analyzed		TPH-G	втех мт	BE TPH-D		Other;	al Strence	Œ
	nt Blank I	.D.:	@ Time		Duplicat	e I.D.:		

		····		•						
roject#:	150930 RD)-/		Client: F			Anno			
ampler:	~ (Gauging Date: $lol(l)$						
Vell I.D.:	SWL	0017		Well Diame	eter (in.):	2 3	6 8			
otal Well	Depth (ft.	.):		Depth to Water (ft.): 45.43 To fort						
	ree Produ			Thickness of Free Product (feet):						
Reference		PAC	Grade	Flow Cell 7	Гуре:	51 55-6		A 1		
Purge Metho Sampling Me	d:	Dedicated '	s Pump Oul Tubing > Flow Rate: _		Peristaltic P New Tubing Jmn	g	Bladder Pump Other_ Pump Depth:	845ten winn = 7200		
Start Purge T	ime: <u>/5</u> 07					 T	•			
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ant)	Depth to Water (ft.)		
1505	21.32	6.69	2460	90	Z.37	-91.8	1500	46.10		
1308	22.47	6.59	2494	21	0.84	-131-5	3000	46.10		
1511	22.97	6.60	2583	8	0.34	-168.5	4500	46.10		
1514	23.01	6.62	2612	5	0.29	-190.6	6000	46.10		
1517	23.04	6.63	2618	4_	0.27	-192.1	7500	46.10		
1520	23.05	6.63	2617	ર્પ	0.26	-194.5	9000	46.10		
								-		
	·		·		·					
D:1 -11	Januaran	Voc	<u> </u> 		Amoun	l t actually	evacuated:	9 1		
	dewater?		10			ng Date:	(olilis			
	g Time: \						alscience			
Sample	I.D.: G1	~90 Z	529		Laborat		·			
Analyze	d for:	TPH-G		ITBE TPH-D			87608	0.455		
Equipm	ent Blank	I.D.:	@ Tim	ne	Duplic	ate I.D.:	GWS 02588	@ 1530		

	<u> </u>	JOW FI	JUW WE	LI IVIOIVI	OKENG	DIRECT OF			
Project #:	150930	-60/		Client:	AG COL				
Sampler:	i			Gauging Date: (0) (1) (1)					
	SWLC	319		Well Diame	eter (in.):	2 3	4) 6 8		
	Depth (ft.			Depth to W	ater (ft.):	44.6	0		
				Thickness of					
	ree Produc	et: Pv¢	Grade				Pro Plus		
Reference Purge Metho Sampling Me	d: 2 ethod:	2" Grundfo Dedicated	s Pump Tubing		Peristaltic Pump New Tubing Pump Depth: 1305			ré .	
Start Purge T	ime: 1254			500 mL/	wix)		rump Depun		
Time	Temp. (Cor °F)	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mC)	Depth to Water (ft.)	
1257	23-0	8-13	714	18	0.24	-167-4	1500	44.80	
(300	23-0	7-80	720	75	0-19	7158-3	3000	44.80	
1303	23-2	7.72	. 722	in	0-16	- 152,9	4500	44-80	
1306	23-3	7-62	726	(0)	0.15	-152-3	6000	44-80	
(309	23.2	7-59	722	-5	0.14	-148-7	7500	44-90	
1312	23.2	7.18	720	5	0.13	-144.6	9000	44-80	
1315	23-4	7-57	718	6	0.13	-1402	/0500	44-80	
Did well	dewater?	Yes	No)		Amount		evacuated: (oscoul	
Sampling		1316			Samplin	g Date:	10/1/15		
			ſ		Laborat	ory: C	Alslience		
	1.D.: 600	,		Ottom I to all					
Analyze		TPH-G	BTEX M	TBE TPH-D	Dunlica				
Equipme	ent Blank I	D.:	Time	e	Duplica		95112 (408	1 573-0555	

	LOW FLOW WELL MONITORING DATA SHEET										
Project #:	150930-	-107		Client:	AECO						
Sampler:	120			Gauging Da	ite:	12/11					
Well I.D.:	SUL DO	219		Well Diame	eter (in.):	2 3	<u>4</u>) 6 8				
Total Well			3/	Depth to W	ater (ft.):	35-6	; G				
Depth to F				Thickness of	of Free Pro	oduct (fee					
Reference		P V O	Grade	Flow Cell 7	Гуре:	Y 5#	Pro Plus				
Purge Method Sampling Me	d:	2" Grundfo Dedicated			Peristaltic Pu New Tubing		Bladder Pump Other_				
Start Purge T	_			500 ML/	lenen		Pump Depth: \mathcal{S}	<u>//.</u>			
	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nt)	Depth to Water (ft.)			
Time	(Cor °F)	6-31	1948	23	202	-538	1500	35.72			
0805	22.5	6-31	2018	6	2.03	-63-6	3000	35-72			
0808	22-7	637	2109	3	2.04	-160	4500	35-72			
0811	12-8	6-37	2113	3	1-18	-70-7	6000	35-72			
6814 ·	22-8	6.38	2117	3	1.50	-76-0	7500	35-77			
0817	22-9	6.39	2109	3	1-29	-80.6	9000	35-72			
0820	23-0	6.39	2115	3	1-09	-85-4	10500	35-72			
0223	23-0	6.40	2110	3	1-08	-87-4	12000	35-72			
0876	23-1	6,40	2108	3	0-47	- 96.5	13500	35-72			
0827	23-1	6-40		3	043	- 99-2	15000	35-72			
0832	23-2	6.40	1 -	2	0.46	-99.4	16500	35-72			
Did well	dewater?	Yes	N		Amount	actually	evacuated:	16500 ml			
Sampling	g Time:	0833			Samplin	g Date:	10/2/15				
	.D.: 6w	_			Laboratory: CAISKIENCE						
Analyze		TPH-G		тве трн-р	Other revil						
	ent Blank	[D::885.4	MNGG Time	. 0710	-Duplicate I.D.: FBS 02103 @ 0700						

			LOW WE	LIL WICH	CIVILITO	JOZZEZIE C			
Project #:	150930-	-201			AECOM				
Sampler:				Gauging D	ate: /	9/2/15			
Well I.D.:		0021		Well Diam	eter (in.):	2 3	<u>4</u> 6 8		
Total Wel			(C)	Depth to Water (ft.): 39,07					
	· · · · · · · · · · · · · · · · · · ·			Thickness					
Depth to I		PVO	Grade	Flow Cell			Pro Plu	3	
Reference			-	1 10W CC11		# 15	Bladder Pump		
Purge Metho Sampling Me		2" Grundfo Dedicated	•		Peristaltic P New Tubing	-	Other_		
Start Purge 7	Time: 142)	3	Flow Rate: _	Soo me/	mm		Pump Depth:	54-3	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1426	24-4	6.11	3111	6	0-72	-67-3	Tro	39-46	
1429	24-7	6-11	3122	3	0.65	-69-0	3000	39-46	
1432	25-1	6-10	3138	3	0.57	-71-4	4500	39-46	
1435	25-3	6-10	3152	2	0.49	- 73-9	6000	39-86	
1438	25-4	6-10	3162	2	043	-76-9	7500	38-46	
1441	25.4	6-10	3169	2	0-41	-78-2	9000	39-46	
		٠							
			**						
4			5						
Did well	dewater?	Yes	160		Amount	actually 6		9000 M	
Sampling	g Time:	1442			Samplin	g Date:	10/2/15		
Sample I.D.: 62502530					Laborato	ory: C	'Aschence		
	Analyzed for: TPH-G BTEX MT				Duplicate I.D.: 665 OTTS4 2 1500				
	nt Blank I	.D.:	@ Time		Duplica	te I.D.: 4	1502J84	2 1500	

								,		
Project #:	150930	sa./		Client: A ECOM @ Del Amo						
Sampler:)p		Gauging D	ate: (o	11/15				
Well I.D.:	SWLOO	22		Well Diam	Well Diameter (in.): 2 3 (4) 6 8					
Total Wel	l Depth (ft	:.):		Depth to Water (ft.): 45, 29 To C						
Depth to I	Free Produ	ct:		Thickness of Free Product (feet):						
Reference		PNC	Grade	Flow Cell	Гуре: <u> Ү</u>	51 556				
Purge Metho Sampling M		2" Grundfe Dedicated		500	Peristaltic Pump New Tubing Minin Pump Depth: 187			when = 7218		
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
0819	27.65	6.98	266	Ч	0.51	-139.0	1500	45.29		
0822	22.80	7.11	440	4	0.43	-156,5	3000	45.79		
0825	22.80	7.46	561	4	0.38	-175.8	4500	45.29		
0828	22.82	7.55	582	4	0.38	-180.1	600	45.29		
6831	27.85	7.66	617	\$ contracts	0.33	-187.2)500	45.29		
0834	22.85	7.68	620		0.32	-189.5	9021	45.29		
0837.	27.86	7.70	621	(.	0.30	-192.1	10500	45. 29		
	:									
Did well	dewater?	Yes	6		Amount	actually 6	evacuated:	10.5 -		
Sampling	g Time:	0838			Samplin	g Date:	10/1/15			
Sample I	.D.: G	WS023	574		Laborate	ory:	Colstiena			
Analyze		TPH-G		гве трн-D	TPH-D Other: 8 40 B					
Equipme	ent Blank I	D.: 5020	Time	708	Duplica	te I.D.:				

	L	OW FL		LL MONIT				·			
oject#: Y	5093014	5-/		Client: A							
ımpler:	12			Gauging Da							
ell I.D.:		23		Well Diame	eter (in.):	2 3	6 8				
otal Well I				Depth to W	Depth to Water (ft.): 39,10 To 706						
epth to Fre				Thickness of Free Product (feet):							
eferenced		P/VC	Grade	Flow Cell	Гуре: <u> Ү</u>	51 556		Sylim 22			
urge Method: ampling Meth tart Purge Tir	nod:	2" Grundfo Dedicated	Tuhing	500 mc/	Peristaltic P New Tubing		Bladder Pump Other_ Pump Depth:9	System = 3706			
	Temp.	pН	Cond. (mS/cm or µS/cm)		D.O. (mg/L)	ORP (mV)	Water Removed (gals. orm)	Depth to Water (ft.)			
	(°E°) or °F) 23 .73	7.05	1025	5	0.37	-217.0	1)00	39.36			
	23.74	6.81	1082	8	0.24	-214,5	3040	39.36			
	23.70	6.80	1105	7	0.22	-224.8		39.36			
1202	23.65	6.81)111	6	0./8	-238.4	6000	39.36			
1205	23.72	6.83	1110	6	0.16	-245.1	7502	39.36			
	23.73	6.84	111	6	0.17	-247.1	9000	71. 72			
							<u> </u>				
								·			
								·			
Did well	dewater?	Yes	No)		Amoun	t actually	evacuated:	9 -			
			-09		Sampli	ng Date:	10/1/15				
Sampling			02550		Labora	tory:	Colser				
Sample I.D				Other Trace + TRA							
Analyzed		TPH-C	BTEX 1	MTBE TPH-I			7 ° 7 '				
Equipment Blank I.D.: Duplicate I.D.: Duplicate I.D.: Duplicate I.D.:											

								<u> </u>		
Project #:	150930-	PD1		Client: AECOM						
Sampler:				Gauging I	Gauging Date: 10 07 15					
	:swLa	024		Well Dian			GB 6 8	3		
	ll Depth (1		5.00	Depth to Water (ft.): 38.40 TOP OF PORT						
	Free Produ			Thickness of Free Product (feet):						
Reference		eve	Grade	Flow Cell		1SI PRO				
Purge Metho Sampling M Start Purge		2" Grundf Dedicated	Tubing	200 ml/m	Peristaltic Pump Bladder Pump New Tubing Other OD ML GW SYS Vol-2460 Pump Depth: 54					
Time	Temp.	pH	Cond. (mS/cm or	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nul)	Depth to Water (ft.)			
0924	24.0	6-16	2413	7	1.96	-37.6	600	38.59		
0927 23.8 6.16 2401 2 1.82 48.3 1200								38.59		
0930	24.4	6.16	2401	7	1.71	-53.5	1800	38.59		
0933	24.5	6-15	2402	d'annuer.	1.67	-57.8	थ्०	38.59		
0936	24.7	6.15	240%	(1.66	-58-7	7000	38.59		
0939	24.9	6.15	2408	į	1.65	61.3	3600	38.59		
0942	24.9	6-15	2408	(1.65	-63.5	4200	38.59		
	`									
				÷						
	·	,				·				
,										
Did well	dewater?	Yes	MO		Amount a	actually e	vacuated: 42	00		
Sampling	Time: po	743			Sampling	Date: 18	plor/15			
	D.: Gwsi				Laborator		1			
Analyzed		TPH-G	BTEX MTE							
Equipmen	nt Blank I.	D.:	@ Time		Duplicate					

				2222 171 01 1	TI OILLI	J IVIX II I X				
Project #	ः १०५३	30-RD	1	Client:	AELOM	\		,		
Sampler:	2m			Gauging I	Date: 10	/1/15				
Well I.D	.: SWL	0025		Well Dian	neter (in.)	: 2 3	3 (4) 6 8	3		
Total We	ell Depth (ft.): 20	9.11	Depth to Water (ft.): 36-71						
	Free Prod			Thickness of Free Product (feet):						
Referenc		P(C)	Grade	Flow Cell						
Purge Meth Sampling M Start Purge		2" Grunds Dedicated	os Pump	500 me /	Peristaltic I New Tubin	oump	Bladder Pump Other Pump Depth:			
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)		
0959	225	7.75	550	8	234	-158.1	1500	36.75		
1002	22.5	7.63	550	32_	0.19	-168.5	3000	36.75		
1005	22.6	7.69	544	34	0.15.	-171.3	4500	36.75		
1408	27	7.69	553	30	0.14	-174.D	600	36.75		
1011	22.7	7:71	第2	28	1 2	-178.1	750	36.75		
1014	227,	到当	553	27	0.12	-179.1	900ට	36.75		
1017	22.7	7:1	549	27	0.11	-179.5	10500	36.75		
Did well	dewater?	Yes (No		Amount a	ctually e	vacuated: ν^{o} ,	510 nc		
Sampling	Time:	1018			Sampling	Date:	0/1/15	1		
Sample I.	D.: 61	NS025	80							
Analyzed	for:	TPH-G	втех мтв	Laboratory: Cal Science E TPH-D Other see Co						
Equipmen	ıt Blank I.	D.:	@ Time		Duplicate			***************************************		

							~~~~				
Project #	: 150038	D- FD	· <b>·</b>	Client: A	Client: AECOU						
Sampler:				Gauging I			5				
Well I.D.	:swl	0032	-	Well Dian	1	ŧ		3			
	ll Depth (1			Depth to V	Vater (ft.)	: 52.5	39 52	70 10/07/15			
Depth to	Free Prod	uct: 67.1.1	51.47	Thickness of Free Product (feet):							
Reference	·····	PVC	Grade	ļ	Flow Cell Type:						
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time:		Flow Rate: _			•	Pump Depth:				
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
	2.23	OFS	PH DE	TECTE	> w/10	TERF	HCE FROB				
	5486	ml re	MORED	W/DISPO	SABLE	BAILE	2 ==				
1220	DTFP	:51.7	<u>る</u>				·				
	Drw	: 51	90								
				· ·	· · · · · · · · · · · · · · · · · · ·						
		·									
							•				
					,						
zi.							***************************************				
-	N0	SAMPU	E TA	KEN	,						
Did well	dewater?	Yes/	No		Amount a	ctually e	vacuated:				
Sampling	Time:				Sampling	Date:					
Sample I.	D.: /			Laboratory:							
Analyzed	for:	TPH-G	втех мте	SE TPH-D		Other:					
Equipmen	í it Blank I.I	D.:	@ Time /		Duplicate	I.D.:					

Project #:	150930	-KD)		Client:	AECOV				
Sampler:	JM			Gauging D	ate: 🏲	leli5			
Well I.D.:	SWL	E8 60		Well Diam	eter (in.):	2 3	<b>4</b> 6 8		
Total Wel	ll Depth (f		.41	Depth to V	Vater (ft.)	: 46.2	1		
	Free Produ			Thickness of Free Product (feet):					
Reference		(PDG	Grade	Flow Cell Type: ysi go glis					
Purge Metho Sampling M	od:	2" Grunds Dedicated	os Pump Tubing		Peristaltic P	ump	Bladder Pump Other_		
Start Purge	Time: <u>133</u> 0	<u> </u>	Flow Rate: _	500 ml/nn			Pump Depth:	37	
Time	Temp.	pН	Cond. (mS/cm or (S/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nil)	Depth to Water (ft.)	
1333	22.9	7.10	754	5	0.42	-83.5	150 D	46.30	
,	1336 229 6.75 1448 5					102.1	3900	46.30	
1339 229 676 1487				3	0.29	1/02.7	4500	46.30	
1342	23.3	6.79	1461	3	0.26	-106.5	6000	46.3V	
1345	23.4	680	1479	3	6.33	-108-3	7500	4630	
1348	23.3	6.83	1427	3		-1090	9000	46.30	
1351	23.3	681	1437	3	0.28	-108-5	10,500	46.30	
Did well	dewater?	Yes	(No)		Amount	actually 6	evacuated:	b, 500	
	Did well dewater? Yes No.  Sampling Time: 1357				Sampling	g Date:	10/1/15	- <del>-</del>	
						Other <	Schence ee Coc		
Analyzed		TPH-G	BTEX MT	BE TPH-D					
<b>IEquipme</b>	nt Blank I	.D.:	Time		Duplicat	e 1.D.:			

	L	OW FL	OW WEI	L MONIT	UKING I	JAIN OL			
Project #:	150930-	201		Chichie	AECOM				
Sampler:	5M			Gauging Da	te: 9/31	1/15			
Well I.D.:		NC ass	5	Well Diame	ter (in.):		(4) 6 8		
Total Well I			1	Depth to W	ater (ft.):	42	.27		
				Thickness of	of Free Pro	oduct (fee	et):		
Depth to Fre		PVC	Grade	Flow Cell 7	[ype:]	151 S56			
Referenced Purge Method: Sampling Method:	nod:	2" Grundro Dedicated	s Pump Tubing		Peristaltic P New Tubing	ump	Bladder Pump Other_ Pump Depth:		
Start Purge Tir	Temp.		Cond. (mS/cm or		D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
	(O or °F)	pH 7.44	(187cm)	17	0.29	-59,8	1500	42.45	
123119SI 22.7 1.71 010 1 276 3000 192.95									
	12.7 12.8	738	613	12	0.18	-84.1	4500	42.45	
1437		7.41	609	1)	0.16	-89.3	6000	42.45	
	17.8 22.9	7.40	615	1)	0.13	1-92.4	7500	42 45	
1447	229	739	613	/1	0.12	+91.9	9000	42.45	
1144		1.2.					·		
					Amour	 nt_actually	y evacuated:	9000 ml	
Did well	dewater	Yes	(No)	<i>e.</i> 1-2-5-6	Allioui	na Data	9/20/16		
Samplin	g Times	5450	#58 V	6W502568	Sampi	ing Date.	1/ ( 0		
Sample 1	Time	144	8		Labora	atory:	al Sirence sæ coc		
Analyze	d for:	ТРН-	0 2	MTBE TPH-			0 0		
Equipm	ent Blank	ς Ι.D.:	@ .	Time	Duplie	cate I.D.:	A 95112 (40	8) 573-0555	

Project #: 150930 Po 1 Client: A Ecom @ Bel Anno	- 1
	ㅓ
Sampler: JA Gauging Date: 10/1/18	_
Well Diameter (in.): 2 3 4 6 8	_
Well I.D.: 30000000 TO 766	
Total Well Deput (10)	
Depth to Flow Cell Type: YS/ 556	
Referenced to:  We Grade Flow Cell Type	
Temp. Cond. (mS/cm or Turbidity D.O. ORP Water Removed (pt.) (ft.)	ater
6927 27.00 7.37 501 35 0.59 -136.2 1500 45.15	
7191 722 609 29 0.41 -169.4 3000 13.1)	
0.35 - 187.0 750 95.15	
092h 7187 7.43 679 35 0.21 -28.3 6000 95.15	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>
0939 21.85 7.52 684 28 0.19 -220.9 7500 15.15	
0942 21.84 7.57 686 27 0.18 -227.5 70.33 73.73	
0945 21.85 7.58 684 27 0.17 ~224.6 10500 45.15	
Did well dewater? Yes Amount actually evacuated: 10, 5	
Did well dewater? Yes Sampling Date: (8/1/15-	
Sampling Time. 0.196  Sample I.D.: GW 50 258 Laboratory: Colscience  Laboratory: Colscience  TRUC RTEX MTBE TPH-D Other: 8260 g	
Analyzed for:	
Equipment Blank I.D.: Duplicate I.D.:  Blains Toch Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-05	555

Project #:	154930	-RD		Client:	AELO	on				
Sampler:	_		<i>p</i>	Gauging D	Gauging Date: $9/30/15$					
Well I.D.	: SWL	10037		Well Diam	neter (in.)	: 2 3	<u>(4)</u> 6 8			
	ll Depth (f	_	8.40	Depth to Water (ft.): 43,36						
	Free Produ			Thickness				A		
Reference		PVC	Grade	Flow Cell						
Purge Metho Sampling M		2" Grandfo Dedicated	-		Peristaltic Pump Bladder Pump New Tubing Other					
Start Purge	Гіте: <u>;34{</u>	2	Flow Rate: _	540 ml/	nn		Pump Depth:	70'		
Time	Temp.	рН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mD)	Depth to Water (ft.)		
1349	23.7	7.38		7	0.42	1.4	1500	43,50		
1352_	23.4	7.29	892	7	0.30	-0.9	3000	43.50		
1355	23.7	7.30	890	6	0.21	-6.3	4500	43.50		
1358	23.7	7.30	892	6	0.19	- 67	600D	43.50		
1407	23.8	7.30	893	6	0.19	-7.4	7500	43-50		
•	-									
								di i		
Did well	dewater?	Yes (	N)		Amount a	actually e	vacuated: 75	DML		
Sampling	Time: C	F 141	01_		Sampling	Date:	9/30/5			
Sample I.	D.: Gi	NS 025	53		Laborato	ry: Cerl	Science			
Analyzed	for:	TPH-G	BTEX MTI	E TPH-D OTHER SEE LOC						
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:				

		<u> </u>							
Project #:	150930	- PDI		Client: AECOUN					
Sampler:				Gauging Date: 10/07/15					
	SWLOD	38.		Well Diameter (in.): 2 3 4 6 8					
Total Wel			,20	Depth to Water (ft.): 47.44					
Depth to I				Thickness of Free Product (feet):					
Reference		eve	Grade	Flow Cell					
Purge Metho Sampling Mo	od: ethod:	2" Grundfo Dedicated	Tulaing	Peristaltic Pump  New Tubing  Other  Pump Depth: 50.5					
Temp. Time  Cond.  (mS/cm or Turbidity D.O. ORP Water Removed Depth to Water Removed (mS/cm) (NTUs) (mg/L) (mV) (gals. or nL) (ft.)									
0847	75.5	6.62	7265	74	1.85	.4.2	900	47.61	
0850	25.5	6.63	2766	66	1.85	3.6	1800	47.60	
0853	75.5	6-63	2766	60	1.86	3.4	7750	47.60	
0856	75.3	6.63	7263	47	1.87	6.6	3600	47.60	
0859	75.2	6.64	2259	46	1.88	9.8	4500	47.60	
0902	25.2	6.64	7253	45	1.88	10.3	5400	47:00	
0905	75.1	6.64	2257	44	1.89	11.6	6300	47.00	
								·	
			,						
				·			•		
*.									
D:4	dayster?	Yes (			Amount	actually 6	evacuated: 6	300	
	dewater?		<u>No</u>		•	g Date: 18	1 1	_	
	g Time: 🔗					<del></del>			
Sample I	.D.: 6, WS			Laboratory: CALSCIED CE					
Analyzed	l for:	TPH-G	BTEX MT	BE TPH-D	TPH-D Qther Sec. 9.C.				
Equipme	nt Blank I	.D.:	@ Time		Duplicat	te I.D.:			

		LOW F	LOW WE	LL MONI	TORING	DATA S	SHEET			
Project #:	150930	-R01		Client: A	Fcom					
Sampler:	ΠP			Gauging Date: 10/1/15 9/14/15						
Well I.D.:	SWLO	040		Well Diameter (in.): 2 3 4 6 8						
Total Wel	l Depth (f	t.) : Pump	in well	Depth to Water (ft.): 44.80						
Depth to 1	Free Produ	ıct: _		Thickness	of Free Pr	oduct (fe	et): —			
Reference	ed to:	rVO	Grade	Flow Cell	Type:	ysi 556				
Purge Metho Sampling M		2" Grundfo Dedicated	-		Peristaltic P	•	Bladder Pump Other	pedicated pi		
Start Purge	Гіте: <u>14 20</u>	<u>)                                    </u>	Flow Rate: _	500 m	nl /min		Pump Depth: 1	2.7		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1423	23.8	6.70	3218	16,	0.58	-170.7	1500	44.98		
1426	24.0	6.70	3370	0	0.41	-180-1	3000	44.98		
14 29	24.2	6.71	3360	0	0.39	-179.9	4500	44.98		
14 32	24.1	6.72	3379	0	0.32	-179.3	8000	44.98		
14 35	24.2	6.73	3402	0	0.36	-181.3	7500	44.98		
14 38	24.3	6.73	3420	0	0.39	-182.3	90 00	44.98		
14 41	24.3	6.73	3430	0	0.36	-183.8	10500	44.98		
Did well	dewater?	Yes	N ₀		Amount	actually e	evacuated: (0	500 ML		
Sampling	Time:	442			Sampling	g Date:	1/10/15			
Sample I.	D.: 6%	150256	9		Laboratory: Cal Science					
Analyzed	for:	TPH-G	BTEX MT	BE TPH-D		Other:	Sce (OC			
Equipme	nt Blank I.	.D.:	@ Time		Duplicate	e I.D.:				

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

			LO 11 11.22.							
Project #:	150936	·- RO	)	Client: AECOM						
Sampler:	RO			Gauging Date: 10/2/11						
	SWLO	0041		Well Diameter (in.): 2 3 4 6 8						
	1 Depth (ft		50	Depth to Water (ft.): 44-59						
		<u></u>	<i>)</i>		Thickness of Free Product (feet):					
	Free Produ	PW	Grade				pro Plus			
Reference				1 low cen			Bladder Pump			
Purge Metho Sampling M		2" Grundfo Dedicated	-		Peristaltic P New Tubing	<u>.</u>	Other			
• -	Сіте: <u>1154</u>		=	500 M	lun		Pump Depth: 8	5.5		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)		
1157	13-3	6-36	5911	8	0-32	-105-3	1500	45-17		
1200	23-6	6-31	6193	7	0.47	-1080	3000	45-17		
1203	23.7	6-30	6205	6	0-32	-1090	4500	45.17		
1206	23-7	6-30	6201	6	0-30	-1096	6000	45-17		
1209	23-8	6.29	603	6	0-22	- 115-6	7500	4547		
1212	23-8	6-29	422	6	0.21	-1170	9000	4517		
1215	23-9	6.29	6/10	6	0-20	-115-2	0000	45-17		
Did well	dewater?	Yes	<u>}</u>		Amount	actually e	evacuated:	10560 int		
Sampling	g Time:	1216			Sampling	g Date: 1	19/15			
	.D.: 600		54							
Analyzed		TPH-G		BE TPH-D	Laboratory: Colschere					
	nt Blank I	.D.:	@ Time				is 02586	21231		

Project #:	150930	) - PD		Client: A	Client: AECOM					
Sampler:	EB			Gauging I	,	05/15				
Well I.D.	SWLOD SWLO	42 43			Well Diameter (in.): 2 3 (4) 6 8					
	ll Depth (f			Depth to Water (ft.): 35-36 TOP OF PORT						
	Free Produ				Thickness of Free Product (feet):					
Reference		PVC	Grade					· ·		
Purge Metho Sampling M	od:	2 Grundf Dedicated	os Pump Tubing	, man	Peristaltic Pump  New Tubing  Onl/ww/Sys vol: 2740ml Pump Depth: 45'					
			Cond.		, , [					
Time	Temp.	рН	(mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1249	24-8	6-17	7804	3	1.75	-88.8	600	35.37		
1252	25.2	6.10	3009	2	1.59	85.7	1200	35.38		
1255	26.3	6.08	3138	l	1.56 .	-84.8	1800	35.38		
1258	25.8	6.06	3239	(	1.44	-84.1	2400	35.38		
1301	25.7	6.07	3353	İ	1.43	- 83.6	3000	JS.38		
1304	25.8	6.06	3488	1	1.42	-81-3	3600	35,38		
1307	25.9	6.05	3679	i	1.42 -	78.3	4200	35.39		
(310	76.0	6.05	3703	(	1.41	-77.7	4800	35.39		
13(3	26 - 1	6.04	3712	(	1.42.	- 77.2	5400	35.39		
	·		·			,				
						·				
Did well dewater? Yes (No					Amount a	ectually e	vacuated: 54	100		
Sampling Time: 1314					Sampling	Date: /	0/05/15			
Sample I.	D.: 61 W.S	02534	l		Laborato		, ,			
Analyzed	for:	TPH-G	BTEX MTI	ВЕ ТРН-D		Other: 5	ECO.C. T	BA		
Equipmen	nt Blank I.	D.:	@ Time		Duplicate	I.D.: G1	NS02592 a	1319		

Project #:	15/09	30-RD	>1	Client: LECOU						
Sampler:	EB			Gauging Date: $\frac{10}{05}/(5)$						
Well I.D.:	SWLOC	»4 Ч ·		Well Diameter (in.): 2 3 (4) 6 8						
	ll Depth (f		50	Depth to Water (ft.): 47.38 70C						
	Free Produ			Thickness of Free Product (feet):						
Reference		(PVC)	Grade	Flow Cell	Type: Y	SI PRO	PLUS			
Purge Metho Sampling M Start Purge		2 Grundfo Dedicated	Tubing	oo mUma	Peristaltic Pump Bladder Pump  New Tubing Other  ON WIMEN SYS VOL 2500 WL Pump Depth: 55'					
Time	Temp.	рН	Cond. (mS/cm or uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1353	24.1	6.52	2232	2	2.4/1	20.9	900	47.40		
1356	24.3	6.42	2752	2	2.18	-9.3	1800	47.41		
1359	24.9	6.34	2274	2	1.66	-1.2	2700	47.41		
1402	75.1	6.33	2272	2	1.42	- 2.2	3600	47.41		
1405	25.5	6.32	2273	2	1.41	-3(	4500	47.41		
1408	25.5	6.31	2272	1	1.41	-4.7	5400	47.41		
1411	75.6	6.31	2273	2	1.40	-6:1	6300	47.41		
-				·	•		•			
Did well	dewater?	Yes	NO)		Amount	l actually ε	evacuated: 69	] 350		
	g Time: (6				Sampling	g Date: 18	0/05/15			
	.D.:6, wS1					ory: CALS	, ,			
				DE WOLLD	2000100		E (0.C.			
Analyzed		TPH-G	BTEX MT	BE TPH-D	D 1.		ECO.(.	· · · · · · · · · · · · · · · · · · ·		
Equipme	nt Blank I	.D.:	Time		Duplicat	e 1.D.:				

		LUWI		DE MICH	20212110				
Project #:	150930.	PD1		Client: AECOM					
Sampler:				Gauging D	vate: (0 5	415			
Well I.D.	: SWLOO	46.		Well Diameter (in.): 2 3 4 6 8					
	ll Depth (f		20	Depth to Water (ft.): 36.94					
	Free Produ			Thickness of Free Product (feet):					
Reference		(PVO	Grade	Flow Cell	Туре: <u></u>	I PRO 1	ついとう		
Purge Metho Sampling M	od: lethod:	2" Grundfo Dedicated	os Pump Tubing		Peristaltic Pump  New Tubing  Other  Occul   WIN   SYS Vol : 7220 wl Pump Depth: 48				
Start Purge	Time: <u>  0   0</u>		4.3°	e company	1	<u> </u>			
Time	Temp.	pН	Cond. (mS/cm or uS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1013	23.2	6.37	2118	8/	2.25	83.1	900	37.54	
1016	23.2	6.37	2129	35	2.24	80.0	1800	37.04	
1019	22.5	6.37	7129	16	2.23	78.5	2700	37.04	
1022	24.0	6.36	2138	8	2.20	78.1	3600	37.04	
1025	24.2	6.36	2138	5	2.20	78-4	4500	37.04	
1028	24.4	6-35	2139	5	2.21	78-8	5400	37.0-(	
1031	24.5	6.35	2139	4	2-20	79.0	630	37.04	
					Amount	ootuelly o	vacuated. Ze	<u> </u>	
Did well	dewater?	Yes	<u>№</u>				evacuated: 63	00	
Sampling	g Time: \c	32_					0/02/15		
Sample 1	.D.: GW	S0253	6		Laboratory: CAUSCIENCE				
Analyze	d for:	TPH-G	BTEX MT	BE TPH-D	TPH-D Other Set C.S. (.				
Equipme	ent Blank I	.D.:	@ Time		Duplicat	te I.D.:			

Project #:	150980	-101		Client: ,	AECOM				
Sampler:	NO			Gauging D	ate:	9/301	15		
Well I.D.:	: 5W/CC	)U7		Well Diameter (in.): 2 3 4 6 8					
Total Wel	ll Depth (f	.,	90	Depth to Water (ft.): 46-63					
Depth to 1	Free Produ	ıct:		Thickness	of Free Pr	oduct (fe	et):		
Reference		PVO	Grade	Flow Cell	Type:	YST	Pro 8/03		
Purge Metho Sampling M		2" Grundfo Dedicated	=		Peristaltic P New Tubing	-	Bladder Pump Other_		
Start Purge	Γime: <u>ԼԿ</u> ဎ ²	<u> </u>	Flow Rate: _	500 mi/1			Pump Depth:	37	
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1411	248	6-02	462.0	16	0.95	-140-4	(JUO	46 80	
1414	25-2	6.35	450.5	13	0-27	-153-4	3000	46-80	
1417	254	6-38	452-9	12	0.87	-1542	4500	46-80	
1420	25.5	6.42	4604	1/	0-75	-160-2	6000	46-80	
1423	25-6	6.43	462-0	9	0-69	-163-6	7500	46-80	
1426	25.8	6-44	460-8	9	0,72	464.4	9000	46-30	
1429	25-9	6.45	458-2	Ý	0.14	-164.2	10500	46-30	
Did well	dewater?	Yes	<b>1</b> 48)	<u> </u>	Amount a	actually e	vacuated: /	sto me	
Sampling	Time:	1430			Sampling				
	D.: 6W		5		Laborator	ry: Ca	18lence		
Analyzed		ТРН-G	BTEX MT	gillar de					
Equipmen	nt Blank I.	D.:FB5(\7)	77 @ 136	15	Duplicate		501067 @ 1		

Equipment Blank I.D.: FINO Duplicate I.D.: FINO 130

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		LOW E	LOW WE	LL MON	TURING	DALAS	HEEL		
Project #:	150930	-RDI		Client: AFCOM					
Sampler:	OF			Gauging Date: 9 /14/15					
Well I.D.:		048		Well Diameter (in.): 2 3 <b>@</b> 6 8					
Total Wel	l Depth (ft	): Pump	' cawell	Depth to Water (ft.): 46 74					
Depth to F	ree Produ	ct: -		Thickness of Free Product (feet):					
Reference	d to:	<b>EAC</b>	Grade	Flow Cell	Type: Y	51 556			
Purge Metho Sampling Me		2" Grundfo Dedicated	-	. •	Peristaltic P New Tubing	-	Bladder Pump Other_	pedicated po	
Start Purge T	ime: 10 4	8	Flow Rate: _	500	ml/min		Pump Depth:	38	
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
10 52	23.4	6.67	2207	10	1.04	-151-4	1500	47 41	
10 55	24.1	6.70	2270	7	D.86	- 155.9	30 <i>0</i> 0	47.43	
10 58	24.2	6.70	22.81	0	0.83	-157.9	4500	47.43	
11 01	24.2	6.71	2 2 9 5	O	0.64	-161.9	60 00	47.43	
1104	24.3	6.71	2295	<i>27</i>	0.58	-164.1	7500	47.43	
1107	24.3	6.72	2309	0	0.54	-165.8	9000	47.43	
מוןוו	24.4	6.72	2314	. 0	0.56	-166.2	10500	47-43	
								÷ .	
						·			
Did well	dewater?	Yes	(N)		Amount	actually e	evacuated: 10	0500 ML	
Sampling	Time: 1	111			Sampling	g Date:	10/2/15		
Sample I.	D.: GWS	To 2556			Laborato	ory: C	.1 science		
Analyzed	l for:	TPH-G	втех мт	BE TPH-D	é	Other: (	See CoC		
Equipme	nt Blank I	.D.:	@ Time		Duplicat	e I.D.:	·		

Project #:	150930	- RDI		Client: /	1ECOM			·		
Sampler:	JF			Gauging D	ate: 9/	14/15				
	SWLOO	950		Well Diam	•		<b>4</b> ) 6. 8			
	l Depth (ft		PATIENT AND THE REAL PROPERTY.	Depth to Water (ft.): 48 14						
	Free Produ	····		Thickness of Free Product (feet):						
Reference		evo	Grade	Flow Cell Type: $\sqrt{56}$						
Purge Metho Sampling Me	od: (	2" Grundfo Dedicated	os Pump Tubing		Peristaltic Pump Bladder Pump  New Tubing Other  500 ML /MIR Pump Depth: 77					
Time	Temp.	pН	Cond. (mS/cm or		D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
1321	24-0	7.08	2234	10	0.25	-196.6	1500	48.75		
13 24	24.5	7.04	2266	0	0.23	-173.0	3000	48.75		
(3 27	24.7	7.03	2288	0	0.20	174.0	4500	48.75		
13 70	24-7	7.03	2 300	0	0.27	-186-8	6000	48.75		
(3 33	24.7	7.04	2303	0	0.28	-186.4	7500	48.75		
13 36	24.8	7.04	2303	O	0.28	-183.9	9000	48.75		
			·			i i				
						*				
						11	1 0			
Did well	dewater?	Yes	<u>(N)</u>				evacuated: 90	700 ML		
Sampling	g Time: /	337			Sampling		10/1/15			
Sample I	.D.: 6W9	502591			Laborato	ory: Ca	l science			
Analyzed	d for:	TPH-G	втех мт	BE TPH-D	Laboratory: Cal Science Other: See CoC					
Equipme	nt Blank I	.D.:	@ Time		Duplicat					

		DOW IN	TO TO TO THE	I I I I I I I I I I I I I I I I I I I						
Project #:	100938	0-PD1		Client: AECS W						
Sampler:			1	Gauging Date: 10/02/15						
	Sulcos	5		Well Diameter (in.): 2 3 4 6 8						
Total Wel	l Depth (f	t.): 56	<i>SD</i>	Depth to Water (ft.): 37. 70 TOC						
	Free Produ			Thickness of Free Product (feet):						
Reference		PVC	Grade	Flow Cell	Type: <u></u>	IPRO 1	pus			
Purge Metho Sampling Me	od:	2" arundfo Dedicated	Tuhing	oo vellan	Peristaltic F New Tubing	g	Bladder Pump Other_ Pump Depth:	5′		
Start ruige	I III.C. 1115		Cond.							
Time	Temp.	рН	(mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nL)	Depth to Water (ft.)		
11118	24.7	6.55	2134	198	1.56	109.3	900	37.85		
1(2)	T T T T T T T T T T T T T T T T T T T	6.53	2155	34	1.54	87.7	1800	37.85		
1124		6.50	2165	11	1.58	83.8	2700	37.85		
(127		6.50	2164	5	1.43	82.4	3690	37.85		
1130	25.7	6.49	2164	3	1.42	81.6	4500	37.85		
(133	25.6	6.49	21.65	2	1.43	81.6	5400	37.85		
							1			
							1 1 7	(		
Did well	dewater?	Yes	NO				evacuated: 54	100		
Sampling	g Time: 🚶	134			Samplin	g Date: _/	0/02/15			
Sample I	.D.: 6 WS	025015	-		Laborato	ory: CALSO	(18) (E)			
Analyzed	•	TPH-G		TBE TPH-D	Laboratory: CAUSCIENCE					
Fauinme	ent Blank I	.D.:	@ Time		Duplica	te I.D.:				

		FOM LI	JUVV VVE	LL MOM	TOME	1011111	•			
Project #:	150930-	RDI		Client: A	ECOM	· ·				
Sampler:				Gauging Date: 10/05/15						
	SWLOC	52		Well Diameter (in.): 2 3 4 6 8						
	l Depth (fi		20	Depth to Water (ft.): 34.14 TOC						
	Free Produ			Thickness of Free Product (feet):						
			Grade	Flow Cell	Type: YS	PROPL	us			
Reference	ed to:	PAG	Grade	11011 0022						
Purge Metho Sampling M		2" Grundfo Dedicated	Eabing		Peristaltic P New Tubing	7	Bladder Pump Other_			
<del>-</del> .	Γime: <u>(0'3</u> -		Flow Rate: 7	100 W/MN/	SYS VOL: 3	5740	Pump Depth: <u>&amp;</u>	<u></u>		
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (nL))	Depth to Water (ft.)		
	21.7	6.78	1795	8	2.59	-88.2	1200	34.32		
1040	21.7	6.65	1938	12	2-11	-50,0	2400	34.32		
1046	21.7	6.65	1974	9	2.06	- 27.6	3600	34.32		
1049	21.6	6.64	1940	7	2.10	-20.1	4800	3432		
1052	21.7	6.62	1895	7	2.07	-19.0	6000	34.32		
1055	21.8	6.60	1892	7	1.99	16.5	7200	3432		
1058	21.8	6.58	1892	8	195	-12.8	8400	3432		
1101	21-8	6.59	1906	8	1.94	- 9.4	9680	3432		
1104	21.8	6.58	1906	11	1.91	7.0	10800	34.32		
107	21.8	6.57	1906	12	1.88	-4.5	12000	3432		
1110	21.8	6.57	1905	11	1.88	- 3.0	13700	7432		
Did well	dewater?	Yes (	MO)		Amount	actually	evacuated: / 3	,700		
	g Time: \	(()			Samplin	g Date: /	0/05/15			
	[.D.:SW]		hwsors:	58	Laboratory: CALSCIENCE					
Analyze		TPH-G		TBE TPH-D		Other: S	£ c.o. ( .			
	ent Blank		@ Time		Duplica	te I.D.:				

TO IT TO IT	ELL MUNITURING DATA SHEET					
Project #: \50930 PD-\	Client: AFcom @ Del Anno					
Sampler:	Gauging Date: (0/2/15					
Well I.D.: SWL0053	Well Diameter (in.): 2 3 40 6 8					
Total Well Depth (ft.):	Depth to Water (ft.): 33 82 To ToC					
Depth to Free Product:	Thickness of Free Product (feet):					
Referenced to: Grade	Flow Cell Type: YII 556					
Purge Method: 2" Gruddfos Pump Sampling Method: Dedicated Tubing Start Purge Time: Flow Rate:	Peristaltic Pump Bladder Pump Cohur = 47  New Tubing Other  SOO ML/MA Pump Depth: 123					
Time (°Cor°F) pH μ(Com)						
0803 2136 3690 369	4 0.47 -92.2 1000 33.82					
0806 Z1.36 S.92 492	2 0.38 -98.9 - 3000 33.82					
6809 21.36 6.40 1317	3 0.26 123.1 4500 33.82					
0812 21.42 6.74 1470	3 0.22 -119.4 6000 33.82					
086 21.54 6.98 1504	2 0.18 - 141.8 7500 33.82					
0818 21.58 7.00 1508	2 0.16 ~147.0 9000 33.02					
0621 21.60 7.02 1510	2 0.15 -148.9 (0500 33.82					
Did well dewater? Yes	Amount actually evacuated: /o. > -					
Sampling Time: OTLL	Sampling Date: 10/2/15					
Sample I.D.: GWS02570	Laboratory: Calscience					
4 1 10	TBE TPH-D Other:					
Equipment Blank I.D.: F\$\$02081 Time	0700 Duplicate I.D.:					

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Top Black 2 FBS 0 2101 @ 0600 Poller WL - 0.65"

LOW FLOW WELL MONITORING DATA SHE	Œ.	,
-----------------------------------	----	---

Well I.D.:   Swccosy   Well Diameter (in.):   2   3   4   6   8	<u>/</u>		U 11 X X							
Well I.D.:   Swcosy   Well Diameter (in.):   2   3   4   6   8	Project #:	150930-	10/		Client:	tecon				
Float Well Depth (ft.): 13,000 Depth to Water (ft.): 50.04 Jo5/y  Depth to Free Product:  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product:  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product (feet):  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product (feet):  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product (feet):  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product (feet):  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Free Product (feet):  Referenced to: PYC Grade Flow Cell Type: YST Pro P(U)S  Depth to Water Removed (gals. or full)  Referenced to: PYC Flow Rate: Flow Rate: Flow Cell Type: Pump Depth: IZS / Introduction (ft.)  Do. ORP Water Removed (gals. or full)  Referenced to: PYC Start Pump New Tubing Other  Referenced to: PYC Start Pump New Tubing Other  Referenced to: PYC Flow Rate: Flow Cell Type: YST Pro P(U)S  Depth to Water (ft.): 50.04	Sampler:				Gauging Da	ate:	19/2/15			
Depth to Free Product:   Thickness of Free Product (feet):   Thickness of Free Product (feet):   Thickness of Free Product (feet):   PyC   Grade   Flow Cell Type:   YST   Yro   P(U)   Pump   Peristaltic Pump   New Tubing   Other   Pump   Depth to Water (ft.)   Pump   Depth to Water Pump   Pump	Well I.D.:	SWLC	054		Well Diameter (in.): 2 3 4 6 8					
Depth to Free Product:   Thickness of Free Product (feet):				i.©0	Depth to Water (ft.): $50.04$ $70c - 5/8$					
Referenced to:   PYC   Grade   Flow Cell Type:   Y5T   Fro   PUS					Thickness of Free Product (feet):					
Peristatic Pump   Peristatic Pump   New Tubing   Pump   Dedicate (Pubing Start Purge Time: Cit(L)   Flow Rate:   500 pm   /m /m /m   Pump Depth:   IS				Grade	Flow Cell	Гуре:	YST	Pro Plus		
Start Purge Time:   Oi46	Purge Metho	od:	2" Grundfo	_		Peristaltic Pump Bladder Pump New Tubing Other_				
Time (Cor°F) pH (mS/cm or pH (nV)) (mg/L) (my) (mg/L) (my) (mg/L) (my) (my) (my) (my) (my) (my) (my) (my	_		6_	Flow Rate: _	500 me	linin		Pump Depth:	125'	
1	Time	1 / 1	pН	(mS/cm or	1	1	1 1		1 ^	
CAT2         13-4         6-87         1867         10         0.43         -66-1         3000         50-14           CATS         23-5         6-83         1873         8         0.46         -67-7         4700         50-14           CATS         23-6         6-70         1916         6         0.54         -68-7         6000         50-14           1001         23-5         6-66         1947         5         0.33         -73-9         9000         50-14           1007         23-4         6-63         1940         5         0.30         -76-1         10500         50-14           1010         23-6         6-67         1932         3         0.27         -80-7         12000         50-14           1010         23-6         6-67         1932         3         0.27         -80-7         12000         50-14           1010         23-6         6-67         1932         3         0.27         -80-7         12000         50-14           Sampling Time:         101         Sampling Date:         10/211         1000mL           Sampling Time:         101         Sampling Date:         10/211         1000mL <tr< td=""><td></td><td></td><td></td><td>1728</td><td>11</td><td>0-46</td><td>-59-8</td><td>1500</td><td><u> </u></td></tr<>				1728	11	0-46	-59-8	1500	<u> </u>	
C955   23-5   6-25   1873   8			la:89	1867	10	0.43	-66-6	3006		
100		23-5		1873	9 0	0-46		4500		
100	095%	23-6	670	1916	6	0-54	-68-9	6000		
1007   23 4   663   1940   5   0-30   -76-1   10500   50-1/4     1010   23-6   663   1940   5   0-29   -80-7   12000   50-1/4     Did well dewater? Yes   No   Amount actually evacuated:   1200 ml     Sampling Time:   101   Sampling Date:   1011     Sample I.D.:   6605   5057   Laboratory:   665   665   665     Analyzed for:   TPH-G   BTEX   MTBE   TPH-D   Other:   100 C   5	,	23-5	6-66	1939	6	0.47	-695	7500	,	
1007   23 4   663   1940   5   0.36   -76-1   10500   50-1/4     1010   23-6   667   1932   3   0.29   -80-7   12000   50-1/4     Did well dewater? Yes   No   Amount actually evacuated:   12000 ml     Sampling Time:   101   Sampling Date:   10/2/11     Sample I.D.:   GOUS OLS 7   Laboratory:   CA   Science     Analyzed for:   TPH-G   BTEX   MTBE   TPH-D   Other: Oct   5	1004	23-4	6-64	1947	5	0.33	-73-9	9000	7	
1010   23-6   6-67   1932   3   0-29   -80-7   12000   50-19		234	663	1940	5		-76-1	10500		
Did well dewater? Yes  Sampling Time: (0)  Sample I.D.: GUS OUS    Amount actually evacuated:   1 cooml  Sampling Date:   1   2   1    Laboratory: (A   Science  Analyzed for: TPH-G BTEX MTBE TPH-D Other: Coc'S		23-6	6.63	1932	3	0-29	-80-7	12000	50-14	
Sampling Time: 101 Sampling Date: 10111  Sample I.D.: 600 01571 Laboratory: Alscience  Analyzed for: TPH-G BTEX MTBE TPH-D Other: 00015										
Sampling Time: 101 Sampling Date: 10111  Sample I.D.: 600 01571 Laboratory: Alscience  Analyzed for: TPH-G BTEX MTBE TPH-D Other: 00015										
Sampling Time: 101 Sampling Date: 10115  Sample I.D.: 6050571 Laboratory: Alscience  Analyzed for: TPH-G BTEX MTBE TPH-D Other: 0005										
Sampling Time: 101 Sampling Date: 10115  Sample I.D.: 6050571 Laboratory: Alscience  Analyzed for: TPH-G BTEX MTBE TPH-D Other: 0005										
Sample I.D.: GCUS OUS TH-G BTEX MTBE TPH-D Other: COCIS	Did well	dewater?	Yes	No					roooml	
Analyzed for: TPH-G BTEX MTBE TPH-D Other: Cocis	Sampling	g Time:	<i>[</i> 01]	,		Samplin	g Date:	idalit		
	Sample I	Sample I.D.: GUS OIS 7				Laborato	ory: 👍	Science		
	Analyzed	d for:	TPH-G	BTEX M	ГВЕ ТРН-D		Other: (	ocis		
Equipment Diank 1.D			.D.:	@ Time		Duplica	te I.D.:			

			LOVY YVE	TATOTAT	TOME	DIXIIX		· · · · · · · · · · · · · · · · · · ·	
Project #:	50930	-191		Client: AECOM					
Sampler:	20			Gauging D	ate:	11/15			
Well I.D.:	Swlo	055		Well Diam	eter (in.):	2 3	(4) 6 8		
Total Well I			Ù	Depth to V	Depth to Water (ft.): 47.76 Foc - 1/8"				
Depth to Fre				Thickness	of Free Pr	oduct (fe	et):		
Referenced		PVe	Grade	Flow Cell	Type:	YSZ	Pro Plus		
Purge Method: Sampling Metho		2" Grundfo Dedicaled	_		Peristaltic P New Tubing	-	Bladder Pump Other_		
Start Purge Tim	ne: 1458	3	Flow Rate: _	500			Pump Depth:	125'	
1 1 /	Temp.	рН	Cond. (mS/cm or µ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml)	Depth to Water (ft.)	
1501	23-8	6-76	2171	2	1-48	-102-5	1500	47-87	
	23-6	6-67	2280	2	0-79	-102.3	3000	47-89	
1507	23-)	6.60	2334	2	056	-106-3	4500	47-89	
1510	23,7	6.66	2347	2	0-59	-108-2	6000	47-89	
1813	23.8	6.66	2375	2	0.59	-109-9	7500	47-89	
1516	238	6.66	2 383	2	0.57	-110-1	9000	47-89	
Did well de	water?	Yes	N		Amount	actually e	evacuated:	goodul	
Sampling T	ime:	1517			Sampling	g Date:	10/11/15		
Sample I.D.	·: (~	USOZ	572	*	Laborato	ry: CA	Keine		
Analyzed for		TPH-G	втех мт	BE TPH-D	*	Other: V			
Equipment	Blank I.	D.:	@ Time		Duplicat				

Project #:	(50930	~ 60)		Client: ACCOM						
Sampler:	120			Gauging D						
Well I.D.:		ΧL		Well Diam	eter (in.)	2 3	<u>4</u> 6 8			
Total Wel			66		Depth to Water (ft.): 40.01					
			<u> </u>	Thickness of Free Product (feet):						
Depth to I Reference		PVQ	Grade	Flow Cell			Pro Plus			
<u> </u>				riow cen						
Purge Method: 2" Grund Pump Sampling Method: Dedicated Dubing					Peristaltic P New Tabing		Bladder Pump Other_			
Start Purge	Гіте: <u> 151</u>		Flow Rate: _	500 ml/mix	Ú		Pump Depth:	₂₀ (		
Time	Temp.	pН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1518	23-9	6.48	wog	2	1-18	-143-6	1500	40.09		
1521	23-9	6.53	1574	2	1-00	-133-6	3000	4009		
1524	24-0	654	1580	7_	40-09					
1527	23-9	6:55	1592	2	0-99	-164-5	6000	40.09		
1530	23.9	6.55	1592	2	1-01	-1645	7500	40-03		
Did well	dewater?	Yes	<b>M</b>		Amount	actually e	vacuated: 7	100 m L		
Sampling	Time:	 53/			Sampling	g Date:	9/30/15			
Sample I.D.: 6250 255 7			9		Laborato	ry: C+1	syme			
-	Analyzed for: TPH-G BTEX MT				<u>\</u>	Other: Oe	ocis	·		
Equipment Blank I.D.:  BY BIEX MI					Duplicate					

Project #:	150937	- PD		Client: AFLOM					
Sampler:	Jin			Gauging Da	ate: ९/	30/15			
Well I.D.:	: SWL	757		Well Diam	eter (in.)	2 3	4 6 8		
	ll Depth (f		,	Depth to W	ater (ft.)	: 37.3	1		
	Free Produ			Thickness of Free Product (feet):					
Reference		PVC	Grade		Flow Cell Type: 451 556				
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing			Tubing	Peristaltic Pump  New Tubing  Other					
Start Purge Time: 1218 Flow Rate:				500 ml/m.	1		Pump Depth: 45		
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or in)	Depth to Water (ft.)	
1221	23.2	651	3446	73	0.78	-3.6	1500	38.25	
1224	23.6	6.55	3456	38	0.75	-7.8	3000	38.40	
1227	24.4	6.58	3466	22	0.91	-9.2	4500	38.50	
1230	247	6.59	3471	PH 20	085	-10.4	6000	38.55	
1233	249	660	3472	nD	0.77	-10.9	7500	38.55	
·				•					
						·			
Did well	dewater?	Yes	(No)		Amount	actually o	evacuated: 7	1500 nL	
Sampling	g Time:	1234			Sampling	g Date:	9/30/15		
Sample I.D.: GWS02537					Laborato	ory: Co	, ( Scrance	Materia	
Analyzed for: TPH-G BTEX MTH				ВЕ ТРН-D		Other &	. (Scronce		
	nt Blank I		@ Time		Duplicat			34.00	

				JEE INCOLV	A A O I CALL					
Project #	: 1509	30-RÙ	)	Client:	AELO	777				
Sampler	5/m	\		Gauging I	Date:	- 10/1/	15			
Well I.D	: 5WL	0058	9	Well Dian	neter (in.)	: 2 3	4) 6 8	3		
Total We	ell Depth (	ft.): 12	9.69	Depth to V	Water (ft.)	: 51.0		form garging point on deal fromp		
Depth to	Free Prod	uct:			Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	<del></del>	Flow Cell Type: YSI PRO plus					
Purge Method: 2" Grandfos Pump Sampling Method: Dedicated Tubing Start Purge Time: 15   5   5   5   5   5   5   5   5   5					Peristaltic Pump  New Tubing  Other					
Start Purge	Time: 0816	-	Flow Rate: _	500 mym.	1		Pump Depth: 1	24		
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or AL)	Depth to Water (ft.)		
0879	22.8	641	1939	_g ) ^{MAL} land	0.44	-133-6	1500	51,20		
022	227	6.49	1963	6	0.22	-145.0	3100	51.20		
0825	23.1	654	1940	5	0.25	-151.8	4540	51.20		
0828	73.2	6.56	949	5	6000	51,20				
0831	23.3	6.55	1972	5	0.20 -149.0	7510	51.70			
0834	13.3	6.53	1973	5	0.18	-146.4	9000	51.20		
	,									
			:				*****			
Did well	lewater?	Yes (			Amount a	ctually e	vacuated: 90%	00		
Sampling		0835	•		Sampling	Date:	10/1/10			
Sample I.D.: GWSD2573					······································					
Analyzed for: TPH-G BTEX MTBE				E TPH-D		Other se	e coc			
Equipmen	t Blank I.I	D.:	@ Time		 Duplicate					

Project #:	150930	- RD1		Client: AECOM							
Sampler:	Jn			Gauging D	Date: 🔊	10/2/	15				
Well I.D.	: SUL	0059		Well Diam	·····		(A) 6 8				
Total We	ll Depth (f	t.): 66.0	7-	Depth to V	Depth to Water (ft.): 51.70						
	Free Produ			Thickness of Free Product (feet):							
Reference		(PVC)	Grade	Flow Cell Type: 1/15							
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Start Purge Time: 1256 Flow Rate:					Peristaltic I New Tubin	ump	Bladder Pump Other_	591			
Start Purge	Гіте: <u>115</u>	<u>o</u>		500 "limb			Pump Depth:	<u> </u>			
Time	Temp.	pН	Cond. (mS/cm or pS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
1301	240	6.28	5596	73)	0-33	-18.8	1500	5210			
1304	24.3	6.30	5286	255	0.31	-18.0	3000 -	52.15			
130子	24.6	6-30	5388	254	0-24	-15.1	4500	52.15			
1310	24 9	6.29	5418	247	0,20	-15.6	De food	52.15			
1313	25_0	6.27	5466	239	0.20	-12-3	2000 7500	52.15			
٠				·			***************************************				
			•								
-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Did well	dewater?	Yes	(No)		Amount a	actually e	vacuated: 75	ional			
Sampling	Time:	1374			Sampling	g Date: 14	0/2/15-				
Sample I.D.: GWSVZ_53 8					Laborato	ry: C	al Science e Coc	/			
Analyzed for: TPH-G BTEX MTH				ВЕ ТРН-D		Other: 500	2 COC				
Equipmen	nt Blank I.	D.:	· @		Duplicate	e I.D.:					

	·								
Project #:	150930	-201		Client: A E COM					
Sampler:	JF			Gauging D	ate: 9 /	14/15			
Well I.D.;	SWLOE	760		Well Diam	eter (in.):	2 3	<b>(4)</b> 6 8		
	l Depth (ft		Al	Depth to Water (ft.): 35.91					
	ree Produ			Thickness			<u> </u>		
Reference		PVC	Grade	Flow Cell					
Purge Metho	od:	2" Grundfo			Peristaltic P New Tubing	ump	Bladder Pump		
Start Purge T	Time: (0 15		Flow Rate: _	500 m	L/min	····	Pump Depth:	91-5	
Time	Temp.	pН	Cond. (mS/cm or µ\$/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)	
10 18	22.9	7.67	675	15	0.18	-273.9	(500	35.95	
10 21	23.1	7.60	724	1	0.15	-260.0	30 OO	35.95	
10 24	23.3	7.57	731	٥	0.15	-2559	4500	35.95	
(0 27	23.5	7.59	734	0	0.14	-261.9	60 00	35.95	
10 30		7.60	734	0	0.13	-265.0	75 00	35-95	
10 33		7.60	734	0	0.13	- 265.3	9000	35.95	
·									
			·						
				·					
Did well	dewater?	Yes	100		Amount	actually 6	evacuated: 9	000 ML	
Sampling	g Time: (	034			Sampling	g Date:	10/1/15		
Sample I	.D.: GW	502			Laborato	ory: Co	al science		
Analyzed		TPH-G	втех мл	TBE TPH-D		Other:	See Co C		
	nt Blank I	D ·	@ Time		Duplicat	e I.D.:			

		LOW I	LOW YVI	TATOTAL	TOKING	DAIA	SULL			
Project #	: 150930	)- RD1		Client:	AEC	OM				
Sampler:	Lo			Gauging I	Date: (	12/15				
Well I.D.	: SWLC	061		Well Diam	neter (in.)	: 2 3	6 6 8	3		
	ell Depth (1		.31	Depth to V	Depth to Water (ft.): 51.15					
	Free Produ				Thickness of Free Product (feet):					
Referenc	ed to:	₽Vc	Grade	Flow Cell		YSI				
Purge Methors Sampling M		2" Grundf Dedicated		Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: 1057	ļ	Flow Rate: _	São int,	lovin		Pump Depth:	17.5		
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
(055	23-(	7-40	536	7	1-04	-204-7	1500	51.34		
1056	13-3	7-45	539	-7	0-74	-219.3	3000	51-34		
1101	23-3	7-40	541	.7	0-67	-225.3	4500	51-34		
1104	23-3	7:45	540	7	51.39					
1107	23-4	7.48	<i>5</i> 40	6	0.45	-235.8	7500	5134		
(118)	23-5	7.48	541	6	043	-238-0	9000	51.34		
1113	23-5	7-46	545	6	0-44	-2401	10500	51-34		
Did well o	lewater?	Yes	No.		Amount a	ctually e	vacuated: (	OSTO M		
Sampling	Time: \	114			Sampling	Date:	20/2/15			
Sample I.l	D.: 645	>02574			Laborator		Eline			
Analyzed for: TPH-G BTEX MTE				E TPH-D		Other Use				
Equipmen	ıt Blank I.l	D.:	@ Time		Duplicate					

Project #	: 15093	m-Ri	>	Client: AElom						
Sampler:	5M	$\hat{}$		Gauging I	***					
Well I.D.	: SWLOO	13		Well Dian	neter (in.)	: 2	3 (4) 6 8	3		
1	ll Depth (		939	Depth to V	Depth to Water (ft.): 50.69					
	Free Prod				Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade		Flow Cell Type: you plus					
Purge Methors Sampling M		2" Fundf Dedicated	=		Peristaltic Pump  New Tubing  Bladder Pump  Other					
Start Purge	Time: 1072	6	Flow Rate: _	500ml/2000	^		Pump Depth:	180"		
Time	Temp.	pН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water (ft.)		
1029	28.3	7.42	1088	_3	0.39	-1122		50.95		
103L	23.1	7.35	1117	<u>3</u> 3	0.25	-160.8	3202	50.95		
n 35	23.2	7.36	1108	3	52.95					
1038	233	7.35	1126	3 0.18 -165.9 4500 51 3 0.16 -170.6 9 6000 51						
1041	23.4	7.34	1149	3	0.16	-169.5	7500	50.95		
	•							· .		
·										
				*****						
	***************************************						•			
Did well d	lewater?	Yes (	No		Amount a	ctually e	vacuated: 75	Jone Ci		
Sampling	Time:	1042_			Sampling	Date:	10/2/15			
Sample I.I	D.: 60	82								
Analyzed	for:	втех мтв	E TPH-D		Other: S	1 Sweres	7/14			
Equipmen	t Blank I.I	D.:	@ Time	**************************************	Duplicate			······································		

		LUWF	LOW ME	LL MONI	IUKING	DAIA	SILLUL I		
Project #:	15093	10-NO		Client:	Aecon	1			
Sampler:	M			Gauging D	ate: 16/	2/15			
Well I.D.:	: SWLO	064		Well Diam	eter (in.):	2 3		1500	
	ll Depth (f		3040	Depth to Water (ft.): $49.55$					
	Free Produ			Thickness					
Reference		PVe	Grade	Flow Cell		•	Pro Plus		
Purge Metho Sampling M	od:	2" Grundfo Dedicated	•		Peristaltic P New Tubing	-	Bladder Pump Other_		
Start Purge Time: 1303 Flow Rate:				500 W	u lan		Pump Depth:	22'	
Temp. Cond. (mS/cm of μS/cm)  Time (Cor °F) pH μS/cm)				Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or pL)	Depth to Water (ft.)	
1306	22-5	7,40	762	23	0.91	-1463	150	50.0B	
1309	22-8	7-35	757	26	0.90	-149-1	3000	50.08	
1312	22-7	7-34	756	22	0-82	-153-6	4500	50-08	
1313	22.9	7-33	754	18	0.67	-160-2	6000	50,08	
1316	22.9	7.33	754	(8	0-65	-161-7	7500	50.08	
13(9	22-9	7-32	753	19	060	-162-9	9000	50.08	
Did well dewater? Yes N6				<u> </u>	Amount	actually e	evacuated:	7000 m C	
Sampling	; Time: (3	120			Sampling	g Date:	coples		
Sample I.D.: 60302575					Laborato	ry: C#	HSchence		
	Analyzed for: TPH-G BTEX MT					Other U	Hschenel Hoe's		
	nt Blank I.		@ Time	_	Duplicate				

		LOW F	LOW WE	CLL MONI	TORING	DATA	SHEET		
Project #:	: 150930			Client: A					
Sampler:	JF			Gauging D	)ate: 9	/14/15			
Well I.D.	: SWL 0	065		Well Diam	neter (in.)	: 2 3	<b>4</b> ) 6 8	3	
Total We	ll Depth (f	it.): Pumf	in well	Depth to Water (ft.): 46.94					
Depth to	Free Produ	act:		Thickness	of Free Pi	roduct (fe	eet):		
Reference	ed to:	PVO	Grade	Flow Cell	Type:	122.5	~ YSI 59	56	
Purge Metho Sampling M		2" Grundfo Dedicated	Tubing	Peristaltic Pump  New Tubing  Other <u>redication</u> Fump Depth: 122.5					
Start ruige	1 Ime: 12 2	<u> </u>		700 7-	min		Pump Depth:	[22.7	
Time	Temp.	рН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)	
1223	23.5	7-32	1168	24	0.25	-196.5	1500	4744	
1226	23.8	7.32	1171	2	0.15	-245-8	3000	47.40	
1229	24.6	7.29	1223	0 0.13 -259.7 4500 47.					
1232	25.0	7.27	1265	0	0.12	- 263.1	60 00	47.40	
1235	25.1	7.27	1289	O	0.12	-268.0	7500	47.40	
1738	25.1	7.27	1292	0	0.12	-269.1	9000	47.40	
					·				
		:							
W							****	<i>j</i>	
Did well	dewater?	Yes	160		Amount a	actually e	vacuated: 90	100 ML	
Sampling	Time: 1	239			Sampling	Date: [,	0/1/15		
Sample I.	D.: GWS	02576			Laborator	ry: Cal	Science		
Analyzed	for:	TPH-G	втех мте	BE TPH-D		Other:	See Coc		
Equipmen	nt Blank I.I	D ·	@		Duplicate	· I D ·			

	TOO 44 B			TIOKIN	<b>G DATA</b>	SHEET			
15093	•			•					
JF					,	-	2 12		
SWLE	5 <i>066</i>		i		, ,	^	8:		
Depth (f	t.):pump	, in well							
	····					· · · · · · · · · · · · · · · · · · ·			
to:	PVC	Grade							
od:	Dedicated	fos Pump Tubing		Peristaltic I New Tubin	Pump ng	Bladder Pump Other	Dedicated		
e: 1122			<u> </u>	1 C/min		Pump Depth: 1	79 -5		
Temp. Por °F)	pН	Cond. (mS/cm or µS(cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml)	Depth to Wate (ft.)		
24.0	8.08	L(16	17	0.53	-101-4	1500	52.50		
24.1	8.08	291	0	0.41	-111.6	30 00	52.45		
24.7	8.05	284	0	0.42	-119.0	4500	52.45		
25-1	8.05	285	0	0.41	-124.8	6000	52.45		
25.2	8.06	285	0	0.43		7500	52.45		
25.2	8.06	285	0	0.42	-120.8	9000	52.45		
					·				
		·							
							>		
ater? Y	Ies (	<u> </u>		Amount a	ctually ev	vacuated: 90	000 ML		
ne: []	44		(	Sampling	Date: (	, ,			
GWSO	2583			· · · · · · · · · · · · · · · · · · ·					
•	TPH-G E	BTEX MTBI							
lank I.D	·.:	@ Time	J	————— Duplicate					
	Depth (for each of the control of th	150930-RD(  JF  SW40066  Depth (ft.): pump  ee Product:  2" Grundfod: Dedicated e: 1125  Temp.  Por °F) pH  4.0 8.08  4.1 8.08  4.7 8.05  25.1 8.05  25.2 8.06  25.2 8.06  25.2 8.06  25.2 8.06  25.2 8.06  25.2 8.06  25.2 8.06	150930-R0[  TF  SWL 0066  Depth (ft.): pump in well  ee Product:  to: PVC Grade  2" Grundfos Pump Dedicated Tubing  e: 1125 Flow Rate:  Temp. Cond. (mS/cm or µS/cm)  4.0 8.08 291  4.1 8.08 291  4.7 8.05 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285  25.2 8.06 285	Client: Gauging I  SWL 0066  Depth (ft.): pump in well  Depth to V  Depth (ft.): pump in well  Depth to V  Depth (ft.): pump in well  Depth to V  Depth to V  Depth (ft.): pump in well  Depth to V  Thickness  Thickness  Flow Cell  Cond. (mS/cm or pS/cm) (NTUs)  Lu-0 8.08 Lu16 17  Lu-0 8.08 Lu16 17  Lu-1 8.08 291  Depth to V  Cond. (mS/cm or pS/cm) (NTUs)  Lu-0 8.08 Lu16 17  Lu-0 8.08 291  Depth to V  Depth to V  Thickness  Turbidity (NTUs)  Lu-0 8.08 291  Depth to V  Depth to V  Depth to V  Thickness  Flow Cell  Cond. (mS/cm or pS/cm) (NTUs)  Depth to V  Thickness  Turbidity (NTUs)  Depth to V  Depth to V  Thickness  Turbidity (NTUs)  Depth to V  Depth to V  Thickness  Turbidity (NTUs)  Depth to V  Depth to V  Thickness  Turbidity (NTUs)  Depth to V  Depth to V  Thickness  Turbidity (NTUs)  Depth to V  Tur	Client: AE(OM)   Gauging Date: 9	Client: AFCOM   Gauging Date: 9   14   15     SW4 0066	Gauging Date: 9 /14 / (5  SWL 0066  Well Diameter (in.): 2 3 4 6  Depth (ft.): pmp in well  Depth to Water (ft.): 51 84  Thickness of Free Product (feet):		

	, 121	LOWE	TOM ME	LL MONI	TORING	DATA	SHEET			
Project #:	150930	-RD1		Client: A	tecom					
Sampler:	JF			Gauging D	)ate: 9/	14/15	-			
Well I.D.	: SWL00	68		Well Diam	•	,	<b>(</b> 4 <b>)</b> 6 8	3		
Total We	ll Depth (f	it.): 77	· 30	Depth to V	Depth to Water (ft.): 31.77					
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):						
Reference	ed to:	<b>(V)</b>	Grade	Flow Cell Type: YSI 556						
Purge Metho Sampling M		2" Grundfo Dedicated			Peristaltic Pump  New Tubing  Bladder Pump  Other watera					
Start Purge	Time: 0913	•	Flow Rate: _	500	me /nin		Pump Depth:	[27-5]		
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. of ml)	Depth to Water (ft.)		
0916	22.9	6-56	2203	49	2.15	-122-3	1500	30.95		
0919	23.2	6.62	2338	96	3.51	-140.7	3000	31.01		
09 22	23.0	6.62	2340	131	3.19	-149.1	4500	31.10		
0925	23.0	6.63	2343	120	6000	31.10				
09 28	23.1	6.64	2354	133	2.27	-146.0	7500	31-10		
0931	23.1	6.64	2356	114	2:13	-145.5	9000	31.10		
0934	23.2	6.64	2368	115	1.79	-145.3	10500	31.10		
0937	23.9	6.64	2397	115	1.44	-1461	12000	31-10		
09 40	24.0	6.64	2415	116	1.29	-147.7	13500	71.10		
0943	24.0	6.64	2424	116	1.79	-150-7	150 00	31.10		
**************************************										
Did well o	lewater?	Yes (	No No		Amount a	ctually e	vacuated: 15	000 ML		
Sampling	Time: 0	1944			Sampling	Date:	10/2/15			
Sample I.D.: <b>GW 502 53 9</b>					Laborator	ry: Ca	1 Science			
Analyzed	for:	TPH-G	BTEX MTE	BE TPH-D			See CoC			
Equipmen	nt Blank I.l	D.:	@ Time		Duplicate	: I.D.:				

		LOWF	LOW WE	LL MONI	ITORING	DATA:	SHEET				
Project #:	: 150930	orp-N		Client: 🖊	FCOM @	Del An	V				
Sampler:	JR			Gauging D	auging Date: 10/2/15						
Well I.D.	: XBF C	)6		Well Diam	Vell Diameter (in.): 2 3 (4) 6 8						
Total We	ll Depth (f	it.):		Depth to V	Water (ft.)	: 52.1	2 7	To Toc			
Depth to	Free Prodi	ıct:		Thickness	of Free Pi	roduct (fe	et):				
Reference	ed to:	pVO	Grade	Flow Cell		151 556					
Purge Metho Sampling M Start Purge	lethod:	2" Grundf Dedicated		700 r	Peristaltic F New Tubin	g	Bladder Pump Other Pump Depth:	System 4632			
	T		Cond.		T		Tump Depun.				
Time	Temp.	pН	(mS/cm or μS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or )	Depth to Water (ft.)			
1003	22.64	7.43	660	2,	0.36	-236.8	(300)	52.12			
1006	22.67	7.23		3	0.21	- 248.9		\$2.12			
1009	22.75	7.27	830	3	0.19	-245.9	4500	52.12			
1012	22.95	7.32	COL	3	0.18	262.5	6000	52.12			
1015	22,98	7.33	801	4	4 0.17 - 264.8 7500 52.12						
1018	23.04	7.34	801	4	0.16	~268-1	9001	52.12			
			,				· · · · · · · · · · · · · · · · · · ·				
				***************************************							
		,	MATTER ST. 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012								
Did well	dewater?	Yes			Amount a	actually e	vacuated:	9 _			
Sampling	Time:	019			Sampling	Date:	0/2/15				
Sample I.	D.: 61	0)02	577		Laborato	ry: G	lsciena				
Analyzed		TPH-G	BTEX MTE	BE TPH-D		<del></del>	160B	**************************************			
Fauinmer	nt Blank I	n ·	@		Dunlicate		<u>- v V //                                </u>				

		2011	2011 112	EEE TIE OT 12	I OILLI	, <u>171 X X X X X</u>				
Project #:	।४०१	30 - RD	)	Client:	AECO	M				
Sampler:				Gauging D		<i>I</i> '				
Well I.D.	: XBF	-13		Well Diam	neter (in.)	: 2 3	4 6 8			
Total We	ll Depth (f		 え刊	Depth to Water (ft.): 40.51						
Depth to	Free Produ	act:		Thickness of Free Product (feet):						
Reference		PVC	Grade	<u> </u>	Flow Cell Type: 151 po plus					
Purge Metho Sampling M		2" Grundf Dedicated	Tubing	Peristaltic Pump Bladder Pump New Tubing Other						
Start Purge	Time: <u>[13</u>		Flow Rate: _	50ml/m	^	**************************************	Pump Depth:)	77		
Time	Temp.	рН	Cond. (mS/cm or µS/sm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)		
1134	24.2	8.09	979	34	0.48	-92.6	1500	40.75		
1137 73.9 7.10 2689 113 0.25 -143.1							3000	40.75		
)14O	23.9	7.02	1630	93	0-17	-143_1	4500	40.75		
११५८	23.9	7.00	2677	69	0.12	-145.0	6000	40.75		
1146	24.0	7.00	2698	61	0.12.	-145.2	7500	40.75		
1149	240	6.29	7125	53	0.13	- 145.1	9000	40.75		
1152	240	699	2747	42_	0.13	145.4	1350D	40.15		
1155	24.0	6.99	2790	36	0.12	-145.1	12,000	40.75		
1158	24-1	L	2808	34	0.12	-144.6	13, 500	40.75		
1201	24.2	6.97	2818	34	0.71	-144.D	15,000	40.75		
				MERCONS						
	1			· ·						
Did well dewater? Yes Amount actually evacuated: 15,000 mi										
	Sampling Time: 1202 Sampling Date: 10/1/15									
Sample I.	D.: GWS	50257	18		Laborato	ry: Ca	1 Schence			
Analyzed	Analyzed for: TPH-G BTEX MTBE TPH-D Other: F- CUL									
Equipmen	Equipment Blank I.D.:  Buplicate I.D.:									

		LOW I		TATOTAT	LOMING	ADIA DIA N	JEESES E			
Project #:	150930	RP-1		Client: 1	AEcon C	Del Ano				
Sampler:	يل ك	4		Gauging D	ate: /0/	Ils				
Well I.D.:	XG-	-17		Well Diam	eter (in.)	: 2 3	<b>4</b> 6 8			
Total Wel	ll Depth (f	t.): -		Depth to Water (ft.): 48,00 70 70						
Depth to I				Thickness	Thickness of Free Product (feet):					
Reference		PAC)	Grade	Flow Cell		451 550				
Purge Metho Sampling Mo		2" Grundfo Dedicated		500 m/	Peristaltic F New Tabing	g .	Bladder Pump Other_ Pump Depth:\	-000000 > //		
Time	Temp.	рН	Cond. (mS/cm or µ\$7jcm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. ormL)	Depth to Water (ft.)		
1330	23.24	7.96	889	4	2.48	-117.0	1,710	48.32		
1373	22.99	7.78	896	14	2.09	-113.2	30,00	48.32		
1 336	23.10	7.36	1189	54	1.39	~117.0	4,00	48.32		
1339	22.99	7.09	1389	44	0.97	-137.1	G ON	48.32		
1342	22.99	7.09	1485	49	0.80	-152.4	7500	48.32		
1.345	22.85	7.11	1521	50	0.65	-166.1	9020	48.32		
1348	22.73	7.14	1526	66	0.58	-/70.8	10500	48.32		
1351	22.79	7.14	1526	67	0.61	-172.2	1200	48-32		
1354	21.72	7.15	1527	67	0.54	-175.9	13500	48.32		
	·									
-										
Did well	dewater?	Yes	<b>W</b> B		Amount	actually e	evacuated:	13.5 -		
Sampling	g Time:	1355			Sampling	g Date:	10/1/15			
Sample I.		502600		-	Laborato	ory: Cals	, c'anu			
Analyzed	Analyzed for: TPH-G BTEX MTBE TPH-D Quer: Blog									
Equipme	nt Blank I	.D.:	@ Time		Duplicat					

				THE THEORY	TT OTTI	UDAIA	SHEET			
Project #	: 1509	30-101	<i>)</i>	Client:	AEC	X11				
Sampler	120			Gauging 1						
Well I.D	.: X6-	-016 C			neter (in.)		3 (4) 6	8		
Total We	ell Depth (		5		Depth to Water (ft ) . 30 CM					
Depth to	Free Prod	uct:		Thickness of Free Product (feet):						
Referenc		P <b>V</b> C	Grade	Flow Cell		YST.	ecij. Pro Plos			
Purge Meth Sampling M	lethod:	2/ Grundi Dedicated		1	Peristaltic Pump New Tubing Other					
Start Purge	Time: 084	6	Flow Rate: _	500 my	lugin		Pump Depth:	851		
Time	Temp. (%Gor °F)	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Remoyed (gals. or ntl.)	Depth to Water (ft.)		
0849	22-9	6.32	1739	120	0-89	-1128	1,000	39-90		
0852	23~(	6.45	n8Z	119	0.86	-113.0	3000	38-80		
०४७५	23.3	656	1800	119	0.79	-114-1	4500	39-50		
0858	23.4	6.62	1762	108	0.73	-114-1	6000	39.90		
0901	23.6	6-66	169T	108	0-72	-115 -1	7506	39-90		
0904	23-7	6.68	1670	95	0.70	-116-1	9000	39-80		
0907	23.9	6-69	1666	94	0-14	-117-2	10500	39-90		
0910	24-1	6.70	1663	94	0-78	-119-4	12000	39-90		
Did well d	ewater?	Yes 1	<b>(1)</b>	7	Amount a	ctually ev	/acuated: 17	000 pr L		
Sampling '	Гime: (	5911			Sampling	Date: 16	11	300 pre		
Sample I.I	).: Gw	50256	, 1		Laborator		7.770			
Analyzed f			ЗТЕХ МТВІ		Chi (3Clence					
equipment	Blank I.D	).:	@ Time	]	Duplicate		· / ~ 1010	My.		

		LOW F	LOW WE	LL MONI	TORING	G DATA S	SHEET	·			
Project #	: 150930	BD-1		Client:	Atton	e Du.	Ams				
Sampler:				1	Fauging Date: 10/1/15						
Well I.D.	: X6-0	7LWC:		Well Dian	Well Diameter (in.): 2 3 6 8						
i	ll Depth (f			Depth to V	Depth to Water (ft.): 46.57 To TOC						
	Free Produ				hickness of Free Product (feet):						
Reference		eve	Grade	<b></b>	Flow Cell Type: YS1 556						
Purge Methors Sampling M	lethod:	2" Grundf Dedicated	Tubing	Soo welu	Peristaltic Pump  New Tubing  Other						
Start Purge	Time: 105		Flow Rate: _		Aih T	· · · · · · · · · · · · · · · · · · ·	Pump Depth:	_6/			
Time	Temp.	pН	Cond. (mS/cm or µ8/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)			
1054	23.18	7.57	666	48	0.55	-144.7	1500	45.63			
1057	23.31	7.55	1045	82	0.28	-182.7	301.2	45.63			
1100	23.33	7.70	1120	68	0.25	-191.7	4500	45.63			
1103	23.10	7.76	100	93	0.21	-203.4	6000	45.63			
1106	23.07	7.76	1028	107	0.17	-24.3	7500	45.63			
1109	23.24	7.75	1028	112	0.17	-212.9	9000	45.63			
1112	23.30	7.76	1021	liy	0.15	- 214.6	10500	45.63			
1115	23.34	7.77	1020	115	0.16	-218.1	12000	45.63			
Did well dewater? Yes Amount actually evacuated: 12											
Sampling	Time: \	116			Sampling	g Date: 1	olilis				
Sample I.	D.: GWS	02562			Laborato		Uma				
Analyzed		TPH-G	BTEX MTE	BE TPH-D		Other: of	U0B				
Equipment Blank I.D.:  © Duplicate I.D.:											

		LOW F	LOW WE	LL MONI	TORING	DATA:	SHEET	
Project #:	150930	ro1		Client:	Atroma	Del Anio		
Sampler:	In			Gauging I	•			
Well I.D.	:XGW-0	74		Well Dian			<b>4</b> ) 6 8	3
Total We	ll Depth (f	ît.): -		Depth to V	Water (ft.)	: 34.89	b To To	C
Depth to	Free Produ	uct:		Thickness of Free Product (feet):				
Reference	ed to:	PNS	Grade	Flow Cell	Type:	XS1 22	6	•
Purge Metho Sampling M	ethod:	2" Grundf Dedicated			Peristaltic I	•	Bladder Pump Other	System colum 2 2007
Start Purge	Time: 114		Flow Rate: _	500 m	um		Pump Depth:	52'
Time	Temp.	pН	Cond. (mS/cm or µS/&m)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)
1146	23,00	6.44	3275	10	0.42	-205,0	1500	39.01
1149 23.04 6.45 3307 8 0.49 -205.2 3000 35.02								35.0z
1152 73.02 6.46 3346 7 0.54 -200.0 4500 35.02							35.02	
1155	23.00	6.46	3348	Ç	0.51	-201.1	6000	75.02
1128	23.01	6.47	3348	6	0.49	-203.4	7500	35.02
			To the				-	
				No				
				*				
	***************************************							
				ু নাই				
Did well	dewater?	Yes	<b>\$6</b>		Amount a	actually e	vacuated:	7.56
Sampling	Time:	1159			Sampling	g Date: 1	10/2/15	
Sample I.	D.: 60	30259	6		Laborato	ry: Cal	Science	
Analyzed		TPH-G	BTEX MTI	BE TPH-D		Other:	6260B, -	TBA
Equipmen	nt Blank I.	D.: FB50	@ Time	1135	Duplicate		,	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555
Pulled Dedicated Bladder pump (not working) wh - 0.25" from port

		LOW F	LOW WE	LL MONI	TORING	J DATA	SHEET			
Project #	: 150930-	- 201		Client:	ABCC	Sun				
Sampler:				Gauging D	Pate:	10/1/15				
Well I.D.	: X6W	-07C		Well Dian	neter (in.)	: 2 3	<u>4</u> ) 6 8	3		
Total We	ll Depth (1	ft.): 67	1-26	Depth to V	Depth to Water (ft.): 36 - <b>02</b> Foc - 1/4					
Depth to	Free Produ	uct:		Thickness	of Free P	roduct (fe	et):			
Reference	ed to:	₽VÕ	Grade	Flow Cell	Type:	YSR F	לעולק טיינ			
Purge Methors Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	g	Bladder Pump			
Start Purge	Time: 100	2	Flow Rate: _	500 ml	meN		Pump Depth:	£5 651		
Time	Temp.	pН	Cond. (mS/cm or µS(cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mD)	Depth to Water (ft.)		
1005	23-1	6-98	1902	195	029	-(083	1500	36.27		
1008 23-1 6-95 1935 160 0-24 -118-7 3000 36-24										
								36.24		
1014	24-0	6-92	1979	125	0.22	-134-4	6000	36-24		
1017	24-3	6-92	1950	125	0.24	-137-5	7500	36-24		
1020	24-1	6-92	1992	119	0.25	-14/-1	9000	36-24		
1023	24-1	6.91	1990	116	0.24	-143-9	10506	36.24		
Did well	dewater?	Yes	160		Amount a	ctually e	vacuated: [0	rou (		
Sampling	Time: 10	24			Sampling		10/11/15			
Sample I.	Sample I.D.: 60502597 Laboratory: CAlscience									
Analyzed	Analyzed for: TPH-G BTEX MTBE TPH-D Other: Voc >									
Equipmen	nt Blank I.I	D.:	@ Time		Duplicate	I.D.:	€	4		

			CITO AA AAT		LLUKIN(	ı DATA	SHEET			
Project #	: 15093	•		Client:						
Sampler:	JF			Gauging I		/14/15	•			
Well I.D	.: ×MW-	OI HP	-	Well Dian				8		
Total We	ell Depth (1	ft.): 5	9.42					·		
	Free Prod	***************************************		Depth to Water (ft.): 39.95  Thickness of Free Product (feet):						
Referenc		PVC	Grade		Flow Cell Type: YSI 556					
Purge Meth Sampling M Start Purge	•	Dedicated	os Pump Tubing Flow Rate:	-	Peristaltic Pump  New Tubing  Other					
	T	<u> </u>			y more		Pump Depth:	50		
Time	Temp.	pН	Cond. (mS/cm or µS/em)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fil)	Depth to Water (ft.)		
0823	22.9	6-41	3/06	49	0.42	-69.2	1500	40.01		
08 26	23.5	6:45		36	0.42	-73.6	3000	40.00		
08 29	24.1	6.46	3155	29	0.40	- 78-8	4500	40.00		
08 32	24.2	6.47		24	0.25	-80.4	6000	40-00		
08 35	24.4	6.47	3151	26	0.20	-84.0	7500	40.00		
08 38	24.3	6.47	3147	27	0.19	-86.5	9000	40.00		
08 41	24.3	6.47	3145	27	0.19	-87.3	10500	40.00		
								-		
								***************************************		
Did well d	lewater?	Yes	M		Amount a	ctually ev	vacuated: 105	500 mL		
Sampling	Time: O	842					10 /1 /15			
Sample I.I	D.: GWS	02540			Laborator	۰	science	***************************************		
Analyzed for: TPH-G BTEX MTBE TPI										
3quipmen	t Blank I.I	).:	@ Time	7						
			******							

					T O KALL I	P APINEILE				
Project #	: 150930	1- RD	1	Client: AECOM						
Sampler:	JM			Gauging I	Date: 10/	12/15				
Well I.D.	: XMM-	07.H]	)	Well Dian	neter (in.)	: 2 3	3 (4) 6 8	3		
	ll Depth (1		,	Depth to V						
Depth to	Free Prod	uct:	***************************************	Thickness of Free Product (feet):						
Referenc		PV¢	Grade	Flow Cell Type: Ys1 pro plus						
Purge Meth Sampling M Start Purge		2" Grundf Dedioated			Peristaltic I New Tubin	Pump	Bladder Pump Other Pump Depth:			
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fnL)	Depth to Water (ft.)		
1436	23.8	6.45	T946	14	0.42	-80.2	1500	3960		
1439 24.3 6.44 1940 5 0.32							3100	39.60		
1442	24.6	6.44	1946	<u>~Z</u>	0.26	-86.0	4500	39.60		
1445	24.9	6.45	1924	3	020	-13.2	6000	39.60		
1448	25.0	6-45	1900	3	0.18	-97.0	7500	39.60		
1451	25.0	6.46	1904	3	D.18	_99.1	9000	39.6D		
							•			
							***************************************			
Did well o	lewater?	Yes		***	Amount a		-/ 0	odm(		
Sampling	Time:	1452			Sampling	Date: /	0/2/15			
Sample I.I	D.: 64	15025	4)		Laborator	y: Cal	Scrence			
Analyzed	for:	TPH-G	втех мтв	E TPH-D	Laboratory: G/ Screne E TPH-D Othersee Lol					
Equipmen	t Blank I.I	D.:	@ Time		Duplicate					

		LUWI	LUV VVE		LIURING	DALA	SHEEL			
Project #	: 150930	RD-1		Client:	AECOM 6	Dul A	no	_		
Sampler:	Jn			Gauging Date: (0/2/1)						
Well I.D.	: XMW	-03 H	2	Well Dian	neter (in.)	: 2 3	<u> 4</u> ) 6. 8	3		
Total We	ll Depth (f	ît.):		Depth to V	Depth to Water (ft.): 37,95 To Post					
Depth to	Free Produ	act:			Thickness of Free Product (feet):					
Reference	ed to:	PVO	Grade	Flow Cell		<u>.                                      </u>	•			
Purge Methors Sampling Months Start Purge		Dedicated	Tubing Flow Rate:		Peristaltic F New Tubing	g	Bladder Pump Other Pump Depth:			
Time	Temp.	pН	Cond. (mS/cm or µ8/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m2)	Depth to Water (ft.)		
1309	24.83	6.47	3/05	4	0.41.	-158.1	1500	39.10		
1314	24.96	6.43	3091	2	1	-1583	3000	39.10		
1315	25.34	6.44	3067	2	0.42	-183.7	4,20	39,10		
1318	25.38	6.46	3068		0-37	-185.1	6000	39.10		
1321	25.35	6-47	3065	(	0.35	-1822	7500	39.10		
						·				
TOMOSTON								,		
***************************************		****		****						
		,		•	·					
Did well	dewater?	Yes	NO		Amount a	ctually e	vacuated:	7.56		
Sampling	Time: 1	322	411		Sampling	Date:	10/2/15			
Sample I.		15025	42		Laborator	y: (a	_			
Analyzed		TPH-G	BTEX MTB	BE TPH-D		Other: 8	Science 260B			
Equipmer	nt Blank I.l	D.:	@ Time		Duplicate			<del></del>		

LOW FLOW W	ELL MONITORING DATA SHEET									
Project #: 150930-R01	Client: AECOM									
Sampler: JF	Gauging Date: 10 9 /14 /15									
Well I.D.: GWS02543 XMW-04H	10 W/-11 D:									
Total Well Depth (ft.): Pung in well										
Depth to Free Product:										
Referenced to: Grade	Thickness of Free Product (feet):  Flow Cell Type: Υν. 556									
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Start Purge Time: 1404 Flow Rate:	Peristaltic Pump  New Tubing  Soo ML/Min  Pump Depth: 56									
Temp.  Time  Cond.  (mS/cm or pH µS/cm)	Turbidity D.O. ORP Water Removed Depth to Water									
14.07 24.7 6.35 26.45 19 1.76 -105.1 15.00 1.01.65										
1410 25.2 6.28 2766 1 0.72 -88.8 3000 40.85										
1413 26.0 6.31 2860 0 0.52 -82-7 4500 4152										
1416 26.1 6.31 2916	0 0.37 -61.7 6000 41.56									
1419 26.3 6.31 2948	0 0.31 -56.0 7500 41.56									
1422 26.5 6.31 2966	0 0.30 -53.1 9000 41.56									
14 25 26.7 6.31 2984	0 0.27 -52.9 [0500 41.56									
14 28 26.8 6.31 3009	0 0.26 -54.0 12000 41.56									
1431 26.7 6.31 3010	0 0.26 -54.3 13500 41.56									
Did well dewater? Yes										
	Amount actually evacuated: (3500 ML									
Sampling Time: 1432	Sampling Date: 10/2/15									
ample I.D.: Cwso2543	Laboratory: Ealscience									
analyzed for: TPH-G BTEX MTBE	E TPH-D Other: See Col									
quipment Blank I.D.:	Duplicate I.D.:									

	***		COOW W		TIONIN	JUAIA	SHEEL			
Project #	!: [sog	130 - R	DI	Client:	AECON	<u> </u>				
Sampler	5m	_		Gauging 1			1/15			
Well I.D	: YMW	-14		Well Dian				8		
Total We	ell Depth (	ft.) : 72	-24		Depth to Water (ft.): 53 2					
Depth to	Free Prod	uct:_		Thickness of Free Product (feet):						
Referenc	ed to:	(PVC)	Grade				•			
Purge Meth Sampling M Start Purge		2" Grundi Dedicated	Tubing	560 m /n	Peristaltic Pump Bladder Pump New Tubing Other  Pump Depth: 66					
Time	Temp.	all	Cond. (mS/cm or	Turbidity	D.O.	ORP	Water Removed	Depth to Water		
1440	23.3	6.35	₩\$7cm)	(NTUs)	(mg/L)	(mV)	(gals. or m	(ft.)		
1443	23.4		3976	7	0.46	-99.6	1500	53.40		
1446	240	6.42	3896	9		-105.2	3000	53.40		
		644	3794 3674	9	627	707.5	4500	53.40		
1449 WEQ	24.4	, ,			0.18	-109.8	6000	53.40		
1452 <u>,</u>	<u>14.5</u>	6.46	3499	_8	0.16	-109.1	7500	53.40		
1455	24.6	6.46	3377	8	0.13	-1060	9000	53-40		
1458	247	647	3329	<u> </u>	0.13	-106.0	10,500	53.40		
1501	24.9	647	3301		0,12	-104.1	12,000	53.40		
				······						
Did well c	id well dewater? Yes No Amount actually evacuated: 12,000 ml									
Sampling	Time:	1502					0/1/15			
Sample I.I	D.: 6V	v5025	44		*****	****	····			
Analyzed	for:	ТРН-G	втех мтві	E TPH-D	(	Other: 5-6	Screnze Le COC			
Equipmen	t Blank I.D	).:	@ Time				· · · · · · · · · · · · · · · · · · ·			
					•			j		

Project #: 150530_RJ 1				Client: AELOM				
Sampler: 511				Gauging Date: 9/30/15				
Well I.D.: XMW -Z1				Well Diameter (in.): 2 3 \$\hbigsim 6 8 \				
Total Well Depth (ft.):				Depth to Water (ft.): 46.62				
Depth to Free Product:				Thickness of Free Product (feet):				
Referenced to:		(VC)	Grade	Flow Cell Type: ys/ 556				
Purge Method: Sampling Method: Start Purge Time:		2" Grundf Dedikated	os Pump Tubing Flow Rate: _	500 myn	Peristaltic Pump New Tubing		Bladder Pump Other Pump Depth: Red pmp	
Time	Temp.	рН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. opmD)	Depth to Water (ft.)
1519	23.2	6.38	1607	9	1.23	-107.5	1500	46.70
1522	0357	6.29	1693	Ч	0.82	-1167	3000	46.70
1525	24.1	6.33	1721	5	0.55 .	-121.3	4500	46.70
1528	24.2	6.31	ins	5	0.44	-vw.6	6000	46.10
1531	24.2	636	1731	5	0.40-	-123.0	7500	46.7D
1534	24.2	634	1740	4	0.38	-126.0	9000	46.70
-								•
		:						
			(§) ∀		***************************************			****
Did well dewater? Yes (No)				Amount actually evacuated: 9000mL				
Sampling	Time:	1535		Sampling Date: $9/3 v/15$				
Sample I.D.: 6WS0Z598 Laboratory: Cal Science								***************************************
Analyzed for: TPH-G BTEX MTBE TPH-D Other: Ce (4)								
Equipmen	t Blank I.I	D.:	@ Time		Duplicate I.D.:			

				·				
Project #	: 150930	PD-1		Client:	AFCOM	e W/	Ame	
Sampler:				Gauging 1		1/30/15	<del></del>	
Well I.D.	: XMW	-27		Well Diar	neter (in.)	<del></del>	4 6 8	3
Total We	ll Depth (1	ft.):	2004		Water (ft.)		T 7	Part
	Free Produ				of Free P			
Referenc		PVC	Grade	Flow Cell				
Purge Meth Sampling M Start Purge		2" Grundf Dedicated		120	Peristaltic I New Tubin	Pump <u>c</u>	De Bladder Pump Other Pump Depth:	
Time	Temp.	pН	Cond. (mS/cm or µ\$æm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or (1))	Depth to Water (ft.)
1404	25.54	6.54	1529	10	0.70	-128.7	450	50.66
1407	25.58	6.55	1597	8	0.55	~137.6	900	50.66
1410	25.49	6.59	1667	6	0-47	-145.9	1350	50.66
1413	25.49	6.63	1706	G	0.47	-1559	1800	50.66
1416	25.46	6.66	1708	5	0.48	-158.6	22,50	50.66
1419	25.52	6.67	1711	5	0.43	-160.4	2.700	50.66
			***************************************					
				*		`.		
Did well	dewater?	Yes	166	***************************************	Amount a	ctually e	vacuated:	2,7 L
Sampling	Time:	1420			Sampling	Date:	9/30/15	
Sample I.	D.: G	WS 02	545		Laborator	y: (	Calscience	
Analyzed		TPH-G	BTEX MTB	E TPH-D		Other: 8	160 B	
Equipmer	nt Blank I.l	D.:	@ Time		Duplicate			

Project #	: 1500	130 - R	DI	Client:	AELOW	`		
Sampler:	5n	n - 28		Gauging I	Date: įv	12/15	wit.	
Well I.D.	: XMW	- 28		Well Dian	neter (in.)	: 2 3	<b>4</b> 6 8	
Total We	ll Depth (1	ft.): –		Depth to V	Water (ft.)	: 49	.99	
Depth to	Free Prod	uct:		Thickness				
Reference	ed to:	PV	Grade	Flow Cell				
Purge Methors Sampling M	ethod:	2" Grundf Dedicated	Tubing		Peristaltic l	Pump g	Bladder Pump Other	
Start Purge	Time: <u>080</u>	<u>6</u>		500 my	min		Pump Depth:	e ded amy
Time	Temp.	рН	Cond. (mS/cm or (MS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nD)	Depth to Water (ft.)
0809	21.9	6.15	4105	5	0.64	-103.2	1500	平,50.05
0812	22.6	6.21	4076	3	0:27	-1129	3000	50.05
0815	22.7	6.23	4064	<u>3</u> 3	0.19	-117.1	4500	50.05
0818	15.8	6.24	4057	3	0.15	-120-6	6000	51.15
t824	22.9	6.26	4030	3	0.14 -	125,0	7500	50.05
0824	22.8	6. 26	4038	3	0.13	-126.1	9000	50. v 5
		,						
	······································							
Did well o	lewater?	Yes (	N		Amount a	actually e	vacuated: 9	00 ml
Sampling	Time: C	1825			Sampling	Date: 1	0/2/15	
Sample I.I	D.: GW	5025	;46		Laborato	ry: Cal	Science	
Analyzed	for:	TPH-G	втех мтв	E TPH-D	***************************************	Other Se	Scrence e col	
<b>Equipmen</b>	t Blank I.I	D.:	@ Time		Duplicate	: I.D.:		

Project #	: (509	30 - Ri	) 1	Client:	AE(	· m		
Sampler:	Tr	^		Gauging I			·	
Well I.D	: AMW-	29		Well Dian				3
Total We	ell Depth (	ft.): 7	Z-66	Depth to \	Water (ft.)			
Depth to	Free Prod	uct:		Thickness				
Referenc	ed to:	PYC	Grade	Flow Cell				
Purge Meth Sampling M Start Purge		2" Grundi Dedicated	Tubing	* From/	Peristaltic I New Tubin	Pump g	Bladder Pump Other Pump Depth:	
Time	Temp.	ърН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or m)	Depth to Water (ft.)
2921	21.7	6.51	2454	3	0.52	-97.6	1500	50.05
0924	21.9	6.46	2484	5	0.25	-113.0	3,10	50.15
0927	22.2	6-45	2443	5	0.17	-112-6	4510	50,20
093 D	22.4	645	2476	5	0.16	-1145	6000	50 25
0933	22.6	6.45	2470	5	0.15	- 117.0	7500	P.25
0936	22-6	6.43	1488	5	0.13	-119.7	9000	50.25
							. ,	
								70°71
					***************************************			***************************************
Did well o	lewater?	Yes	<b>1</b>		Amount a	ctually ev	vacuated: 900	Dal
Sampling	Time: 0	937			Sampling	Date:	10/2/15	
Sample I.I		WSOZE	547		Laborator	y: G1	10/2/15 Saera	
Analyzed			втех мтв	E TPH-D	terit granica.	Other:		
Equipmen	t Blank I.I	D.:	@ Time	-	Duplicate	I.D.:	79/10/20/20/20/20/20/20/20/20/20/20/20/20/20	

Project #	1: 15093	0-PD1		Client:	AECom	· · · · · · · · · · · · · · · · · · ·		
Sampler	_			Gauging 1	Date: 101	02/15		
Well I.D	v: XP-0	2		Well Diar	,	ŧ	- continue	8
\	ell Depth (		50	Depth to	Water (ft.)	: 450	TO TEX	
	Free Prod	• (		Thickness				
Reference	ed to:	PVC	Grade	Flow Cell	<u></u>			
Purge Meth Sampling M Start Purge		2" Grund Dedicated	l Tubing	300 tullou	Peristaltic New Tubin	ıg	Bladder Pump Other Pump Depth: <i>66</i>	
Time	Temp.	pН	Cond. (mS/cm or	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water (ft.)
1214	23-8	6.46	1374	15	1.60	35.2	900	45.54
1217	24.1	6.45	1371	9	1.57	31.8	1800	45.54
1220	24.4	6.43	1370	8	1.38	28.7	2700	45.54
1223	24.6	6.42	1369	9	1.37	26.5	3680	45.54
1226	24.8	6.72	1364	10	1.36	26.3	4500	45.54
1229	24.9	6.42	1363	10	1-36	25-8	5400	45.54
		,					:	
	·							
P	**************************************	ı -						
Did well d	lewater?	Yes (	No)		Amount a	ctually ev	/acuated: 5年	180
Sampling	Time: (2	30					0/02/15	
	D.: 6000 S		3		Laborator			
Analyzed			BTEX MTB				C.O.C.	
Equipmen	t Blank I.I	D.:	@ Time	-	Duplicate			

LOW FLOW WELL MONITORING DATA SHEET Ps. 1052 Project #: 150930-RO1 Client: AE COM 19/1/18 40 Sampler: Gauging Date: Well I.D.: XP-03 Well Diameter (in.): 2 96.00 Total Well Depth (ft.): Depth to Water (ft.): TOL -5/8 40-22 Depth to Free Product: Thickness of Free Product (feet): PVC Pro Plo Referenced to: Flow Cell Type: YST Grade 2" Grund os Pump Purge Method: Peristaltic Pump Bladder Pump Dedicated Tubing Sampling Method: New Tubing Other Flow Rate: 500 m/mm Start Purge Time: 1120 Pump Depth: 90 Cond. Temp. (mS/cm or **Turbidity** D.O. **ORP** Depth to Water Water Removed (°C)or °F) Time pН μS/cm) (NTUs) (mg/L)(mV) (gals. or mL) (ft.) 1123 40-46 15 1500 23-1 7.45 1914 1-95 -180 40-47 1126 23-8-24 1910 12 1-62 3000 - 110.4 1129 23-1 8.49 4500 40.48 1935 11 1.47 -113-9 8,40 1132 1528 23-3 13 40-48 1-29 -116-4 6000 40-48 1135 23.6 0.23 1930 14 1.23 -115-2 7500 235 1138 8-09 -114-1 15 1938 1-07 9000 40-48 1141 7.91 23-6 1932 10500 40-498 17 1.18 -112-6 1144 1934 0-90 23-6 7-76 17 -1129 40.48 12000 0.85 13500 1147 -114-0 1936 23-6 7.66 40.48 0.76 15000 1150 1942 17 -115-6 23.7 7.55 40-48 0-67 -118-7 40.48 1946 1153 23-7 7-48 16 16500 1948 16 40-98 23.7 0-62 -122.318000 UST 7-47 Amount actually evacuated: 2160 ml Did well dewater? Yes No) Sampling Date: 10/11/1 Sampling Time: 1203 Sample I.D.: 6WS02590 Laboratory: Colscience

Duplicate I.D.: 6,6502564 21218 Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

TPH-D

Other: Vocis

Analyzed for:

Equipment Blank I.D.:

TPH-G

**BTEX** 

(a)

MTBE

		LOW F	FLOW WE	LL MONI	TORING	DATA	SHEET P	4. 20f2
Project #:	15093	0-191		Client:	AECOV	Ч		
Sampler:	RO			Gauging D	Date: 10/	1/15		
Well I.D.	: XP-(	33		Well Diam	neter (in.)	: 2 3	<u>(4)</u> 6 8	8
	ll Depth (1		96-00	Depth to V	Vater (ft.)	: 40	-22	
Depth to	Free Produ			Thickness	of Free Pi	roduct (fe	et):	
Reference	ed to:	₽ <b>∜</b> Ĉ	Grade	Flow Cell	Type:	YSD	Pro Plus	
Purge Metho Sampling M	ethod:	2" Grund	_ *		Peristaltic F New Tubin	-	Bladder Pump Other	
Start Purge	Γime: 1(1	0	Flow Rate:	soo int	m		Pump Depth:	901
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or fall)	Depth to Water (ft.)
1159	23-7	7-38	1950	17	057	-124.7	19500	40-48
1202	23-8	7.34	1947	16	056	-125-6	21000	40-46
					***************************************			
Did well o	lewater?	Yes	No.		Amount a	ctually e	vacuated: 2	(000 ml
Sampling	Time: (1	103			Sampling	Date: 1	Uller	
Sample I.I	D.: 6W3	02590	)		Laborator	y: (	Historie	
Analyzed	for:	TPH-G	втех мтв	E TPH-D		ىن :Ot <b>he</b> r		
Equipmen	t Blank I.l	D.:	@ Time		Duplicate	I.D.: 60	W 625069	a) 12/8

Project #:	150930	0- PD1		Client: A	Elove			
Sampler:				Gauging I	)ata.	, 1011	15	
Well I.D.	: >mw	-20		Well Dian			3 4 6 8	3
	ll Depth (t			Depth to V	Water (ft.)	: 53.9	9	
	Free Prod		89	Thickness				
Reference		PVC	Grade	Flow Cell		- Cadot (10		
Purge Metho Sampling M		2" Grundf Dedicated	•		Peristaltic F New Tubing		Bladder Pump Other	/
Start Purge	Time:		Flow Rate: _				Pump Depth:	
Time	Temp.	pH	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)
10/7/15	DIE	P	10.3C	53.00				
	1)(			3.07				
***************************************	( ( (-	OF ST		TECTED	w/			9B6
à 4 is 1	666		EMOVED . 98	W/C	115YESAC	SIE #	SAILER	
1044 -	DTFP	: 52 : 53.8						
1203	DIP	52.	95		-			
100	DTIN	; 53	.57_					
	010							
						·		·
-	No 9	AMPL	E TA	(en)	1			
Did well d	lewater?	Yes	No		, Amount a	ctually e	vacuated:	
Sampling	Time: /				Sampling	Date:		
Sample I.I	D.: /				Laborator	y:		
Analyzed	/_	TPH-G	втех мув	/		Other:	/	
Equipmen	t Blank I.I	D.:	@ /Time		Duplicate	I.D::		

	,	270 11 2	ECT TIE	2,00,00 TV,COT V3		, ,,,,,,,	DIE	
Project #	: 150930	-PD1		Client: A	Econs			
Sampler:				Gauging I				
Well I.D.	:IWS	0027	9	Well Dian	1		3 4 6 8	} 
	ll Depth (1		·	Depth to V	Vater (ft.)			
Depth to	Free Prod	uct:		Thickness	of Free P	roduct (fo	eet):	
Reference	ed to:	PVC	Grade	Flow Cell	Type:			
Purge Methors Sampling M		2" Grundf Dedicated	-	_	Peristaltic I New Tubin	•	Bladder Pump	DISPOSABLE BALLIEZ
Start Purge	Time:		Flow Rate: _	_/_		•	Pump Depth:	,
Time	Temp.	pН	Cond. (mS/cm or µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water (ft.)
	WAST	= 0	HURATE	PIZATZ	ON SA	WPIS		-
***************************************								
					<u> </u>		·	
				:				•
• •				•	, .			
				,				
				. ,			,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•				
Did well	ldewater?	Yes	No-)		Amount a	actually e	vacuated:	
· · · · · · · · · · · · · · · · · · ·	Time: /2						0/06/15	
	D.: Iws						CIENCE	
Analyzed		TPH-G	BTEX MTE				FC.O.C.	
	nt Blank I.		@		Duplicate		= ( , \cdot	
Equipmen	n dialik L	D.,	Time		Dupiteate	1.レ		1

					1680 ROGERS	S AVENUE		CON	IDUCT	ANALY	/SIS T	O DET	ECT		LAB •		· · coc_1	_of!
BLAII TECH SERV			SAN	IOSE, C	ALIFORNIA 9	5112-1105 ) 573-7771	<del>ر</del> ت		SM4500-Co2D					еВ				
CHAIN OF CUST	ODY						WTB.		200	300.0	B	,		0-Fe				
CLIENT	URS						ナ		MS M4	EPA :	6010B	,5M	.0B	3500-Fe	Reporting and Billing in David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 931 Cell: (805) 345-5929	fo: r		•
SITE	Del Ar	no		•			8260B		1		EPA	RSK-175M	2320B	SM	URS Corporation 130 Robin Hill Road, S	uite 100		
·		nce, CA	<b>.</b>				EPA 8		(ide	ate	þ		SM	By	Cell: (805) 345-5929 david.myers@urs.com	117		•
									Dioxide by	Sulfate by	ese	e by	Alkalinity by	Iron				
	1		MATRIX		CONTA	INERS	's by				gan	าลทย	linit	sno.				
		T13.45	AQ= Water		Preservation	Type	VOC's		Carbon	Nitrate,	Manganese	Methane	Alka	Ferrous	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
SAMPLE I.D.	09/30/15	TIME 1145	AQ	-2	HCL	VCA	X								·	•		
	09/30/15		AQ	3	HCL	VOA	X											
FBS52073 GWS02507	09/30/15		AQ	3	HCL	VOA	X											
	09/30/5	4 .	AQ	3	HCL	VOA	X	<u> </u>						ļ				
		Ì													·			
											<u> </u>		<u> </u>					
							_	_			-	<u></u>	ļ					
	ĺ			ļ				-			-	-	<u> </u>	+				
				ļ				<del> </del>		-	-	<del>  '</del> -						
SAMPLING	DATE	TIME	SAMPL	ING RMED I	BY EDUARO	O BUDA	الم	<u> </u>	<u> </u>	<u> </u>		1	<u>.l</u>	<u> </u>	RESULTS NEEDED NO LATER THAN			
COMPLETED RELEASED BY	19/30/15							·	TIM	E 0	ひ	REC	EIVEC	BY	Ve	*	DATE 9/3	PIS 16 D
RELEASED BY		11.							TÍM		- I	REC	EIVE	) BY	A:	Ea	DATE 9/30/	TIME 15 1645
RELEASED BY		/// C						•	TIM	Ē	İ		EIVE				DATE /	TIME
SHIPPED VIA				•					TIM	E SEN	Т	COC	DLER#	#				

BLAI	NH		SAI	N JOSE	, CALIFORNIA	ERS AVENUE A 95112-1105	: <del> </del>	COI	VDUCT	ANAL	YSIS	TO DE	TECT		LAB		coc_	V of
TECH SERV					FAX (4 PHONE (4	108) 573-7771 108) 573-0555	1		02D							•		
CHAIN OF CUST	ODY			-	•		MTB		SM4500-Co2D	300.0	<u>8</u>			-FeB			• •	
CLIENT	URS						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	·	M45	EPA 3	6010B	5M	)B	3500-F	Reporting and Billing i David Myers, PG	nfo:		•
SITE	Del A	mo					8260B			by El	EPA	RSK-175M	2320B	SMS	Field Services Manage URS Corporation 130 Robin Hill Road, S	er Svite 100		. •
	Torra	nce, CA	4		***************************************		EPA 8		Dioxide by	Sulfate b	by	by RSk	SM	By	Santa Barbara, CA 93 Cell: (805) 345-5929 david.myers@urs.com	T1/		
			MATRIX		CONT	AINERS	VOC's by		Carbon Di	Nitrate, Su	Manganese	Methane b	Alkalinity by	Ferrous Iron				•
SAMPLE I.D.	DATE	TIME	AQ= Water	#	Preservation	Туре ·	8		Car	Nitr.	Mar	Met	Alka	Ferr	ADD'L INFORMATION	STATUS	CONDITION	. LAB SAMPLE#
FB502065 6	1/30/15	1030	AR	3	Ha	1093	χ				•							. DAD OAMP EE #
GW502518		1253		3			X											
ZW502545		1420		3	·		Λ. Χ											
GWS 02565	4	1518	d	3			X					.	.					
					·				_									
COMPLETED	DATE	TIME	SAMPLIN PERFOR		· · · · · · · · · · · · · · · · · · ·	brother	Ra	1400							RESULTS NEEDED			
RELEASED BY	1	(	1	7		procepa	Poo	1	TIME /6	00	F	RECEIN	/ED B	Y	NO LATER THAN	· .	DATE	TIME
RELEASED BY	·		NL			E	ā_	17	TME 164		<b>D</b>	RECEIN	4	Y		Er	9/30/1 DATE 9/30/13	TIME   TIME   16 43
SHIPPED VIA								•	IME	ENT		OOLE					DATE	TIME

•

, .

			CAN	IOSE	1680 ROGER			CON	DUCT	ANAL'	YSIS T	O DE	TECT		LAB		coc	of/_
<b>3LAI</b> ECH SERV		<b>)</b> .	SAN	JUSE,	CALIFORNIA FAX (40 PHONE (40	8) 573-7771			SM4500-Co2D	(				8		•	• •	•
HAIN OF CUST	ODY						٠		00-	300.0	)B			3500-FeB				
LIENT	URS			-			~	•	M45	EPA 3	6010B	M	8	3500	Reporting and Billing i	nfo:	·	•
ГЕ	Del Ar	——— നറ					8260B				EPA (	-175	2320B	SM 3	Field Services Manage URS Corporation	er Swite 100		
		nce, CA							de b	Sulfate by	by E	RSK-175M	SMS	By §	Reporting and Billing i David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	117		
		<u> </u>				,	EPA		ioxi	ulfa	se k	by F	ģ	Iron	david.myers@urs.com	1		•
1			MATRIX		CONTA I	INERS	s þy		on D		lane	ane	nity	ns l	<b>!</b>	l	1 1	
			AQ= Water				VOC's		Carbon Dioxide by	Nitrate,	Manganese	Methane	Alkalinity	errous				
MPLE 1.D. 502662	9/30/15	1330	AQ	# 2	Preservation HC	Type UoA	<u>&gt;</u> X		0	Z			⋖	Ш_	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
502072	9/30/15	1345	ACL	3	Itil	UOA	X									•		
NS02555	9/30/15	1430	AQ	10	VAALIOU)	Various	X		X	Χ	X	Χ	X	χ				
W502559	9/30/18	1531	AQ	3	H-C1	VOP	X						, ,					
						,												
					<u> </u>													
						,												
MPLING MPLETED	DATE 9/30/1		SAMPLIN PERFOR		ir Dan	ng R	il							- 1	RESULTS NEEDED NO LATER THAN			•
EASED BY	D _	<i>\$</i>	2						TIME	1600	, 1	RECE	IVED I	3Y	Nu		DATE 9/30/	ITIME
EASED BY			~			,		•	TIME	45		RECE	IVED E	3Y <b>&lt;</b>	l l	Ea	DATE 9/30//	TIME
EASED BY							•	•	TIME	-		RECE	IVED I	3		^^	DATE	TIME
PPED VIA									TIME	SENT		COOL	ER#					

	NIE		SAN	JOSE	1680 ROGER CALIFORNIA	S AVENUE		CON	DUCT	ANAL`	YSIS T	O DE	ГЕСТ		LAB	····	coc <u></u> /	_of
BLAII TECH SERV	' ~	c.	OAN	0002,	FAX (40) PHONE (40)	8) 573-7771	SE		SM4500-Co2D					8		•		× .
CHAIN OF CUST	ODY	····					MTE		)-00	300.0	)B			-Fel		,		
CLIENT	URS	<del> </del>				,	1+		M45	EPA 3	6010B	5M	)B	3500-FeB	Reporting and Billing i	nfo:		
ITE	Del A	mo					8260B			by EF	EPA (	RSK-175M	2320B	SM 3	Reporting and Billing i David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	er Suite 100		•
		nce, CA	\				<b> </b> ∢		de k	te b	by E	3SK	SM	Ву	Santa Barbara, CA 93 Cell: (805) 345-5929	117		
							F		Dioxide by	Sulfate		by		Iron	david.myers@urs.com	<b>!•</b>		* ·
			AQ= Water		CONTA	,	VOC's by		Carbon [	Nitrate, S	Manganese	Methane	Alkalinity by	errous				
AMPLE 1.D. BS 02064	9/30/15	TIME 1205	<u>₹                                    </u>	# 2	Preservation inCl		<u>&gt;</u>   X				2		<u> </u>	Ш.	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
BS02076	1	1210	1	3	HC1	1011 ·	X											
iw502537		1234		3	HCI	VOÀ	1	<u> </u> -		~						•		
WS172-598		1535		10	\n\n\~\\	V/7/1003	X		X	Χ	Ż	×	X	X				
, W502553		1402		10	v4111-3	UGV 14-75	X		入	X	X	X	X	X				•
SW502548	V	1448	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	HLI	AW	X											•
							<u> </u>					,						•
								ļ								•		
								<u> </u>										
AMPLING OMPLETED	DATE	  TIME   1535	SAMPLII PERFOR	I NG RMED B	Y Tas	en A	lahi	'	<u> </u>						RESULTS NEEDED NO LATER THAN	Standara	<u> </u>	
ELEASED BY	1		/			•			TIME	5m		RECE	IVED	BY	No		9/30/1	TIME
ELEASED BY	1		0	ゾー		,,,,,,			TIME	,45		RECE	IVED	BY 2		Ecc	DATE 9B0/(5	TIME - 16 43
ELEASED BY									TIME			REC	IVEO	BY		<u> </u>	DATE	TIME
HIPPED VIA				<del>/</del>				•	TIME	SENT	-1	COOL	ER#			•		
									1									•

1680 ROGERS AVENUE COC 1 of 1 CONDUCT ANALYSIS TO DETECT LAB BLAINE SAN JOSE, CALIFORNIA 95112-1105 FAX (408) 573-7771 SM4500-Co2D PHONE (408) 573-0555 TECH SERVICES, INC. M 3500-FeB 0 MTB 300. CHAIN OF CUSTODY 6010B CLIENT 4 Reporting and Billing info: David Myers, PG EPA **RSK-175M** 2320B **URS** 8260B Field Services Manager EPA SM SITE URS Corporation 130 Robin Hill Road, Suite 100 Del Amo Dioxide by þ SM Santa Barbara, CA 93117 Cell: (805) 345-5929 By Sulfate þ Torrance, CA EPA david.myers@urs.com Ferrous Iron þ Manganese Alkalinity by β Methane CONTAINERS MATRIX Carbon Nitrate, VOC's I AQ= Water SAMPLE I.D. DATE TIME Preservation Type CONDITION LAB SAMPLE # ADD'L INFORMATION STATUS FBS02074 9/30/15 i 225 8 FR502006 × 1200 3 GWS02506 1306 GWS02526 1409 10 X ス  $\not\sim$ X  $\simeq$ X >> 6WS02519 1521  $\times$ 10 25  $\times$ SAMPLING DATE TIME SAMPLING RESULTS NEEDED J. Fourtain COMPLETED PERFORMED BY 9/30/15 1550 NO LATER THAN RELEASED BY TIME RECEIVED BY 16001 RELEASED BY TIME RECEIVED BY DATE 1645 ECE RELEASED BY SHIPPED VIA TIME SENT COOLER#

BLAI	NIE		SÁN	JOSE.	1680 ROGEI CALIFORNIA	RS AVENUE 95112-1105		CON	IDUCT	ANAL	YSIS T	O DE	TECT		LAB	•	coc_ <u></u>	of
TECH SER		C			FAX (40	08) 573-7771 08) 573-0555	l .		SM4500-Co2D					_			,	
CHAIN OF CUS	FODY							].	00	300.0	B			FeB				
CLIENT	URS			·····			1		M45	A 3(	6010B	Σ	В	3500-Fe	Reporting and Billing i	nfo:		
SITE	Del A	mo				T	8260B		1	/ EPA	EPA 6	RSK-175M	2320B	SM 3	Reporting and Billing in David Myers, PG Field Services Manager URS Corporation	er		
		nce, CA	<u> </u>				A 82		de by	e by	y EF	SK-	SM 2	By S	URS Corporation 130 Robin Hill Road, 93 Santa Barbara, CA 93 Cell: (805) 345-5929	Suite 100 117		•
· · · · · · · · · · · · · · · · · · ·							<u>品</u>		Dioxide	Sulfate	se b	by R		Iron E	david.myers@urs.com	1		
			MATRIX		CONTA	INERS	by		n D	1 1	ane	ne	iity l	ıs Ir	,			
AMBLEID	5.4775		AQ= Water				VOC's	134	Carbon	Nitrate,	Manganese by	Methane	Alkalinity by	Ferrous				•
AMPLE I.D. BS02CLB	DATE 19118	TIME O7CO	43 AQ	7	Preservation HC/	VOA	<u>&gt;</u>		0	Z	_≥	2	А	<u>LL</u>	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
	191115	0710	AQ	3	HU	UOVA	X	Ta.								•		
(4) 5025 6)	101115	0911	AG	10	UAVIDUS	UARWS	7.	メ	χ	X	X	X	X	X				
60502597	191115	1024	AQ	3	HC1	you.	X		',									_
6WS 02590	ા) like	1218	AQ	3	Hel	1)04	χ											* ,
66502564	10/11/15	1203	AQ	3	Hel	VoA	X									,		
	10/11/15	1316	AQ	3	Hel	UOA	X										•	
6650257Z	10/1/15	1517	AQ	3	Hel	UOA	X	X										•
AMPLING	DATE	TIME	SAMPLIN	√G											RESULTS NEEDED	***		
OMPLETED ELEASED BY	191115	11ME	PERFOR	MED B	1 Dian	ny	$\mathbb{Z}$	100							NO LATER THAN	•		•
ELEASED BY						/		l	TIME }-	722	1888	RECE	VED E	A M	11/001	•	DATE	TIME
ELEASED BY							,		TIME	1 / 0		RECE	VED E	3Y L	1000		DATE	9 1722 TIME
ELEASED BY	· · · · · · · · · · · · · · · · · · ·								TIME			RECEI	VED E	BY			DATE	TIME
HIPPED VIA			<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	·····			<del>'</del>		TIME	SENT		COOL	ER#					•
																		•

DIAI	A I F		CAN	IOSE	1680 ROGER CALIFORNIA	S AVENUE		CON	DUCT	ANAL'	YSIS T	O DE	TECT		LAB	······································		of
BLAI TECH SERV		c.	JAN :	JOJE,		8) 573-7771			SM4500-Co2D	0				еВ				· ·
CHAIN OF CUST	ODY								00	300.0	0B			-Fe				
CLIENT	URS								M45	λ 3	601(	75M	9	3500-Fe	Reporting and Billing i	nfo:		-
SITE	Del A	mo					8260B		by SI	/ EPA	EPA (	-175	2320B	SMS	Reporting and Billing I David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S	er Solle 400		· .
		nce, CA					4 82			Sulfate by	by E	SK-1.	SMS	By S	130 Robin Hill Road, 8   Santa Barbara, CA 93   Cell: (805) 345-5929	117		
	TOTTA	1100, 07	\				EPA		Dioxide	ulfat	se b	by R	by S	Iron I	david.myers@urs.com	1		
		1	MATRIX		CONTA	INERS	by	<u>'</u>			ane							•
			<del>a</del>			•	VOC's		Carbon	Nitrate,	Manganese	Methane	Alkalinity	errous	-			
SAMPLE I.D.	DATE	TIME	AQ= Water	#_	Preservation	Туре			ပိ	Ž	W	<u> </u>	A	Fe	ADD'L INFORMATION	- STATUS	CONDITION	LAB SAMPLE #
FB502069	10/01/15	0710	AQ	2	HCL	VOA	X											
B295080	10/01/15	0715	Ø4	3	HCL	VOA	X					7						•
	10/01/2	0940	AQ	3	HCL	VoA	X	ļ										
	10/01/15		AQ	3	HCL	VOA .	X	ļ										
51NS025113	1 1 1			3	HCL	VOA	X	ļ							•	•		
nw 527516	10/01/15	1172	AQ	3	HCL	VOA	X	1								•		
	10/01/15	1212	AQ	3	HCL	-VOA-	X											= व
GW502523	10/01/15	1.	AQ	3	HCL	Vo4	X		<u> </u>	$\times$	X	$\chi$	$\times$	X				•
6WS02524	10/01/15	1509	AQ	10	VAPIOUS	VATU OUS	-											•
SAMPLING COMPLETED	DATE	TIME	SAMPLII PERFOR	 NG RMED E	Y EDWARDC	BUDAN	 >	<u> </u>				<u></u>			RESULTS NEEDED NO LATER THAN	-		· · · · · · · · · · · · · · · · · · ·
RELEASED BY		1								160	70		IVED		W		DATE (O///	TIME V
RELEASED BY				11			<del>_</del>		TIME  -	722	5880	RECE	IVED	2/1/	111/00	1	DATE	15 1722
RELEASED BY				<u> </u>					TIME	101		RECE	IVED	BY /	<i>"</i>		DATE	TIME
SHIPPED VIA					•				TIME	SENT		COOL	ER#		. ,	•		
					·		<del>-</del>		J			L			<u> </u>			

BLAI	MF				SAN	JOSE,	CALIF	ROGE ORŅIA	RS A' \ 9511	VENUE 2-1105	-	CON	IDUCT	ANAL	YSIS T	O DE	TECT		LAB	···	coc_(	of(
ECH SER			<b>)</b> .				F	AX (4	08) 57	'3-7771 '3-0555			SM4500-Co2D					~		•	• *	
HAIN OF CUS	TODY								····				00	300.0	0B			3500-FeB		•		
LIENT	<i>•</i> ₩R	S	AECI	 `\^∕		-	<del> </del>			,		ŀ	M45		6010	Σ	В	500	Reporting and Billing i	nfo:		
TE	De			<del>/ / ·</del>							8260B			' EPA	EPA 6	RSK-175M	SM 2320B	SM 3	Reporting and Billing i David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	er		•
·e			ice, CA	\ \						<del></del>	A 82		de b	e by		SK	M 2	By S	130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	Suite 100 117		
				-						, , , , , , , , , , , , , , , , , , ,	H		Dioxide by	Sulfate	se by			Iron E	david.myers@urs.com			
	[	ı		MA	TRIX		) 	CONTA	AINEF	RS	by by		n D		anes	ne	ity b	IS IT				
•				1 11	Water						VOC's	TBA	Carbon	Nitrate,	Manganese	Methane by	Alkalinity by	Ferrous	·			
MPLE 1.D. S02078	DAT		TIME	1		# >	Preser	```	1-2	*		1	ర	Ż	Ž	Ž	₹	<u>H</u>	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
502018 502067	10/1/1	5	075	Α	<u>(८</u> 	3	H	<u>                                     </u>	$+$ $^{\vee}$	NA.	x' X									•		
v502573		1	0720 0835			3		┼			$\frac{1}{}$											
1502548			0928			3			-		<u> </u>											
V502580			1018			3			1		$\frac{\wedge}{\vee}$					-				· · · · · · · · · · · · · · · · · · ·		•
US02527			1050			3					<del>\frac{1}{\sqrt{\sqrt{\chi}}}</del>											,
VS 102578			1202			3					$\hat{\times}$	X										
V502593		4	1352			3					X											
JS02544	:1/	_	1502	J.		3	1		\	/	入											
MPLING	DATE		TIME	SAN	/IPLIN	ic.			<u> </u>			<u>.                                     </u>										
MPLETED	10/1/	5	1510			MED B	Υ 7	51150	n	Mah	n.								RESULTS NEEDED NO LATER THAN	standara	d	
EASED BY			Z-									ľ	TIME	1,00	>    ^F	RECEI	VED B	Υ '	<b>ハ</b> ナ、 .		DATE	TIME
LEASED BY		_/			····					, .			TIME			RECEI	VED B	Υ	/:		DATE	(5- /60 TIME
EASED BY				<del></del>				······································	<del></del>			1	(- TIME	122	J.F	RECEI	/-/ VED B	y de	MY ECI		10/1/1	15 1722
PPED VIA											,							· /			DATE	TIME
LLED AIM										t.			TIME S	ENT		COOLE	R#				· · · · · · · · · · · · · · · · · · ·	
					-						<del>- :</del> .										****	

BLAI	AI	STEEDER		s	ΔN .IC	)SF	1680 ROGEI CALIFORNIA	RS AVENUE		CON	IDUCT	ANAL	YSIS	TO DE	TECT		LAB	•	coc_	of_2_
TECH SER			NC.		711 00	JOE,	FAX (40	98) 573-7771 98) 573-0555	Ì		SM4500-Co2D							-		
CHAIN OF CUS	TODY	′							1.		00	300.0	B			-FeB			•	
CLIENT		IRS						······································			M45	A 3	6010B	Σ	<u>B</u>	3500-F	Reporting and Billing in	nfo:		•
SITE		el A	mo						8260B		by SI	/ EPA	EPA (	RSK-175M	2320B	SM 3	David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S	er .		
			nce, CA	١							de b	e b)	by El	SK.	SM 2	By S	130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	Suite 100 117		•
	<u> </u>	•	, , , , ,						EPA		Dioxide	Sulfate by		by F	by S	1	david.myers@urs.com			
	1		1	MATE	RIX		CONTA	INERS	by		n O		ane			ls Ir				•
SAMPLE I.D.	D.A	ATE	TIME	AQ=	water	#	Preservation	Type	VOC's	TBA	Carbon	Nitrate,	Manganese	Methane	Alkalinity	Ferrous Iron	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
FB502081	10/	1/15	0800	لما		3	HCL	Voa	*5								7.100 L IN ONWA WOR	•	CONDITION	LAD SAIVIPLE #
FB502070			0750			2	HCL	voa	×											
GW 502540			0842			3	HCL	voa	×									•		
GWS0 <b>1</b> 508			0939			3	VHCL	VOQ	×	×										
GW 502 560			1034			3	HCL	voa	بد	×										
GW502583		<u> </u>	1144			3	HCL	voa	×									•		
GW502576		ļ	1239			3	HCL	VOA	×									·		
GWS02591			1337			10	Various	Vorious	×		×	X	X	×	×	×				
GW502569			1442			3	HCL	VOCA	×	. ×										· · · · · · · · · · · · · · · · · · ·
GW 5 02 522 SAMPLING	150	I NTE	(533	1		0	various	Norton	>		X	$\succ$	×	$\times$	×	X				•
COMPLETED		1/15		SAMP PERF		ED BY	y J.Fo	entain		•							RESULTS NEEDED NO LATER THAN			•
RELEASED BY						Jo	·				TIME	50	<b>&gt;</b>	RECE	IVED I	BY /	v		DATE	TIME
RELEASED BY						( ) ·			•		TIME	72	7 1	RECE	IVED I	BY	and MA	=(1	DATE	TIME
RELEASED BY							/				TIME	1_{		RECE	IVED 1	BY			DATE	/(5   722  TIME
SHIPPED VIA							•				TIME	SENT	İ	COOL	ER#		•			

.

	AIE		244	I IOSE	1680 ROGEI CALIFORNIA	RS AVENUE		CON	IDUCT	ANAL	YSIS 1	O DE	TECT		LAB		COC_3	<u>ofZ</u>
BLAI TECH SERV		IC.	OAN	. 0002,	FAX (40	8) 573-7771 8) 573-0555			SM4500-Co2D	_				3				
CHAIN OF CUST	ODY				•		'		0-00	300.0	)B			3500-FeB				
CLIENT	URS						B		M45	EPA 3	6010B	5M	3B	3500	Reporting and Billing i	nfo:		•
SITE	Del A	mo					8260B				EPA	RSK-175M	2320B	SMS	Reporting and Billing in David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, Santa Barbara, CA 93 Cell: (805) 345-5929	er Suite 100		
	Torra	nce, CA	\				EPA 8		Dioxide by	Sulfate by	by	RSk	SM	By	Santa Barbara, CA 93 Cell: (805) 345-5929 david.myers@urs.com	117	e - 2	
			MATRIX	<del>.</del>	CONTA	INERS	by El		Diox	Sulfa	ese	e by	y by	Iron	david.myers@urs.com	ı		•
SAMPLE I.D.	DATE	TIME	AQ= Water	#	Preservation	Type	VOC's	TBA	Carbon	Nitrate,	Manganese	Methane by	Alkalinity by	Ferrous	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
GW502585	10/1/15	1245	ŭ	3	HCL	VOA	X					,			TIES E IN CININTION	OTATOO	CONDITION	LAB SAMPLE#
GW502591	10/1/15	1350	W	10	various	various	メ		X	X	×	×	➣	×				
P.M. 1941																		
					<u> </u>													,
							· .											
						· ·	•											
SAMPLING	DATE	TIME	SAMPLII	NG.	<u> </u>											•		
COMPLETED	10/1/1	•	PERFOR		BY J. FO	ocutain	,								RESULTS NEEDED NO LATER THAN			
RELEASED BY	· •				Tont				TIME [6	, N	> 🖒	RECE	IVED E				DATE O	1 TIME
RELEASED BY		$\sim$							TIME	72.	i	RECE	IVED		11/1	r	DATE	TIME
RELEASED BY		,	<del> </del>						TIME	12.		RECE	IVED E	BY (			DATE	(15 ) 722  TIME
SHIPPED VIA									TIME :	SENT	= = = = = = = = = = = = = = = = = = = =	COOL	ER#					
·				1111 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.000	•							l		***************************************		•
								•										

							•			,									•	, .	
BLAI	AII			97	N JOSE			RS AVE			CON	DUCT	ANAL	YSIS	O DE	rect	r	LAB		coc_l	_of
TECH SERV			c.	Ü,		F	AX (40	08) 573- 08) 573-	-777.1			Co2D					8				·
CHAIN OF CUS	TODY			· · · · · · · · · · · · · · · · · · ·		•	···		•			00	300.0	0B			-FeB		•	• •	•
CLIENT	UF	<b>RS</b>							•	<u>B</u>		SM4500-Co2D	EPA 3	601	75M	2320B	3500-Fe	Reporting and Billing i David Myers, PG Field Services Manage URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	nfo:		
SITE	De	el A	mo							8260B			by E	EPA	SK-17	232	SM	URS Corporation 130 Robin Hill Road, S	suite 100		
	Тс	rra	nce, CA	\						4		Dioxide by	ate k	þy E	RSI	SM	By	Santa Barbara, CA 93 Cell: (805) 345-5929 david.myers@urs.com	117		
				1						y EP,		Şi	Sulfate		by	by	Iron	david.myers@urs.com			
				MATR			JONTA	INERS		C's by	BA	Carbon [	1	Manganese	Methane	Alkalinity	errous				
AMPLE I.D.	DA ⁻	ΤE	TIME	AQ= Water	#	Preser	vation	Туре	)	VOC's	(-	Car	Nitrate,	Mar	Met	Alk	Feri	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
FBS02071	10)1	15	0600	AG		Ho	<u>ı</u>	w	7.F	X											•
FBS 02077		1_	0700	li	3				<u> </u>	4											
W502579			0838		3					X											
MS02581			0946		3					X								·			
WS02562		1/	1116		3					X											
W502550			1209		3					X	X										
ws02601			1322		3					χ.											
W502529			1521		3					X											
10502588		1	1230	7	3		$\forall$		-	$\times$								# <i>Č</i>	blilis-		•
W302588	<u> </u>	4	1530	1	3		J	1		×											*
AMPLING OMPLETED	DA ⁻  0 1		TIME	SAMP PERF	LING ORMED I	3Y	<u>J.</u>	svata	in TC	ann!								RESULTS NEEDED NO LATER THAN	·.		
ELEASED BY				//	X/	)						TIME /6	00		RECE	IVED E	3Y <b>A</b>	·		DATE ON IN	TIME W
ELEASED BY			$\sim$		<del></del>							TIME	122		RECE	VED E	3Y Z	1/1/	ec(	DATE	15 TIME 1922
ELEASED BY		······································							•			TIME	ــــــــــــــــــــــــــــــــــــــ		RECE	VED E	BY.	- ///	<u> </u>	DATE	TIME
HIPPED VIA							•			•		TIME	SENT		COOL	ER#			•		
												. —								4	

BLA	NIE		SAN	JOSE	1680 ROGEF CALIFORNIA	RS AVENUE		CON	DUCT	ANAL	YSIS	O DE	TECT		LAB		coc_	<u></u> of <u></u>
TECH SER		IC.			FAX (40	8) 573-7771 8) 573-0555			SM4500-Co2D					•				
CHAIN OF CUS	TODY					· · · · · · · · · · · · · · · · · · ·	1		0-00	300.0	В			FeB				
CLIENT	URS								1450		6010B	Σ	m	500-F	Reporting and Billing in	ที่fo:		
SITE	Del A	ma					8260B			EPA	✓	RSK-175M	2320B	ന	David Myers, PG			
			`				1 -		e by	by l	EP,	SK-	M 2;	/ SM	URS Corporation 130 Robin Hill Road, S Santa Barbara, CA 93 Cell: (805) 345-5929	Suite 100 117		
	топа	nce, CA	<del>1</del>				EPA		Dioxide	Sulfate	e by		/ SM	n By	Cell: (805) 345-5929 david.myers@urs.com	· · · ·		•
			MATRIX		CONTA	INERS	by E		Dio		nese	ne by	ty by	s Iron				
SAMPLE I.D.	DATE	TIME	AQ= Water	#	Preservation	Туре	VOC's	TRA	Carbon	Nitrate,	Manganese	Methane	Alkalinity	Ferrous	ADD'L INFORMATION	STATUS	CONDITION	AD CAMPLE #
FBS02106	10/05/15	0645	AQ	2	HCL	VOA	X									OIATOO	CONDITION	LAB SAMPLE#
FB502087	10/05/15	0650	AQ	3	HCL	VOA	×											
1WS02520	100515	0955	AQ	3	HCL	VOA	X											-
aws02587	10/05/15	1000	AQ	3	HCL	VOA	X											•
huso2558	10/05/15	1111	AQ	3	HCL	VOA	X									•		
nws02534	10/05/15	1314	AQ	3	HCL	VOA .	X	X	·									
3WS02592	10/05/15	1319	AQ	3	HCL	VOA -	X	X										
nWS02535	10/05/15	1412	AQ	3	HCL	VOA	X	,										
						•												
SAMPLING COMPLETED	DATE	  TIME : 1420	SAMPLII PERFOF	–	BY EDUARD	o bum	L								RESULTS NEEDED NO LATER THAN	•		
RELEASED BY		4	-				,		TIME /ち	40		RECE	IVED E	BY		***************************************	DATE	TIME
RELEASED BY								•	TIME			RECE	IVED E	BY		,	DATE	TIME
RELEASED BY					_				TIME			RECE	IVED E	BY	. `		DATE	TIME
3HIPPED VIA			1				÷		TIME	SENT		COOL	ER#			,		

BLAINE	SAN	JOSE,	1680 ROGEF CALIFORNIA	RS AVENUE 95112-1105		CON	DUCT	ANAL	YSIS	LO DE.	TECT		LAB		COC_	of .
TECH SERVICES, INC.			FAX (40	8) 573-7771 8) 573-0555			SM4500-Co2D							•		
CHAIN OF CUSTODY						12	0-0	300.0	m			FeB				
CLIENT		<b>14</b>				2	1450		6010B	5	м	3500-F	Reporting and Billing	info:		
SITE Del Amo	·				8260B	PH CARBONC ANOTHER		EPA	A 6	RSK-175M	2320B		Reporting and Billing David Myers, PG Field Services Manag	or		
						夏至	e by	by	EPA	Ϋ́	123	/ SM	URS Corporation 130 Robin Hill Road, Santa Barbara, CA 93	Suite 100		
Torrance, CA	\		·		EPA	AF CARB	Dioxide	Sulfate	by		/ SM	n By	Santa Barbara, CA 93 Cell: (805) 345-5929 david.myers@urs.com	n_		
	MATRIX		CONTA	INERS		11-	Dic	Sul	ese	e b)	y by	Iron	_			
					Sis	848, 527	pon	ate,	gar	han	linit	ons		# #	•	,
SAMPLE I.D. DATE TIME	AQ= Water	#	Preservation	Туре	VOC's	11.T.E	Carbon	Nitrate,	Manganese	Methane by	Alkalinity by	Ferrous	ADD'L INFORMATION	0747110		*
TB-1 10/06/15 0925	AQ	2	HCL	VOA .	X								ADD L INFORMATION	STATUS	CONDITION	LAB SAMPLE #
EB-1 10/06/15 0930	AQ	3	HCL	VOA	X											
SWL0003 10/06/15 1020	, Q	3	HCL	VOA	V									*		
[W S00279 10/06/14/250	AQ	8	VARIOUS	VARIOUS	X	X										
	Ì										1		`			
						·					1					
			•						7							
																· · · · · · · · · · · · · · · · · · ·
																<u> </u>
	SAMPLING PERFORM		/ EDUAROD	Dina	~	·				L			RESULTS NEEDED			
ELEASED BY			CO CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTO	BOBIO		T I	TIME		ı, F	RECEI	VED B	- 1	NO LATER THAN		IDATE	
RELEASED BY	3						161	5				$\geqslant$		ecl v	DATE DATE	TIME
			·			Į.	TIME		E P	RECEI	VED B	Y			DATE	TIME
ELEASED BY							TIME			RECEI	VED B	Y			DATE	TIME
HIPPED VIA					·	-	TIME S	SENT		COOLE	D#				•	
-								- L. 1 V I		JOULE	-i\ #					

						•	
PROJECT NAM	ME AECOM @	Del Amo		PROJECT NUM	MBER 150930-R	DI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
VSI 556	090101092	9 /3 /15	4/7/10 740 3900	2.01/7.00/9.99		22.3	JF
Ysi 556	123101165	10/3/15	4 7 10 240 3900	7.05/4.00		22.0	JF
ysi 556	123101165	10/1/15	4 7 10 240 3,00°	4.00 7.01 9.96		240	F
						. •	
			gen.				
					•		
	\$48.1 1						·
		·					
		·	ч,			·	

PROJECT NA	IVIE AFCOM (U	Del Amo		PROJECT NUI	MBER 15-0930 RA	- 1	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	00	
K21 722	06F 1362AU	9/30/15	A47,10,9 Cone. 3900	7.21, 9.87, 3.90	7-00, 10.00, 4000	TEMP.	INITIALS
		j	Do (0.01)	113.67	99.8%		M
		0600	147,10,4 Cond.3900	7,03,9,90,3.91		28.2	Jw
	· ·	10/2/	DO 100%	232.4	99.990	26.4"	M
		10/2/15	(and, 3900		3900	27.78°	Jn
			00/0070 020 230.0	104.9%	100,0% 230,0	28.4'	м
			· · · · · · · · · · · · · · · · · · ·			•	
			. :				
						•	
			· 4.				

PROJECT NAM		Del dro	JUYER truck	PROJECT NUI	MBER 150930-L	2/	
EQUIPMENT NAME	EQUIPMENT NUMBER	OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP	
YST Produs	10E10 2054.	0850	10.00	7-03	7.00	TEMP2-4-9	INITIALS
S		i	1 4-00	3-91	(0.00 4.00	25.3	<u>KO</u>
	V		04 2317 090 100	3884 230.0	3810	25.2	10
			100 (00	98.790	97.670	25 1	M
Pro Plus	108102054	1011/15	PA 7-00	7.05	7-00	27-0	17 0
			V 4-00 Conp 3900	4-01	4-00	281	Ro
\/	7	V	ORD 2286	227-2	3900 228-0 991%	27.5	RO
					1000	. 260	
YSI Pro Ms	100102054	10/2/15	PH 200	7-04	7-00	26-8	10
			J 9-00 Comp 39co	8-02	4.00	27.2	RS
√	V		POZO 100	2 20.7	219-4 · 99-1%	· 26.9 27.0	8

PROJECT NA	ME Del An	no. Superfune	<u> </u>	PROJECT NUM	MBER 150930-RE	)	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:		
451 proples	124101387	9/30/15	DO 100% GRP. 232	99.4	<u>/</u>	TEMP. 24.50 C	INITIALS
DV DV		T.	PH 4 7.10	232.8	y y y		
		10/1/15	conductivity 3900	3902 97.8	Y ₂		
		1	10 RP 231	231-1 399 7.00 10,H	yyy	260'	1 2
		10/2/15	DO 1026	99.Z	y	26.1%	-
$\overline{}$		1	DH 4 7 10	231.4 410 710 11,0	y y y	1	~
·		<u> </u>	conductivity 3900	3901	<u> </u>	<i>V.</i>	7
				·		•	
			. :				
					•		
			ч,	,			

		·		· · · · · · · · · · · · · · · · · · ·				
PROJECT NAM	E AECOM (a)	DEL	AUC	)	PROJECT NUM	BER 150930-	PDI	
EQUIPMENT NAME		DATE/TII OF TEST	-  1	USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
YSI PROPLUS	10E 101738	09/30/15		1,00 ,7.00 ,10.00 3900 ,10076 , 012-P		1,1,1	76°C	<b>E</b>
2100Q	120100015801	29/32/15	0905	 O	0		26°C	团
YSI PROPLUS	105101738	10/01/15			4.00,7.01 ,9.98 3703 1892 7786	8 5	26°C	EB:
7100Q	120101989	00115	0620	0	0	V /	· 26°C	ers
YSI ARD PLUS	100101738	10/02/15		400,700,10.00 3900,1006,089	3901, 99.02, 719 S		27°C	民
2100 Q	120100015801	10/02/15	0615	, , , , , , , , , , , , , , , , , , ,	0		27°C	<del>1</del> 75 :
ISI PAO PLUS	10E101738	10/05/5	0610	3900,1002, ON	3902,98.72,235.	1 / 1	. 2300	(3)
2100 Q	150105012601	10/05/15	0615	0	6		2500	B
YSI PRO PLUS	(05)0138	10/06/15	0935	3100,000,0RP	3,98 , 7.51 , 10.8 901, 98 38, 234.	/	2100	CB.
2100 Q	12010001580	10/06/15	onto	0	0	$\sim$	.7100	EB
		·		ч,				

# APPENDIX B WASTE MANAGEMENT

	of \$ 55								a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
Ple	ease print or type. (Form designed	d for use on elite (12-pitch) typewr							No. 2050-0039
1		CAR00021	1 1	f 3. Emergency Res	565		412	mber 9712	JJK
	Long Beach CA St	LLC doe Shell Oil Produ 1809-2316			lests Pla Ri Amorii Ave	espondents	s)		
Ш	Generator's Phone:			e ¹ .		U.S. EPA ID N	lumber	1.1	
Ш	American Integral	ed Services inc				CAF	00	0148	3 3 8
	7. Transporter 2 Company Name				v .	U.S. EPA ID N	lumber		
	8. Designated Facility Name and Si  EVALUATE Materials Tech  5375 S. Bryde Ava  Los Association CA  Facility's Phone:	nologies inc.				U.S. EPAID N		7030	993
Ш	9a. 9b. U.S. DOT Description (i	ncluding Proper Shipping Name, Haza	d Class, ID Number,	10. 0	Containers	11. Total	12. Unit	13. Waste	
	HM and Packing Group (if any))		DESCRIPTION OF THE PROPERTY.	fÑo.	Туре	Quantity	Wt./Vol.		
GENERATOR		dous Weste Liquid, n.o.s	. (shenda), y, ry ih	0.0	1 17	427	G	135   04	318
GENE	2.								THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S
	3.							NAME AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	and an analysis of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of
	3.								
	4.							224.000.0004	OMERCINO PATTIFICA
	15. GENERATOR'S/OFFEROR'S	d Additional Information  Physical Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response Resp	at the contents of this consignmer	t are fully and accurat	ely described abov	re by the proper sh	ipping name,	, and are classified	l, packaged,
	Exporter, I certify that the conte	ents of this consignment conform to the ation statement identified in 40 CFR 26	terms of the attached EPA Ackno	wledgment of Consen	t.	4	п схрот оп		
$\  \ $	Generator's/Offeror's Printed/Typed	"	, S	gnature				Month	Day Year
1		<u>lenerakor - J Sherman</u>			$\mathcal{A}$				16115
I.E		lmport to U.S.	Export from		t of entry/exit: 🔽 e leaving U.S.:				
띪	17. Transporter Acknowledgment of F Transporter 1 Printed/Typed Name	Receipt of Materials			Sa.,	- 10 · 4 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5		Month	Day Year
TRANSPORTER	mansporter i Frincew Typed Ivame	Billy Many	SCALL L	gnature (A	in	med	i i i i i i i i i i i i i i i i i i i	, delayer	16 115
TRAN	Transporter 2 Printed/Typed Name		s	ignature				Month	Day Year
1	18. Discrepancy	7. 	<u> </u>	- <u> </u>	i i i			·	
	18a. Discrepancy Indication Space	Quantity	Пуре	Residue	•	Partial Rej	ection	· □F	ull Rejection
   <u>}</u>	18b. Alternate Facility (or Generator)			Manifest Ref	erencé Number:	U.S. EPA ID I	Number		
FACILITY	Faulth de Ph					ı			- 7
围	Facility's Phone:  18c. Signature of Alternate Facility (c	or Generator)			<u> </u>	· .	·	Month	Day Year
DESIGNATED	19 Hazardous Waste Report Manag	ement Method Codes (i.e., codes for h	azardous waste treatment, dispos	al and recycling syste	eniš)			· ·	
DES	1. H / 35	2.	3.	-	Final Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the	4.			
	20. Designated Facility Owner or Ope	erator: Certification of receipt of hazard	dous materials covered by the ma		·			7-1	· ·
	Printed/Typed Name	One An		ignature		<del>/</del>	H	Month	Day Year
EPA	A Form 8700-22 (Rev. 3-05) Previ	ious editions are obsolete.				DESIGNAT	ED FAC	ILITY TO G	ENERATOR

Ple	ease pr	int or type. (Form desig			iter.)				-			n Approved.	OMB No.	2050-0039
1	W	FORM HAZARDOUS ASTE MANIFEST		umber 0 0 0 2 1	8 6 6 3	2. Page 1 of	1 -	ency Response		4. Manifest	Tracking N	umber 971	3 J.	JK
	Gene	enerator's Name and Mailin  COMON ENGINEER  COMON ENGINEER  LOGGE ENGINEER  prator's Phone:	e LLC @0				Del A 2024		o File Re ord Ave	an mailing addres				
Ш	6. Tra	ansporter 1 Company Nam	9							U.S. EPA ID N				
		American Integransporter 2 Company Name		ces inc						U.S. EPA ID N		0 1 4	83	38
			e de la compres	and the second second	مد والولاد الوالد من درو				man a man a	J.o. Ermipt	**************************************		* * .	
	199	signated Facility Name and Claum Harbors V 1737 E. Domai St Wannington CA (	Alleria gross, reed 20744							U.S. EPA ID N		a a ch	Co. His	65. 2°
$\prod$	Facili	ty's Phone: 🤫 👸								UAI	) () (b	442	# 6	<i>5</i> 0
	9a. HM	9b. U.S. DOT Description and Packing Group (if a		r Shipping Name, Haza	rd Class, ID Number,		F	10. Contai No.	ners Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	s
GENERATOR -	X	1. <b>***********</b> *************************	Vers Flan	mable Liquid, i	nos. (Berze	ne). 3, Pt	31	Jan.	DA.	22		SS SS SS SS SS SS SS SS SS SS SS SS SS	DOD1	D018
- GENE		2.							200 200			PALICAL CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CON	OMNO-ACCASION STATE STATE AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND ACCASION AND A	
		3.	`									DO 1386 Bredshirtz		
		·		•								to (mind library) in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	insiri vi Mašijak ilik dana Massy nyinyili,	
		4.										One reasonies to real interest in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second in the second	Name of the same o	www.mwa.wa.mana.comermore
	14 6	pecial Handling Instructions	and Additional Int	· · · · · · · · · · · · · · · · · · ·	-							and equico.	k	
	10	Wear proper BBD is the B Joby 35009-1	PDE whi	nd fronch al	g. Weigh Tontract ofile	ts or or CM10	volum 93696			rimate. 23642	3(23		.55]	)M
	· n	GENERATOR'S/OFFEROR narked and labeled/placard Exporter, I certify that the co	ed, and are in all i	respects in proper cond	ition for transport acc	ording to applic	cable interna	l accurately de ational and nati	scribed above	by the proper sh	ipping nam	e, and are clas	ssified, pack am the Prim	aged, ary
		certify that the waste minir ator's/Offeror's Printed/Typ	nization statement	identified in 40 CFR 26	2.27(a) (if I am a larg	ge quantity gen	erator) or (b	) (if I am a sma	Il quantity gen	erator) is true.		Mor	nth Day	Year
↓	ļ	AIS on behalf of		-J Sheman				/	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	<u> </u>		l monages	nth Day	115
ITI	I	ernational Shipments porter signature (for export	Import to s only):	U.S.		Export from U	J.S.	Port of en Date leavi	700	- Andrew Park				*.
2	17. Tra	insporter Acknowledgment	of Receipt of Mate	rials										
TRANSPORTER	Transp	orter 1 Printed/Typed Nam		1/A	7)	Sig	nature	Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro				Mor	th Day	Year
ANS	Transp	porter 2 Printed/Typed Nam	e e	600 J V 403		Sig	nature	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	- Alexander			Mor	nth Day	Year
E ⋆	18. Dis	screpancy	<u> </u>	gara Mayor and a second			<u> </u>				[7] <u>- 1</u>			
	18a. Di	iscrepancy Indication Spac	e Quar	ntity	Туре	······································		Residue		Partial Rej	ection		Full Rej	ection
ΤΥ -	18b. Al	ternate Facility (or Genera	or)			2600	Mani	fest Reference	Number:	AUS. EPATO N	Number			
ACILI	Fille	de Dhamas			35010				2		•			
DESIGNATED FACILITY		's Phone: gnature of Alternate Facilit	(or Generator)	~	.:			· · ·	7			Mo	onth Da	/ Year
GNA	10.11-	zordoue Wests Disast.	000 Mart 14-4-1	Codes list and it			1 -59 - 1			٠ - ديا.				
DESI	19. Haz 1.	zardous Waste Report Mar	agement Method	2.	azardous waste treat	unent, disposa 3.	i, and recyc	ing systems)	- ¥ - :	4.				· .
	20 0-	nignated Earlity Ourses as	Onorato - O - 45	tion of win-tide (1)	lana mada dat		££		- 40-					
		signated Facility Owner or	Operator: Certifica		4		fest except a	as noted in Item	n,18a			Mo	nth Day	Year
$ \downarrow $		341	WM	OU 70		,   ·				-			110	

# APPENDIX C HISTORIC WATER LEVEL SUMMARY TABLE

Part				1005	1005	1005	1005	1005	1005	1005	1006	1006	1007	1007	1007	1007	1988	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1001
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	HSU	Facility	Location	1985 Apr	1985 May	1985 Jun	1985 Jul	1985 Aug	1985 Oct	1985 Nov	1986 Jan	1986 Aug	1987 Jan	1987 Feb	1987 Mar	1987 Nov		1988 Mar	1988 Apr	1988 Jul	1988 Oct	1989 Jan	1989 Feb	1989 May	1989 Oct	1989 Nov	1989 Dec	1990 Jan	1990 Feb	1990 Apr	1990 Aug	1990 Nov	1990 Dec	1991 Apr
SeyTime 1																			•											-				
Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second	Water Table	Boeing	AW0055UB																															
Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-light Nor-li	Water Table	Boeing	AW0074UB																		-													
No. Table   No. No. Table   No. No. Table   No. No. Table   No. No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No. Table   No	Water Table	Boeing	DAC-P1																															
Note Table   Note   Not	Water Table	Boeing	EWB002																															
Non-tike Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Novel Nov	Water Table	Boeing	EWB003																															
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc	Water Table	Boeing	IRZMW001A																															
Part		Boeing																																
Part																																		
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part																																		
The series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of th																																		
West with west with west west west west west west west west						1	1	1					1		1											1		1						
Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Property   Many Propert					-		1	-																			1							-
West pulse from the form of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of the following series of th							1																											
West pick person species and section of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control					+	+	1	1					1		1									1		1	+							
WEST TRANS - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL - MATERIAL					-						1																							
Move Plate   Move Memory   M					1	+	1	+			1		1		1											1		1				-		
More Fine   Power							1																				1							-
Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont													1																					
Note Place   Month   M					+	+	1	1																		1	+							
Note Place   Month   M					-			-			1				1																			
Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 No																																		
Note Fields																																		
More Table Storing MAM, Go W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Water Table		MWB030																															
Note Field Standy No. 19. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Water Table	Boeing	TMW_04																															
Meter False Boeing. 1 MW / 98	Water Table	Boeing	TMW_06																															
Meter False Beenge 7 MW, 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Water Table	Boeing	TMW_07																															
Note Table Soone, NW, 11 % % % % % % % % % % % % % % % % % %	Water Table	Boeing	TMW_08																															
Note Frable Boeing NW_15	Water Table	Boeing	TMW_10																															
Materials   Sering   Task   Sering   Task   Colora   Co	Water Table	Boeing	TMW_11																															
Mater False Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS     See Beeng WC QSS	Water Table	Boeing	TMW_14																															
Seconda		Boeing	_																															
Note Table Beelg WC. 075 or 1 10 10 10 10 10 10 10 10 10 10 10 10 1			_																															
Mater Table doing MC, OSS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			_		+	+	1	1					1		1									1		1	+							
Mater Table Bosing WC, 255			_		-						1																							
Mater Table Belling WCL 155   M.   M.   M.   M.   M.   M.   M.					1	+	1	1			1		1		1											1	1	-				-	-	
Mater Table Del Amo MW-Olthol 1.0																																		
Mater Table Del Amo MW-OllhO II. I.															1																			
Mater Table     Del Amo     MW-O4D     Del Amo     MW-O3HO     Del Amo     PLL0001     Del Amo     PLL00007     Del Amo     Del Amo     PLL00007     Del Amo     PLL00007     Del Amo     Del Amo     PLL00007     Del Amo     PLL00007     Del Amo     Del Amo     Del Amo     PLL0007     Del Amo     Del Amo     Del Amo     PLL0007     Del Amo     Del Amo     Del Amo     Del Amo     PLL0007     Del Amo     Del Amo     Del Amo     Del Amo     Del Amo     PLL0007     Del Amo     Del Amo     Del Amo     Del Amo     Del Amo		+			+	+		-		1	1		1		1									1		1	+				<del>                                     </del>	-		
Mater Table     Del Amo     MW-04HD     Del Amo     PLL00011     Del Amo     Del Amo     PLL00011     Del Amo     Del Amo     PLL00011     Del Amo     Del Amo     Del Amo     PLL00011     Del Amo     Del Amo     Del Amo     Del Amo     PLL00011     Del Amo     D							1				1				1																		-	
Mater Table     Del Amo     My O4HD     Separate     Separate     Separate     My O4HD     Separate     Sepa					+		1	+	-		1		1		1											1						-	-	
Mater Table     Del Amo     Per Duors     Del Amo     Del Amo     Per Duors     Del Amo     Del Amo     Del Amo     Del Amo     Per Duors     Del Amo     Del Am							1	-			1				1					1						<u> </u>								-
Mater Table     Del Amo     Pulcone     Del Amo     Del Amo     Pulcone     Del Amo					+		1	-							1									-		1	+				<del>                                     </del>			-
Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva     Meter Table     Del Amo     PELUODO     Selectiva																																		
Water Table         Del Amo         PZL0009         Image: No. 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or part 1000 or p																																		
Water Table         Del Amo         PZL0011         G. 1.0	Water Table	Del Amo	PZL0009																															
Water Table         Del Amo         PZL0012         G.         G. </td <td>Water Table</td> <td>Del Amo</td> <td>PZL0010</td> <td></td> <td>1</td> <td></td>	Water Table	Del Amo	PZL0010																		1													
Water Table         Del Amo         PLU013	Water Table	Del Amo	PZL0011																															
Water Table         Del Amo         PLO014         S.         S. <td>Water Table</td> <td>Del Amo</td> <td></td>	Water Table	Del Amo																																
Mater Table         Del Amo         PZL0016         Images         PLD016         Images         PLD016         Images         PLD016         Images	Water Table		PZL0013																															
Water Table         Del Amo         PZL0018	Water Table																																	
Water Table         Del Amo         PZL0019																																		
Water Table         Del Amo         PZL0020					+	+		+																		1					1		-	
Water Table         Del Amo         PZL0022 </td <td>Water Table</td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td>	Water Table				+	+																									1		-	
Water Table         Del Amo         PZL0024 </td <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td>1</td> <td>+</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					+	+	1	+	-																			-					-	
Water Table Del Amo PZL0025						+				-	1		1		1								-	1		1								
					+		1	-							1											1	+				<del>                                     </del>			-
Water Table   Del Amo   PZLU026               -					+		1	-		1	1		1		1									-		1					<u> </u>			<del></del>
	Water Table	Del Amo	PZL0026																															

			1991	1991	1992	1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
HSU	Facility	Location	Oct	Nov	Jul	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Water Table	Boeing	AW0051UB			-				-																								
Water Table	Boeing	AW0055UB																															
Water Table	Boeing	AW0074UB							-																								
Water Table	Boeing	DAC-P1																															
Water Table	Boeing	EWB002																															
Water Table	Boeing	EWB003																															
Water Table	Boeing	IRZMW001A																															
Water Table	Boeing	IRZMW001B																															
Water Table	Boeing	IRZMW004																															
Water Table	Boeing	IRZMW005																															
Water Table	Boeing	IWB001 IWB002																															
Water Table Water Table	Boeing Boeing	MW0005																															
Water Table	Boeing	MWB003																															
Water Table	Boeing	MWB006																															
Water Table	Boeing	MWB007																															
Water Table	Boeing	MWB012																															
Water Table	Boeing	MWB013																															
Water Table	Boeing	MWB014																															
Water Table	Boeing	MWB019																															
Water Table	Boeing	MWB020																															
Water Table	Boeing	MWB027			-				-																								
Water Table	Boeing	MWB028																															
Water Table	Boeing	MWB029																															
Water Table	Boeing	MWB030																															
Water Table	Boeing	TMW_04																															
Water Table	Boeing	TMW_06																															
Water Table	Boeing	TMW_07																															
Water Table	Boeing	TMW_08																															
Water Table	Boeing	TMW_10																															
Water Table	Boeing	TMW_11 TMW 14																															
Water Table	Boeing Boeing	TMW_14																															
Water Table Water Table	Boeing	WCC 03S																															
Water Table	Boeing	WCC_04S																															
Water Table	Boeing	WCC 05S																															
Water Table	Boeing	WCC 07S																															
Water Table	Boeing	WCC 09S																															
Water Table	Boeing	WCC_12S																															
Water Table	Del Amo	GW-07A																							-21.31		-21.58			-19.79			
Water Table	Del Amo	MW-01HD			-				-						-17.03	-17.03	-16.90	-16.75	-16.61	-16.60	-16.59				-16.09		-16.06			-16.15			
Water Table	Del Amo	MW-02HD														-14.93	-14.85	-14.85	-14.92		-14.99				-14.87		-14.93			-15.10			
Water Table	Del Amo	MW-03HD															-16.01		-15.85			-15.57			-15.41		-15.41			-15.54			
Water Table	Del Amo	MW-04HD													-19.91		-19.77		-19.74	-19.61	-19.65				-19.24		-19.36			-19.57			
Water Table	Del Amo	PZL0001										-21.60	-21.32	-21.55		-21.22					-20.62				-19.91		-20.05			-20.32			
Water Table	Del Amo	PZL0006										-23.67	-19.31	-19.31		-19.11						-18.83			-17.81		-17.72			-17.94			
Water Table	Del Amo	PZL0007											-20.06	-20.09		-19.86					-19.34				-18.60	1	-18.74			-18.96			-18.60
Water Table	Del Amo	PZL0009											-19.09	-19.00	40.07		-18.68		-18.45			-18.18	-18.05		-17.66		-17.47		-17.54	-17.48	-17.36		-17.44
Water Table	Del Amo	PZL0010											-19.00	-19.08		-18.78					17.54	-18.34			-17.64		-17.76			-17.87			17.00
Water Table	Del Amo	PZL0011											-18.38 -20.27	-18.35 -20.35		-17.91 -20.10					-17.54 -19.71				-17.16 -19.49		-17.16			-17.10 -18.70			-17.08 -18.86
Water Table Water Table	Del Amo Del Amo	PZL0012 PZL0013											-15.82	-20.33		-15.77			-15.79	-15.81	-19.71				-19.49		-19.61 -15.96			-16.04			-16.08
Water Table	Del Amo	PZL0013											-17.18	-17.18	-13.82	-17.02			-13.79	-13.61	-13.63	-16.47			-15.97		-16.04			-15.98			-10.08
Water Table	Del Amo	PZL0014 PZL0016											-17.16	-17.18		-18.94					-18.57	-10.47	-18.42		-17.99		-10.04			-17.81			
Water Table	Del Amo	PZL0018												-16.96		-20.16					-16.57	-20.08	-10.42		-17.99	<u> </u>	-19.44			-19.64			
Water Table	Del Amo	PZL0019														-19.54					-19.32				-18.71		-18.73			-18.64			
Water Table	Del Amo	PZL0020													-17.34	-17.42					-17.70				-17.51		-17.42			-17.63			-17.73
Water Table	Del Amo	PZL0022														-19.31						-18.88				-18.85				-18.88			
Water Table	Del Amo	PZL0024																-18.70			-18.68				-18.33		-18.71			-18.27			
Water Table	Del Amo	PZL0025															-19.11	-18.92			-19.37				-19.27		-19.24			-11.77			
Water Table	Del Amo	PZL0026																	-13.85	-13.93		-14.62					-14.58			-14.61			-14.87
	•	•				•				•										•													

			1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1997	1998	1998	1999	1999	2000	2000	2000	2001	2002	2002	2002
HSU	Facility	Location	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	May	Jun	Aug	Sep	Oct	Jan	Feb	Mar	Jan	Feb	Jun	Jul	Aug	Jan	Jan	Sep	Oct
Water Table	Boeing	AW0051UB																														
Water Table	Boeing	AW0055UB																														
Water Table	Boeing	AW0074UB																														
Water Table	Boeing	DAC-P1																														
Water Table	Boeing	EWB002																														
Water Table	Boeing	EWB003																														
Water Table	Boeing	IRZMW001A																														
Water Table	Boeing	IRZMW001B																														
Water Table	Boeing	IRZMW004																														
Water Table	Boeing	IRZMW005																														
Water Table	Boeing	IWB001																														
Water Table	Boeing	IWB002																														
Water Table	Boeing	MW0005																														
Water Table	Boeing	MWB003																														
Water Table	Boeing	MWB006																														
Water Table	Boeing	MWB007																														
Water Table	Boeing	MWB012																														
Water Table	Boeing	MWB013																														
Water Table	Boeing	MWB014																														
Water Table	Boeing	MWB019																														
Water Table	Boeing	MWB020																														
Water Table	Boeing	MWB027																														
Water Table	Boeing	MWB028																														
Water Table	Boeing	MWB029																														
	Ŭ	MWB030																														
Water Table	Boeing	TMW 04	1				1							1			<del>                                     </del>		1			1							1			1
Water Table	Boeing																															
Water Table	Boeing	TMW_06																														
Water Table	Boeing	TMW_07																														
Water Table	Boeing	TMW_08																														
Water Table	Boeing	TMW_10																														
Water Table	Boeing	TMW_11																														
Water Table	Boeing	TMW_14																														
Water Table	Boeing	TMW_15																														
Water Table	Boeing	WCC_03S																														
Water Table	Boeing	WCC_04S																														
Water Table	Boeing	WCC_05S																														
Water Table	Boeing	WCC_07S																														
Water Table	Boeing	WCC_09S																														
Water Table	Boeing	WCC_12S																														
Water Table	Del Amo	GW-07A		-17.94			-18.11				-18.46			-17.86		-17.96				-17.97	-17.92	-16.76		-15.92		17.57						
Water Table	Del Amo	MW-01HD		-15.78			-15.41				-15.36			-15.19		-15.04				-15.02	-15.97	-14.61				-13.72						
Water Table	Del Amo	MW-02HD		-14.92			-14.40				-14.57			-14.52		-14.68				-14.58	-14.56				-13.55							
Water Table	Del Amo	MW-03HD		-15.26			-14.68				-14.92			-14.78		-14.86				-14.76	-14.78	-14.24			-13.64	-13.54						
Water Table	Del Amo	MW-04HD		-18.62			-17.83				-18.34			-18.68		-18.01				-17.81	-18.21	-17.44			-16.88	-16.81						
Water Table	Del Amo	PZL0001		-19.19			-18.65		-18.91		-18.97			-18.41		-18.70				-18.73	-19.08	-18.43		-17.21		-17.12						
Water Table	Del Amo	PZL0006		-17.06			-16.47				-16.82			-16.60		-16.37				-15.05	-15.96	-16.62		-14.52		-14.39						
Water Table	Del Amo	PZL0007	-18.18	-17.98			-17.58		-17.50		-17.65			-17.10		-17.35				-17.44	-17.48	-16.78		-15.92		-15.96						
Water Table	Del Amo	PZL0009	-17.15	-17.00			-16.42				-16.34			-15.95		-15.74				-15.25	-15.65	-14.87		-13.47		-13.77						
Water Table	Del Amo	PZL0010		-16.95			-16.57		-16.50		-16.60			-16.30		-16.19				-16.07	-16.21	-15.23		-14.35		-14.52						
Water Table	Del Amo	PZL0011		-16.88			-15.88		-16.13		-15.92			-15.83		-15.65				-15.60	-15.72	-15.23		-13.98		-14.29						
Water Table	Del Amo	PZL0012		-18.47			-17.71		-17.91		-18.04			-15.53	-17.46	-17.56				-16.01	-17.84											
Water Table	Del Amo	PZL0013		-15.93			-15.44		-15.65		-15.48			-15.58		-15.46				-15.21	-15.32	-14.78		-13.88		-15.06						
Water Table	Del Amo	PZL0014		-15.27			-14.90				-14.64			-14.33		-14.09				-13.92	-13.91	-12.57		-11.53		-11.89						
Water Table	Del Amo	PZL0016		-17.46			-16.90				-16.79			-16.50		-16.15				-15.87	-15.89	-14.54			-13.96	-14.01						
Water Table	Del Amo	PZL0018		-17.57			-17.31				-17.98			-17.84		-17.35				-19.76	-17.38	-15.72		-16.03		-16.16						
Water Table	Del Amo	PZL0019		-18.16			-16.88				-16.78			-16.67		-16.17				-16.48	-16.26	-15.65		-14.19								
Water Table	Del Amo	PZL0020		-16.78			-15.16				-15.45			-15.27		-15.37				-15.69	-13.49	-14.70		-13.65		-14.47						
Water Table	Del Amo	PZL0022		-19.25			-18.83				-18.73			-18.87		-18.78				-18.95	-18.87	-18.35		-17.01		-17.62						
Water Table	Del Amo	PZL0024		-18.62			-10.44	-16.26			-16.13			-19.30	-16.28	-16.11				-16.38	-15.75	-14.28		-13.54								
Water Table	Del Amo	PZL0025		-18.03			-16.86				-17.11			-16.99		-17.12				-17.14	-16.86	-16.38		-14.93		-15.68						
Water Table	Del Amo	PZL0026	-14.30	-14.57			-14.21		-14.11		-14.18			-14.16		-14.02				-14.09	-14.44	-13.64		-12.97		-12.93						
	1	1				I						<u> </u>	1		<u> </u>				l .								1	1	1			

			2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2011	2012	2012	2012	2014
HSU	Facility	Location	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Feb	Mar	Jul	Dec	Sep	Oct	Dec	Feb	Feb	Mar	Nov	Sep
Water Table	Boeing	AW0051UB																							-7.72
Water Table	Boeing	AW0055UB																							-7.58
Water Table	Boeing	AW0074UB																							-7.46
Water Table	Boeing	DAC-P1																							-6.46
Water Table	Boeing	EWB002																							-7.81
Water Table	Boeing	EWB003																							-11.68
Water Table	Boeing	IRZMW001A																							-8.28
Water Table	Boeing	IRZMW001B																							-8.34
Water Table	Boeing	IRZMW004																							-8.27
Water Table	Boeing	IRZMW005																							-8.54
Water Table	Boeing	IWB001																							-7.12
Water Table	Boeing	IWB002																							-7.27
Water Table	Boeing	MW0005																							-9.64
Water Table	Boeing	MWB003																							-7.94
Water Table	Boeing	MWB006																							-6.45
Water Table	Boeing	MWB007																							-7.09
Water Table	Boeing	MWB012																							-8.40
Water Table	Boeing	MWB013																							-7.31
Water Table	Boeing	MWB014																							-7.99
Water Table	Boeing	MWB019																							-7.87
Water Table	Boeing	MWB020																							-6.41
Water Table	Boeing	MWB027																							-7.40
Water Table Water Table	Boeing	MWB028																							-7.91
	Boeing	MWB029 MWB030																							-8.06
Water Table	Boeing																								-7.25 -8.35
Water Table	Boeing	TMW_04																							<b>†</b>
Water Table	Boeing	TMW_06 TMW_07																							-8.15 -8.02
Water Table Water Table	Boeing Boeing	TMW 08																							-7.88
Water Table	Boeing	TMW 10																							-7.89
Water Table Water Table	Boeing	TMW 11																							-7.86
Water Table	Boeing	TMW 14																							-7.15
Water Table	Boeing	TMW 15																							-7.26
Water Table	Boeing	WCC 03S																							-7.33
Water Table	Boeing	WCC 04S																							-7.76
Water Table	Boeing	WCC 05S																							-7.42
Water Table	Boeing	WCC 07S																							-10.33
Water Table	Boeing	WCC 09S																							-7.72
Water Table	Boeing	WCC_12S																							-8.02
Water Table	Del Amo	GW-07A	-15.28																-12.69			-8.94			-9.38
Water Table	Del Amo	MW-01HD	-13.35																-11.48			-8.83			-8.98
Water Table	Del Amo	MW-02HD	-13.21																-11.30			-8.80			-8.95
Water Table	Del Amo	MW-03HD	-13.39																-11.21			-8.86			-9.27
Water Table	Del Amo	MW-04HD	-15.55																-12.09			-9.77			-10.05
Water Table	Del Amo	PZL0001	-16.38																-12.36			-10.04			-10.48
Water Table	Del Amo	PZL0006	-13.94																-10.40			-8.59			-9.37
Water Table	Del Amo	PZL0007	-14.39																-10.96			-9.39			-9.58
Water Table	Del Amo	PZL0009	-13.35																-10.11			-8.07			-9.16
Water Table	Del Amo	PZL0010	-13.94																-10.60			-8.91			-9.67
Water Table	Del Amo	PZL0011	-13.15																-9.78			-7.29			-9.26
Water Table	Del Amo	PZL0012	-13.67																-11.31			-8.50			-8.53
Water Table	Del Amo	PZL0013	-13.31																-11.63			-8.77			-8.97
Water Table	Del Amo	PZL0014	-11.62																-8.77			-7.74			-8.86
Water Table	Del Amo	PZL0016	-13.56																-10.49			-8.88			-9.51
Water Table	Del Amo	PZL0018	-15.17																-11.24			-8.88			-9.92
Water Table	Del Amo	PZL0019	-12.31																-11.10			-8.55			-8.58
Water Table	Del Amo	PZL0020	-13.89																-10.88			-8.75			-9.66
Water Table	Del Amo	PZL0022	-14.89																-10.93			-8.78			-9.76
Water Table	Del Amo	PZL0024																				-8.47			-9.49
Water Table	Del Amo	PZL0025	-14.80																-11.64			-9.00			-8.40
Water Table	Del Amo	PZL0026	-12.76																-10.47			-8.33			-8.49

Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern   Mathematical Pattern				1005	1005	1005	1985	1005	1985	1985	1986	1986	1987	1987	1987	1987	1988	1988	1988	1988	1988	1989	1989	1989	1000	1989	1000	1000	1000	1000	1000	1000	1000	1001
Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   Wilson   W	HSU	Facility	Location	1985 Apr	1985 May	1985 Jun		1985 Aug												-				1	1989 Oct		1989 Dec	1990 Jan	1990 Feb	1990 Apr	1990 Aug	1990 Nov	1990 Dec	1991 Apr
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc								Ť											•											_	_			_
Section   Control   Cont	Water Table	Del Amo	SWL0003																															
No.   Month	Water Table	Del Amo	SWL0004									-																						
No.   Part   P	Water Table	Del Amo	SWL0005																															
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.	Water Table	Del Amo	SWL0006																															
Marchistal	Water Table	Del Amo	SWL0007																															
Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart		-																																
Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate   Mate				+	<u> </u>																						+							
No.   Mar.   M		-			1																						1							
Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   M								1																1		1		1						
Marting   Part		+		+	-			-					1				1			+				-			+							-
Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie   Most Parlie		-			1			1					1							+						1		1						-
Magestale   Sale					<u> </u>																						+	1						
Mart Files   Safe		-																																
Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   M		Del Amo																																
Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Del Arro   Water Fields   Water	Water Table	Del Amo	SWL0044																															
West Fields	Water Table	Del Amo	SWL0046									-																						
Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Month   Mont	Water Table	Del Amo	SWL0049																															
West Fisher Def Avo Model 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Water Table	Del Amo	SWL0051																														, <u>-</u>	
Mayer Floor   Mayer Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Floor   Mayer Fl		Del Amo																																
Note   Substitute   Substitut	Water Table	Del Amo	SWL0059																															
Neter Table  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol  Montrol		+																																
Note Problem Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe Montroe M																																		
Noter Fielde Morrows MAGN ONT 26 27 26 27 26 27 26 27 26 27 26 28 28 28 29 29 28 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29								1																		1		1						-
Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia Merelia					<u> </u>			-					1				1			+				1			+	1						
Meri Fielle Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose Montrose					ļ	<u> </u>				26.24										1			22.24			ļ								
Merie Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfrone Melfro	-	+		-				1					1	1						+ +		-23.24	-											
Mericale Montroos word word word word word word word word				-		<b>†</b>		+														-22.08					+	<u> </u>						
Marteriale Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds   Montrose Moveds				-																							1	1						
Mater Labis   Montrose   Montro				-		+		_												+			-	_			1	1					-	
Materiable   Montrose   MW-07   MW-08   MW-0					1															1				+			+	1						
Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   Marter   M																							-	+									-	
Mater Table Montrose MW-10	Water Table	Montrose	MW-08																					+		-21.00			-20.59	-20.45		-19.93		-19.69
Mater Table Montrose MW-11	Water Table	Montrose	MW-09																					-21.91	-21.53	-21.32			-20.94	-20.79	-20.58	-20.30		-20.08
Mater Table Montrose MV-12	Water Table	Montrose	MW-10									1										-22.14	-22.27	-21.88	-21.41	-21.30			-20.98	-20.79	-20.54	-20.32		-20.12
Mater Table Montrose MV-14     Montrose MV-16     Montrose MV-16     Montrose MV-16     Montrose MV-16     Montrose MV-16     Montrose MV-17     Montrose MV-17     Montrose MV-19	Water Table	Montrose																				-22.97	-23.04	-22.62	-22.02				-21.59	-21.37	-21.12	-20.89		
Mater Table     Montrose     Mw-14     Montrose     Mw-16     Mw-16     Mw-16     Mw-16     Mw-17     Mw-16     Mw-17     Mw-18     Mw-17     Mw-18     Mw-18     Mw-17     Mw-19	Water Table	Montrose	MW-12																															
Mater Table     Montrose     Mw-16     Montrose     Mw-17     Montrose     Mw-19     Montrose     Mw-20     Mw-19     Montrose     Mw-20     Mw-19     Montrose     Mw-19     Montrose     Mw-21     Montrose     Mw-20     Mw-2	Water Table	Montrose																																
Water Table Montrose MW-19 I. I. I. I. I. I. I. I. I. I. I. I.		+			1																	-23.48	-23.55				+	1						
Water Table Montrose MW-19							-						1				1		1							1	1	1						
Water Table Montrose MW-21		+				+							1		1		<u> </u>									1								-
Water Table Montrose MW-22	-	+			1	+							1				<u> </u>									1	+	1						
Water Table Montrose MW-23					1								1	1					1							1	1	1						
Water Table Montrose MW-24		+		+	1												1			+							1							
Water Table         Montrose         MW-25 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td>					1								1				1		1								-						+	
Water Table         Montrose         MW-26 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1								1	1					1				1				1	1						
Water Table Montrose MW-27	-	+			1	+											<u> </u>																	
Water Table         Montrose         MW-28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>,  </td> <td>-</td>																										1	1	1					,	-
Water Table         Montrose         MW-29 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>  </td> <td></td>																																		
Water Table         Montrose         MW-31 <td>Water Table</td> <td>Montrose</td> <td>MW-29</td> <td></td>	Water Table	Montrose	MW-29																															
Water Table         Montrose         UBA-EW-1	Water Table	Montrose	MW-30																															
Water Table         Montrose         UBE-01 </td <td>Water Table</td> <td>Montrose</td> <td>MW-31</td> <td></td> <td><u> T</u></td> <td></td>	Water Table	Montrose	MW-31																														<u> T</u>	
Water Table       Montrose       UBE-02 <t< td=""><td>Water Table</td><td>Montrose</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td></t<>	Water Table	Montrose																															,	
Water Table Montrose UBE-03																																		
Water Table Montrose UBE-04																																		
	-	+																																
Water Table   Montrose   UBE-05		+						<del> </del>																		1	1	1						
	Water Table	Montrose	UBE-05																															

			1991	1991	1992	1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
HSU	Facility	Location	Oct	Nov	Jul	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Water Table	Del Amo	SWL0002					-20.73	-20.60	-20.69	-20.38	-21.51	-20.09	-19.85	-19.88	-19.61	-19.61	-19.50	-19.52	-19.50	-19.12		-19.23	-19.07		-18.59	-18.55	-18.43	-18.43	-18.48	-18.43	-18.36	-18.28	-18.53
Water Table	Del Amo	SWL0003					-20.63	-20.47	-20.57	-20.26	-19.18	-19.96	-19.86	-19.76		-19.52	-19.39	-19.33	-19.35	-18.94		-19.03	-18.95		-18.41		-18.97	-18.35		-18.33	-18.21	-18.14	-18.29
Water Table	Del Amo	SWL0004					-20.92	-20.71	-20.80	-20.47	-20.49	-20.14	-19.98	-19.94	-19.71		-19.59	-19.61	-19.57	-19.17		-19.24	-18.72	-19.28	-18.60	-18.57	-18.47	-18.47	-18.52	-18.51	-18.38	-18.33	-18.52
Water Table	Del Amo	SWL0005									-20.25	-19.75	-19.07	-19.23		-18.89						-18.80			-18.11	-18.09	-18.13			-18.51		-12.86	
Water Table	Del Amo	SWL0006									-22.13	-21.86	-21.56	-21.61		-21.14						-20.68			-20.06		-20.04			-19.81			
Water Table	Del Amo	SWL0007											-18.22	-17.96		-17.77						-17.29			-16.72		-16.65			-16.64			-17.57
Water Table Water Table	Del Amo Del Amo	SWL0008 SWL0009											-16.93	-17.01	-16.18	-17.14 -16.07					-15.95	-17.50 			-17.37 -15.28		-17.42 -15.34			-17.42 -15.44			-17.57
Water Table	Del Amo	SWL0009													-10.16	-21.69	-21.85				-13.93	-21.33			-20.55		-20.76			-20.89			
Water Table	Del Amo	SWL0016															-19.24	-19.20				-19.15	-18.94		-18.42		-18.28			-18.50			
Water Table	Del Amo	SWL0017															-18.85	-18.64				-18.36			-17.71		-17.75			-17.75			
Water Table	Del Amo	SWL0021																-22.56				-21.05			-20.39		-20.34			-20.61			
Water Table	Del Amo	SWL0024																-17.22			-21.28				-19.77		-19.86			-20.11		-19.73	
Water Table	Del Amo	SWL0028											-						-18.37		-18.17				-17.77		-17.86			-18.01			
Water Table	Del Amo	SWL0038																					-15.79		-15.53		-15.69			-15.72			
Water Table	Del Amo	SWL0042																									-21.47			-21.72			
Water Table	Del Amo	SWL0044																															
Water Table	Del Amo	SWL0046																															
Water Table	Del Amo	SWL0049																															
Water Table	Del Amo	SWL0051																															
Water Table	Del Amo	SWL0057																															
Water Table	Del Amo	SWL0059																															
Water Table Water Table	Del Amo Del Amo	SWL0068 XP-02									-18.92	-19.74	-19.96	-20.18		-20.27						-20.19			-19.34		-19.43			-19.64			
Water Table	Del Amo	XP-02 XP-03									-10.92	-19.74	-19.90	-20.16		-20.27						-20.19			-19.54		-19.45			-19.04			
Water Table Water Table	Montrose	MBFB-EW-1																															
Water Table	Montrose	MBFB-OW-1																															
Water Table	Montrose	MW-01	-20.77	-20.90	-20.89					-21.09												-20.24			-19.82		-19.75			-19.49			
Water Table	Montrose	MW-02			-20.77					-19.98																							
Water Table	Montrose	MW-03			-21.11					-21.19												-19.39								-19.10			
Water Table	Montrose	MW-04	-20.44	-20.59	-20.78					-20.95															-18.99		-18.89			-18.79			
Water Table	Montrose	MW-05	-20.34	-20.53	-20.52					-20.84															-19.08		-18.98			-18.77			
Water Table	Montrose	MW-06	-20.72	-20.81	-20.97					-21.25															-18.65		-19.56			-19.40			
Water Table	Montrose	MW-07	-20.53	-20.72	-21.05					-21.41												-20.48											
Water Table	Montrose	MW-08	-19.82	-20.01	-20.16					-20.57																							
Water Table	Montrose	MW-09	-20.26	-20.42	-20.46					-19.74															-19.04		-18.87			-18.77			
Water Table	Montrose	MW-10	-20.32	-20.41	-20.43					-20.55		-20.37	-20.25	-20.13		-19.82						-19.51			-18.90		-18.91			-18.76			
Water Table	Montrose	MW-11	-20.73	-20.82	-20.76					-21.04		-20.75		-20.47								-19.87			-19.47		-19.33			-19.32			
Water Table	Montrose	MW-12	-21.03	-21.19	-21.08					-21.20	-20.68	-20.81	-20.50	-20.39							20.26				-19.25		-19.20			-19.52			
Water Table	Montrose	MW-13	-21.21 -21.12	-21.36 -21.24	-21.32					-21.57 -21.43		-21.25	-21.12 -21.40	-20.98 -20.94		-20.77					-20.36 -20.33				-19.74 -19.80		-19.79			-19.62 -19.70		-19.63	
Water Table Water Table	Montrose Montrose	MW-14 MW-16	-21.12							-21.43			-21.40	-20.94		-20.73					-20.33				-19.80		-19.71			-19.70		-19.03	
Water Table Water Table	Montrose	MW-17	-20.86							-21.55															-19.98					-19.96			
Water Table	Montrose	MW-19	-19.87	-20.00	-20.06					-21.43															-18.45		-18.34			-18.14			
Water Table Water Table	Montrose	MW-21	-20.98	-21.16	-20.95			-21.86		-20.98		-20.58	-20.39	-20.32		-20.07						-13.89			-22.89		-18.62			-18.84			
Water Table	Montrose	MW-22	-21.32	-21.45	-21.67					-21.89															-20.16		-19.99			-20.02			
Water Table	Montrose	MW-23	-22.53		-22.63						-22.53		-22.68	-21.79		-21.44				-20.27	-20.76				-20.28		-20.19			-20.25			
Water Table	Montrose	MW-24	-21.75	-22.08	-21.80					-21.96		-21.34	-21.78	-20.99		-20.51				-20.16		-20.19			-19.80		-19.83			-19.81			
Water Table	Montrose	MW-25	-23.20	-23.34	-23.31					-23.10		-22.80		-22.63								-21.72			-20.98		-21.03			-21.04			
Water Table	Montrose	MW-26	-21.31	-21.43	-21.55					-21.73		-21.54	-21.49	-21.37		-21.06									-20.16		-20.09			-19.95			
Water Table	Montrose	MW-27	-20.44	-20.65	-20.56				-20.87	-20.72	-20.30	-20.28	-20.15	-20.08								-19.43			-18.68		-18.70			-18.65			
Water Table	Montrose	MW-28		-21.26	-21.15			-22.07	-21.71	-21.20	-21.12	-21.02	-20.81	-20.74		-20.46						-19.95			-19.29		-19.17			-19.33			
Water Table	Montrose	MW-29	-21.85	-22.02	-21.90						-21.54	-21.57	-21.28	-21.25		-20.95						-20.47			-19.73		-19.79			-19.76			
Water Table	Montrose	MW-30	-21.65	-21.80	-21.78					-21.82		-22.08	-21.51	-21.37		-20.96					-20.55				-19.89		-19.89			-19.83			
Water Table	Montrose	MW-31																															
Water Table	Montrose	UBA-EW-1																															
Water Table	Montrose	UBE-01	-20.78	-20.91	-21.08					-21.18																							
Water Table	Montrose	UBE-02																															
Water Table	Montrose	UBE-03																															
Water Table	Montrose	UBE-04																															
Water Table	Montrose	UBE-05																															

			1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1997	1998	1998	1999	1999	2000	2000	2000	2001	2002	2002	2002
HSU	Facility	Location	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	May	Jun	Aug	Sep	Oct	Jan	Feb	Mar	Jan	Feb	Jun	Jul	Aug	Jan	Jan	Sep	Oct
Water Table	Del Amo	SWL0002	-18.11	-18.07			-17.44		-17.41	-17.32	-17.31			-17.06	-17.04			-16.56	-16.52	-16.56	-16.63	-15.78		-14.75		-14.52						
Water Table	Del Amo	SWL0003		-17.91			-17.25		-17.27		-17.14			-9.50	-16.90			-16.61	-16.81	-16.48	-16.69	-15.53		-14.50		-14.58						
Water Table	Del Amo	SWL0004	-18.11	-18.12	-17.62		-17.57	-17.52	-17.43	-17.35	-17.45	-17.37		-17.07	-17.07			-16.78	-16.80	-16.91	-17.18	-15.87		-15.02								
Water Table	Del Amo	SWL0005		-16.80			-16.16				-16.61			-16.37		-16.64				-16.65	-16.44	-13.88		-14.96		-19.81		-15.33				
Water Table	Del Amo	SWL0006		-19.15			-18.62				-18.73			-18.38		-18.22				-18.20	-18.39	-17.61			-16.93	-16.93						
Water Table	Del Amo	SWL0007	16.02	-16.29			-15.87				-15.49			-15.27		-14.93				-14.62	-14.61	-13.56		-12.51		-12.75						
Water Table Water Table	Del Amo Del Amo	SWL0008 SWL0009	-16.03	-15.86 -12.87			-15.06 -12.38		-12.54		-15.18 -12.89			-15.40 -12.91		-15.16 -12.69				-15.57 -12.94	-15.74 -12.23	-14.60 -10.67		-13.60 -9.68		-14.32 -9.19						
Water Table	Del Amo	SWL0009 SWL0015		-12.87			-12.38		-12.54		-12.89			-12.91		-12.69				-12.94	-12.23	-10.67		-17.89		-9.19						
Water Table	Del Amo	SWL0016		-17.27			-16.83				-17.26			-18.93	-16.82	-15.38				-16.72	-16.86	-16.08		-14.88		-15.15						
Water Table	Del Amo	SWL0017		-17.01			-16.55				-16.64			-16.27		-16.13				-15.88	-16.20	-15.31				-14.45						
Water Table	Del Amo	SWL0021		-19.55			-19.00				-19.24			-18.61		-18.82				-17.53	-19.39	-16.77		-17.73			-16.80					
Water Table	Del Amo	SWL0024		-19.04			-18.49				-18.85			-18.22		-19.74				-18.65	-18.89	-16.43		-16.34		-16.41						
Water Table	Del Amo	SWL0028		-17.17			-16.00				-15.82			-15.84		-15.63				-15.79	-15.79	-15.52		-13.28		-13.43						
Water Table	Del Amo	SWL0038		-15.20			-14.77				-14.49			-14.18		-13.99				-13.79	-13.84	-12.55		-11.58		-11.98						
Water Table	Del Amo	SWL0042		-20.83			-19.99				-20.43			-19.59		-19.99				-19.94	-20.23	-19.99		-18.45			-18.65					
Water Table	Del Amo	SWL0044					-16.81				-17.26			-17.08		-16.62				-17.13	-16.40	-15.13		-15.21		-15.39						
Water Table	Del Amo	SWL0046									-17.47			-17.08		-17.08				-16.29	-16.72	-16.44		-15.42		-15.62						
Water Table	Del Amo	SWL0049									-18.85			-18.52		-18.21				-17.95	-18.13	-17.14		-16.26		-16.16						
Water Table	Del Amo	SWL0051									-14.87			-16.76	-16.10	-15.20				-15.30	-15.66	-15.38		-13.72		-18.75	-14.40					
Water Table	Del Amo	SWL0057										-14.36		-14.28		-14.52				-14.56	-14.41	-14.08		-12.61		-13.34						
Water Table	Del Amo	SWL0059 SWL0068																														
Water Table Water Table	Del Amo Del Amo	XP-02		-17.50			-17.96				-18.08			-17.74		-17.47					-17.09	-15.41		-15.85		-16.05						
Water Table	Del Amo	XP-02 XP-03		-19.20			-17.30				-19.25			-17.74		-18.89				-18.98	-17.03	-18.33		-17.56		-10.03						
Water Table	Montrose	MBFB-EW-1																														
Water Table	Montrose	MBFB-OW-1																														
Water Table	Montrose	MW-01		-19.27			-18.76				-18.41			-18.27		-17.87				-17.67	-17.53	-22.51		-15.56		-15.42					-15.10	
Water Table	Montrose	MW-02									-17.45																				-13.98	
Water Table	Montrose	MW-03									-18.41			-17.74		-17.34				-17.01	-17.14	-16.00		-15.12		-15.41					-15.14	
Water Table	Montrose	MW-04		-18.64			-18.14				-18.22			-17.47		-17.06				-16.78	-16.74	-15.81		-14.95		-14.91					-15.00	
Water Table	Montrose	MW-05		-18.58			-18.06				-17.99			-17.57		-17.16				-16.88	-16.89	-15.93		-14.97		-14.87					-14.82	
Water Table	Montrose	MW-06		-19.12			-18.77				-18.64			-18.03		-17.74				-17.46	-17.12	-16.59		-15.52							-15.13	
Water Table	Montrose	MW-07									-18.37																				-15.48	
Water Table	Montrose	MW-08									-18.07																					
Water Table	Montrose	MW-09		-18.45			-18.15				-18.01			-17.56		-17.06				-16.77	-16.89					-19.73						
Water Table	Montrose	MW-10		-18.45			-18.02				-17.73			-17.48		-17.02				-16.85	-16.87	-15.88		-14.86		-14.81					-14.60	
Water Table Water Table	Montrose Montrose	MW-11 MW-12		-19.06 -19.11			-18.53 -18.52				-18.19 -18.21			-18.05 -18.18		-17.57 -17.69				-17.42 -17.64	-17.31 -17.44	-16.52 -16.68		-15.48 -15.65		-15.35 -15.65					-15.00 -15.24	
Water Table	Montrose	MW-13		-19.11			-18.57				-18.47			-18.17		-17.80				-17.04		-16.69		-15.03		-15.85					-15.24	-15.56
Water Table	Montrose	MW-14		-19.42			-18.86				-18.55			-18.36		-18.04				-17.92	-17.94	-16.85		-15.51		-15.79					-15.36	
Water Table	Montrose	MW-16		-19.66							-19.03			-18.71		-18.26				-17.91		-17.01		-16.18							-15.47	
Water Table	Montrose	MW-17									-18.48																				-15.09	
Water Table	Montrose	MW-19		-17.94			-17.59				-17.46			-17.02		-16.49				-16.26	-16.42	-15.30		-14.24							-14.27	
Water Table	Montrose	MW-21		-18.29			-18.37				-17.97			-17.48		-17.19				-17.15	-17.14	-16.19		-15.36		-15.51					-15.26	
Water Table	Montrose	MW-22		-19.75			-19.20				-19.05			-18.49		-18.30				-17.97		-17.18		-16.21							-15.66	
Water Table	Montrose	MW-23		-19.49			-18.67				-18.74			-18.42		-18.32				-18.25		-17.72									-16.21	
Water Table	Montrose	MW-24		-19.12			-18.35				-18.44			-18.21		-18.12				-18.05		-17.36		-16.07		-16.53					-15.98	
Water Table	Montrose	MW-25		-20.38			-19.77				-19.94			-19.40		-19.34				-18.82		-18.70		-17.87		-22.36				-17.53	-17.12	
Water Table	Montrose	MW-26		-19.74			-19.17				-18.87			-18.52		-18.24				-18.01		-17.20		-16.01			-16.06				-15.61	
Water Table	Montrose	MW-27		-18.27			-17.90				-17.42			-17.42	17.00	-16.96				-16.93		-15.92		-14.98	 1F 70	-15.01					-14.47	
Water Table	Montrose	MW-28		-18.67			-18.61				-18.04			-16.11		-17.57				-17.43		-16.67		16.02		-15.72					-15.33	
Water Table	Montrose	MW-29 MW-30		-19.12 -19.25			-18.56				-18.71			-18.29 -18.07		-17.92 -18.03				-17.95 -17.78	-17.75	-16.98		-16.03		-15.73	-16.26				-14.95	
Water Table Water Table	Montrose Montrose	MW-31		-19.25			-18.28				-18.31			-18.07		-18.03				-17.78	-18.01	-17.10		-16.00			-16.26				-15.57 	
Water Table	Montrose	UBA-EW-1																														
Water Table	Montrose	UBE-01									-18.44																				-15.26	
Water Table Water Table	Montrose	UBE-02																													-13.20	
Water Table	Montrose	UBE-03																														
Water Table	Montrose	UBE-04																														
Water Table	Montrose	UBE-05																														
			L .	1		1	ı L		<u> </u>				1	l				1			ı l			1		L						

		1																							
HSU	Facility	Location	2004	2004 Feb	2004 Mar	2004 Apr	2004 May	2004 Jun	2004 Jul	2004	2004 Sep	2004 Oct	2004 Nov	2005 Feb	2005 Mar	2005 Jul	2005 Dec	2006 Son	2006 Oct	2006 Dec	2011 Feb	2012 Feb	2012 Mar	2012 Nov	2014 Sep
Water Table	Del Amo	SWL0002	-14.14		IVIAI	Apr 	iviay	Juli 		Aug 					IVIAI		Dec	Sep 	-11.03			-9.06	IVIdI 		
Water Table	Del Amo	SWL0003	-14.18																-10.79			-9.04			
Water Table	Del Amo	SWL0004	-14.40																-11.06			-9.14			
Water Table	Del Amo	SWL0005	-15.02																-11.34			-9.16			-9.59
Water Table	Del Amo	SWL0006		-15.58															-12.21			-9.99			-10.58
Water Table	Del Amo	SWL0007	-12.59																-9.83			-8.13			-8.92
Water Table	Del Amo	SWL0008	-13.96																-10.86			-8.75			-9.70
Water Table	Del Amo	SWL0009	-10.18																-10.96			-6.88			-7.42
Water Table	Del Amo	SWL0015	-16.73																-12.52			-10.43			-10.84
Water Table	Del Amo	SWL0016	-14.65																-10.99			-8.44			-9.57
Water Table	Del Amo	SWL0017	-13.68																-10.46			-8.75			-9.50
Water Table	Del Amo	SWL0021	-16.62																-13.50			-10.38			-10.67
Water Table	Del Amo	SWL0024	-14.43																-11.77			-9.75			-10.23
Water Table	Del Amo	SWL0028	-13.54																-8.75			-10.56			-9.28
Water Table	Del Amo	SWL0038	-11.63																-9.12			-7.77			-8.56
Water Table	Del Amo	SWL0042	-17.48																-13.18			-10.78			-11.25
Water Table	Del Amo	SWL0044	-15.00																-9.68			-8.49			-9.39
Water Table	Del Amo	SWL0046	-14.54																-10.65			-7.10			-7.69
Water Table	Del Amo	SWL0049	-15.33		-														-12.36	-		-9.75		-10.45	-10.50
Water Table	Del Amo	SWL0051	-14.04		-														-10.94			-8.63			-9.66
Water Table	Del Amo	SWL0057	-12.99																-10.06			-7.91			-9.14
Water Table	Del Amo	SWL0059								-13.07									-10.36			-8.69			-9.60
Water Table	Del Amo	SWL0068			-															-		-5.59			-5.78
Water Table	Del Amo	XP-02	-15.29		-														-11.80	1		-9.63			-11.26
Water Table	Del Amo	XP-03	-16.85																-12.83			-10.83			
Water Table	Montrose	MBFB-EW-1																	-12.59			-10.41			-10.45
Water Table	Montrose	MBFB-OW-1																	-11.62			-9.47			-9.39
Water Table	Montrose	MW-01	-14.81	-14.87											-14.20				-11.95			-9.33			-10.28
Water Table	Montrose	MW-02	-13.68	-13.76											-14.49				-12.19			-9.52			-10.29
Water Table	Montrose	MW-03	-14.76	-14.91											-14.48				-11.95			-9.69			-10.39
Water Table	Montrose	MW-04	-14.59			-14.61	-14.55	-14.58		-14.56					-14.17				-11.80			-9.53			-10.31
Water Table	Montrose	MW-05	-14.61	-14.59											-13.92				-11.63			-9.35			-10.29
Water Table	Montrose	MW-06	-14.82																-12.16			-9.52			-10.26
Water Table	Montrose	MW-07	-14.78																-12.52			-9.80			-10.06
Water Table	Montrose	MW-08	-14.29			-13.91	-14.05	-14.25		-14.21									-11.81			-9.31			-9.82
Water Table	Montrose	MW-09	-14.36																-11.39			-9.19			-10.28
Water Table	Montrose	MW-10	-14.42																-11.46			-9.21			-10.23
Water Table	Montrose	MW-11	-14.77																-11.77			-9.38			-10.29
Water Table	Montrose	MW-12	-14.98																-11.90			-9.43			-10.29
Water Table	Montrose	MW-13	-15.15																-12.03			-9.66			-10.48
Water Table	Montrose	MW-14	-15.04		-14.87		-14.93	-15.08		-14.95					-13.86				-12.18			-9.69			-10.29
Water Table	Montrose	MW-16	-15.11																-12.44			-9.71			-10.08
Water Table	Montrose	MW-17	-14.75																-12.12			-9.67			-9.92
Water Table	Montrose	MW-19	-14.10																			-9.07			-10.11
Water Table	Montrose	MW-21	-15.06																-11.55			-9.53			-10.26
Water Table	Montrose	MW-22	-15.31																-12.35			-9.83			-10.31
Water Table	Montrose	MW-23	-15.40																-11.77			-9.67			-10.46
Water Table	Montrose	MW-24	-15.22																-12.14			-9.85			-10.60
Water Table	Montrose	MW-25	-16.68												-15.41				-12.93			-10.70		10.22	-11.07
Water Table	Montrose	MW-26	-15.23												12.55				-12.18			-9.64		-10.33	-10.21
Water Table	Montrose	MW-27	-14.45												-13.55				-11.48			-9.27			-10.30
Water Table	Montrose	MW-28	-14.89																11.05			-9.88			-10.57
Water Table	Montrose	MW-29	-15.00																-11.85		-9.85	-9.80			-10.44
Water Table	Montrose	MW-30	-15.03								14 57								-11.64			-9.59			-10.16
Water Table	Montrose	MW-31									-14.57								-12.01			-9.73			-9.91 10.33
Water Table	Montrose	UBA-EW-1	14.01																11.07			0.77			-10.23
Water Table	Montrose	UBE-01	-14.81												12.00				-11.87			-9.77			-10.36
Water Table	Montrose	UBE-02													-13.99				-11.74			-9.24			-10.21
Water Table	Montrose	UBE-03																	-11.98			-9.85			-10.48
Water Table	Montrose	UBE-04																	-11.70			-9.35			-10.27
Water Table	Montrose	UBE-05																				-9.54			-10.47

			1985	1985	1985	1985	1985	1985	1985	1986	1986	1987	1987	1987	1987	1988	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1991
HSU	Facility	Location	Apr	May	Jun	Jul	Aug	Oct	Nov	Jan	Aug	Jan	Feb	Mar	Nov	Jan	Mar	Apr	Jul	Oct	Jan	Feb	May	Oct	Nov	Dec	Jan	Feb	Apr	Aug	Nov	Dec	Apr
Water Table	Montrose	UBI-01													-																		
Water Table	Montrose	UBI-02																															
Water Table	Montrose	UBT-01																															
Water Table	Montrose	UBT-02																															
Water Table	Montrose	UBT-03																															
MBFB	Del Amo	G-01WC																															
MBFB MBFB	Del Amo Del Amo	G-02WC																															
MBFB	Del Amo	GW-07C SWL0011																															
MBFB	Del Amo	SWL0011																															
MBFB	Del Amo	SWL0023																															
MBFB	Del Amo	SWL0032																															
MBFB	Del Amo	SWL0037													1																		
MBFB	Del Amo	SWL0041																															
MBFB	Del Amo	SWL0047																															
MBFB	Del Amo	SWL0048																															
MBFB	Del Amo	SWL0050																															
MBFB	Del Amo	SWL0052																															
MBFB Water Table/MBFC	Del Amo Montrose	SWL0056 BF-32A																															
Water Table/MBFC	+	BF-32A BF-33																															
MBFC	Boeing	CMW001																															
MBFC	Boeing	CMW002																															
MBFC	Boeing	CMW026																															
MBFC	Boeing	EWC001																															
MBFC	Boeing	EWC003													1																		
MBFC	Boeing	EWC004																															
MBFC	Boeing	EWC005																															
MBFC	Boeing	IRZCMW001																															
MBFC	Boeing	IRZCMW002																															
MBFC	Boeing	IRZCMW003																															
MBFC MBFC	Boeing	IWC001																															
MBFC	Boeing Boeing	IWC003																															
MBFC	Boeing	MWC004																															
MBFC	Boeing	MWC006																															
MBFC	Boeing	MWC007																															
MBFC	Boeing	MWC009													1																		
MBFC	Boeing	MWC011																															
MBFC	Boeing	MWC015																															
MBFC	Boeing	MWC016																															
MBFC	Boeing	MWC017																															
MBFC	Boeing	MWC021																															
MBFC MBFC	Boeing Boeing	MWC022 MWC023																															
MBFC	Boeing	MWC024																															
MBFC	Boeing	MWC025																															
MBFC	Boeing	MWC026																															
MBFC	Boeing	MWC027																															
MBFC	Del Amo	SWL0010																															
MBFC	Del Amo	SWL0013																															
MBFC	Del Amo	SWL0018																															
MBFC	Del Amo	SWL0027																															
MBFC	Del Amo	SWL0033																															
MBFC	Del Amo	SWL0035																															
MBFC	Del Amo	SWL0040																															
MBFC	Del Amo	SWL0053																															
MBFC MBFC	Del Amo Del Amo	SWL0054 SWL0055																															
MBFC	Del Amo	SWL0058																															
MBFC	Del Amo	SWL0058																															
MDI C	Per VIIIO	344 20000		1	1					I		I	I			L					I	I			1		1						

Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Mathematical Ma				1991	1991	1992	1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
Northiely Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Morey Mo	HSU	Facility	Location																			1										1		
Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   M	Water Table	Montrose	UBI-01																-											•				
Page	Water Table	Montrose	UBI-02																															
Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Martine   Mart	Water Table	Montrose	UBT-01	-20.91	-21.06	-21.26					-21.34																							
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect		Montrose		+ +																														
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.						-21.24	1	1			-21.32																				1			+
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect																																		$\vdash$
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect		+		-			1				1																	<u> </u>						<del>                                     </del>
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect		+						1																							1			
Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math   Math		+					1		1						1																			_
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect		+		+			1	1													1	1	-			1		<b>-</b>						_
Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart		+	+												1													<b>-</b>				l		
Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart			_																							1								
Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Description   Mathematical Descri	MBFB	Del Amo	SWL0041																					-21.04		-21.13		-21.25			-21.68			
Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary	MBFB	Del Amo	SWL0047																															
Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary	MBFB	Del Amo	SWL0048			-											-																	
Mary Hage/MIC More   Mary Mary Mary Mary Hage Michael More   Mary Hage Mary Mary Mary Mary Mary Mary Mary Mary	MBFB	Del Amo	SWL0050																															
Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology   Methodology		+	+																															
Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathematic Mathemati		+																																
MMCC   Moring   Mor	· · · · · · · · · · · · · · · · · · ·	+					1	1																							1			+
Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medical   Medi	· · · · · · · · · · · · · · · · · · ·	+					1								1							+		1				<del>                                     </del>						_
Month				-			1				1																				1			<del>                                     </del>
MEC Reng MYCO3		<del>                                     </del>																										1						_
MSC Ossing WOODS							1		1						1																			<del>                                     </del>
MSC 80mg MCCMS				+			1																					1			1			+
MSC Senge 18CMONG 1		<del> </del>						1							1			1						1		1		1						_
MSC Soone BCAWOOL		<del> </del>		+			1		1		1				1																			
MSC Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Boneg Bo		<del>                                     </del>																																
MSC Seing MCO31	MBFC																																	
MRC Borkg MCOGA 。 "** "** "** "** "** "** "** "** "** "	MBFC	Boeing	IRZCMW003																															
MSFC Beeng MVCOS	MBFC	Boeing	IWC001																															
MBFC Boeing MWCO06	MBFC	Boeing	IWC003			-											-																	
MBC Seeing MWCOGO	MBFC	Boeing	IWC004																															
MBFC Boeing MWCOO?	MBFC	Boeing	MWC004																															
MBFC Being MWCO39 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1.	MBFC	Boeing	MWC006																															
MBFC Boeing MWC011		Boeing																																
MBFC Beeing MWCD15 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			+																															
MBFC Boeing MWCO17																																		
MBFC Boeing MWCO21		<del> </del>					1	1							1			1			1					1					1			
MBFC Boeing MWCO21				+				1							<u> </u>							+												<del>                                     </del>
MBFC Boeing MWC023							1		1						1							-									1			-
MBFC Boeing MWCO25							-	1							-			1								1		<del>                                     </del>						
MBFC Boeing MWCO26		<u> </u>					-	1							-							+						<del>                                     </del>			1			
MBFC Boeing MWC025							1	1							1			1			1					1		<del>                                     </del>						-
MBFC Beeing MWC027				+				1							<u> </u>			1				+				1								+
MBFC Del Amo SWL0013		<del> </del>					1		1		1				1																1			$\vdash$
MBFC Del Amo SWL0010							1	1							1			1			1					1		<del>                                     </del>			1			_
MBFC Del Amo SWL0013	MBFC						-	1							-																1	l		
MBFC Del Amo SWL0018	MBFC																				-21.79										1			
MBFC Del Amo SWL0033	MBFC	Del Amo	SWL0018																-20.71		-20.37		-20.54			-19.84					-20.12			
MBFC Del Amo SWL0035	MBFC	Del Amo	SWL0027																	<u>-22.</u> 74	-22.70	-22.55				-21.80		-21.95			-22.19			
MBFC Del Amo SWL0040	MBFC	Del Amo	SWL0033																				-20.61			-20.14		-20.18			-20.34			
MBFC Del Amo SWL0053	MBFC		SWL0035																									-19.19						
MBFC Del Amo SWL0054	MBFC											]												-20.59		-20.40		-20.49			-20.25			
MBFC Del Amo SWL0055	MBFC																																	
MBFC Del Amo SWL0058	MBFC																																	
								1														+						<del>                                     </del>			1			
MBFC   Del Amo   SWL0060								1							1			1			1					1					1			_
	MBFC	Del Amo	SWL0060																															

			1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1997	1998	1998	1999	1999	2000	2000	2000	2001	2002	2002	2002
HSU	Facility	Location	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	May	Jun	Aug	Sep	Oct	Jan	Feb	Mar	Jan	Feb	Jun	Jul	Aug	Jan	Jan	Sep	Oct
Water Table	Montrose	UBI-01																														
Water Table	Montrose	UBI-02																														
Water Table	Montrose	UBT-01									-18.51																				-15.37	
Water Table	Montrose	UBT-02									-18.50																				-15.34	
Water Table	Montrose	UBT-03									-18.47													47.52		47.67					-15.35	
MBFB	Del Amo	G-01WC		-22.36			-18.21				-19.23			-18.63		-18.96				-28.79	-18.86	-18.33		-17.52		-17.67						
MBFB MBFB	Del Amo Del Amo	G-02WC GW-07C		-19.59 -19.62			-19.38 -20.26				-19.97 -20.52			-18.95 -15.80	-19.55	-18.82 -20.39				-19.03 -19.53	-19.07 -19.79	-19.29 -19.12		-17.50 -18.28		-17.63 -19.36						
MBFB	Del Amo	SWL0011		-19.02			-18.86				-19.05			-13.80	-19.55	-18.71				-19.55	-19.79	-19.12		-17.46		-19.50						
MBFB	Del Amo	SWL0011		-20.99			-20.55				-20.67			-19.49		-20.86				-20.78	-20.72	-19.97		-19.41		-19.39						
MBFB	Del Amo	SWL0023		-20.08			-19.88				-19.99			-19.05		-19.74				-19.94	-19.91	-19.18		-18.66			-18.74					
MBFB	Del Amo	SWL0032	-12.97	-13.10	-12.91	-12.94	-12.96	-13.12	-13.19	-13.33	-13.40	-13.47	-13.41	-13.60	-13.61					-14.12	-14.52	-13.37		-12.67		-16.81						
MBFB	Del Amo	SWL0037		-18.28			-17.94				-17.98			-17.58		-17.53				-17.55	-17.58	-16.79		-15.79		-16.04						
MBFB	Del Amo	SWL0041		-20.10			-19.10				-19.21			-18.64		-18.81				-18.89	-18.70	-18.16		-17.40		-17.52	-					
MBFB	Del Amo	SWL0047							-5.92		-17.77			-17.43		-17.27				-17.16	-17.06	-21.34	-16.09	-15.39		-15.60						
MBFB	Del Amo	SWL0048									-18.43			-18.01		-17.90				-17.94	-17.93	-17.11		-16.00		-16.42						
MBFB	Del Amo	SWL0050									-18.85			-18.35		-18.32				-18.30	-18.00	-17.42		-16.73		-16.85						
MBFB	Del Amo	SWL0052									-19.15			-18.33		-18.86				-18.95	-18.74			-17.58			-17.69					
MBFB	Del Amo	SWL0056										-19.77		-19.09		-19.63				-19.76	-19.54	-19.08		-18.15		-18.42						
· · · · · · · · · · · · · · · · · · ·	Montrose	BF-32A									-18.89																				-14.74	
· · · · · · · · · · · · · · · · · · ·	Montrose	BF-33									-19.46																				-16.07	
MBFC MBFC	Boeing Boeing	CMW001 CMW002																														
MBFC	Boeing	CMW026																														
MBFC	Boeing	EWC001																														
MBFC	Boeing	EWC003																														
MBFC	Boeing	EWC004																														
MBFC	Boeing	EWC005																														
MBFC	Boeing	IRZCMW001																									-					
MBFC	Boeing	IRZCMW002																														
MBFC	Boeing	IRZCMW003																														
MBFC	Boeing	IWC001																														
MBFC	Boeing	IWC003																														
MBFC	Boeing	IWC004																														
MBFC	Boeing	MWC004																														
MBFC MBFC	Boeing	MWC006 MWC007																														
MBFC	Boeing Boeing	MWC009																														
	Boeing	MWC011																														
	Boeing	MWC015																														
	Boeing	MWC016																														
	Boeing	MWC017																														
MBFC	Boeing	MWC021																														
MBFC	Boeing	MWC022																														
	Boeing	MWC023																														
	Boeing	MWC024																														
	Boeing	MWC025																														
	Boeing	MWC026																														
	Boeing Dol Amo	MWC027		10.07			10 70				19.04			19.10		19.70				10.00	19.02	10.63		17.66		17.62						
	Del Amo Del Amo	SWL0010 SWL0013		-19.07 -19.28			-18.78 -18.88				-18.94 -19.03			-18.10 -18.37		-18.79 -18.74				-19.00 -18.87	-18.92 -18.83	-18.63 -18.22		-17.66 -17.54		-17.62					-15.44	
	Del Amo	SWL0013 SWL0018		-19.28			-18.88				-19.03			-18.37		-18.74				-18.87		-18.22		-17.54		-16.85					-15.44	
	Del Amo	SWL0018 SWL0027		-19.23			-19.03				-18.74			-18.25		-18.27				-18.37	-18.38	-17.41		-19.07	-10.73	-10.85					-18.27	
	Del Amo	SWL0027 SWL0033		-19.48			-18.95				-19.00			-19.67		-18.48				-18.45		-17.58		-16.86		-16.97					-10.27	
	Del Amo	SWL0035		-18.38			-18.02				-18.08			-17.64		-17.63				-17.61		-16.89		-15.91		-16.14					-15.59	
	Del Amo	SWL0040		-19.31			-19.22				-19.35			-18.75		-19.03				-19.05	-18.79	-18.21		-17.54		-17.50						
	Del Amo	SWL0053									-19.09			-18.24		-18.79				-18.88	-19.72	-18.21		-17.50		-17.57						
	Del Amo	SWL0054									-17.87			-17.67		-17.47				-17.39	-17.48	-16.45		-15.60		-15.80			-14.99		-15.27	
MBFC	Del Amo	SWL0055										-18.63		-18.23		-18.22				-18.22	-17.99	-17.46		-16.69		-16.81						
MBFC	Del Amo	SWL0058												-18.17		-17.97				-17.95	-18.06	-17.18		-16.29		-16.39						
MBFC	Del Amo	SWL0060																														
			•																													

			2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2011	2012	2012	2012	2014
HSU	Facility	Location	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Feb	Mar	Jul	Dec	Sep	Oct	Dec	Feb	Feb	Mar	Nov	Sep
Water Table	Montrose	UBI-01										-		1	-14.08	1			-11.86			-9.40			-10.16
Water Table	Montrose	UBI-02													-14.00				-11.85			-9.42			-10.16
Water Table	Montrose	UBT-01	-14.88												-14.70				-12.38			-9.83			-10.40
Water Table	Montrose	UBT-02	-14.91												-14.31				-11.99			-9.85			-10.42
Water Table	Montrose	UBT-03	-14.88												-14.26				-11.90			-9.86			-10.40
MBFB	Del Amo	G-01WC	-16.57																-12.62			-10.56			-11.01
MBFB	Del Amo	G-02WC	-16.39																-12.67			-10.57			-11.06
MBFB	Del Amo	GW-07C	-16.99																-13.54			-10.84			-11.21
MBFB	Del Amo	SWL0011	-12.61																-10.73			-8.84			
MBFB	Del Amo	SWL0019	-17.93																-13.60			-11.85			-11.91
MBFB	Del Amo	SWL0023	-18.22																-13.05			-11.26			-11.59
MBFB	Del Amo	SWL0032	41.67																-13.18			-7.19			-10.21
MBFB MBFB	Del Amo Del Amo	SWL0037 SWL0041	-15.19 -16.47																-11.53 -12.39			-9.47 -10.50			-10.31 -10.82
MBFB	Del Amo	SWL0041 SWL0047	-14.84																-12.59			-9.53			-10.82
MBFB	Del Amo	SWL0047	-15.52																-12.11			-9.80			-10.90
MBFB	Del Amo	SWL0048	-15.96																-12.11			-10.26			-10.90
MBFB	Del Amo	SWL0052	-16.50																-12.40			-10.58			-10.85
MBFB	Del Amo	SWL0056	-17.21																-13.20				-11.03		-11.43
Water Table/MBFC		BF-32A	-14.26																-11.15			-9.52			-9.76
Water Table/MBFC	+	BF-33	-15.87												-15.50				-12.56			-10.68			-10.52
MBFC	Boeing	CMW001																					-7.67		-8.47
MBFC	Boeing	CMW002																					-7.67	-8.05	-8.04
MBFC	Boeing	CMW026																							-8.40
MBFC	Boeing	EWC001																							-7.88
MBFC	Boeing	EWC003																							-20.72
MBFC	Boeing	EWC004																							-8.47
MBFC	Boeing	EWC005																							-32.26
MBFC	Boeing	IRZCMW001																							-8.39
MBFC	Boeing	IRZCMW002										-		1		1									-8.36
MBFC	Boeing	IRZCMW003																							-8.40
MBFC	Boeing	IWC001																							-8.34
MBFC	Boeing	IWC003																							-7.70
MBFC	Boeing	IWC004																							-8.29
MBFC	Boeing	MWC004																							-8.64
MBFC	Boeing	MWC006																							-7.26
MBFC	Boeing	MWC007																							-7.23
MBFC	Boeing	MWC009																							-10.21
MBFC	Boeing	MWC011																							-7.71
MBFC	Boeing	MWC015																							-9.34
MBFC	Boeing	MWC016																							-8.50
MBFC	Boeing	MWC017																							-8.24
MBFC MBFC	Boeing	MWC021 MWC022																							-8.53 -7.47
MBFC	Boeing Boeing	MWC023																							-7.47
MBFC	Boeing	MWC024																							-8.32
MBFC	Boeing	MWC025																							-8.13
MBFC	Boeing	MWC026																							-8.69
MBFC	Boeing	MWC027																							-9.28
MBFC	Del Amo	SWL0010	-16.38																-12.14			-10.69			-11.12
MBFC	Del Amo	SWL0013	-15.01																-11.09			-9.06			-9.65
MBFC	Del Amo	SWL0018	-15.88							-15.47									-12.30			-10.13			-10.94
MBFC	Del Amo	SWL0027	-17.84																-13.67			-11.70			-11.91
MBFC	Del Amo	SWL0033	-16.16																-12.40			-10.35			-14.00
MBFC	Del Amo	SWL0035	-15.24							-14.64									-11.30			-9.50			-10.08
MBFC	Del Amo	SWL0040	-16.27																-12.64			-10.51			-10.98
MBFC	Del Amo	SWL0053	-16.42																-12.31			-10.78			-10.66
MBFC	Del Amo	SWL0054								-14.66									-11.60			-9.68			-10.39
MBFC	Del Amo	SWL0055	-15.90																-12.32			-10.40			-10.84
IVIDIC				1	1	1			i	-15.16							1		-12.26			-7.94			-10.55
MBFC	Del Amo	SWL0058	-15.56							-15.10									-12.20			-7.54			10.55

			1985	1985	1985	1985	1985	1985	1985	1986	1986	1987	1987	1987	1987	1988	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1991
HSU	Facility	Location	Apr	May	Jun	Jul	Aug	Oct	Nov	Jan	Aug	Jan	Feb	Mar	Nov	Jan	Mar	Apr	Jul	Oct	Jan	Feb	May	Oct	Nov	Dec	Jan	Feb	Apr	Aug	Nov	Dec	Apr
MBFC	Del Amo	SWL0061																															
MBFC	Del Amo	SWL0064																															
MBFC	Del Amo	SWL0065																															
MBFC	Montrose	BF-01										-24.52	-23.95		-23.56	-23.23		-22.72	-22.51	-22.45	-21.74	-21.85		-20.94	-20.83			-20.58	-20.30	-20.28	-20.19		-20.12
MBFC	Montrose	BF-02										-24.78	-24.44	-24.23	-23.82	-23.48		-22.99	-22.75	-22.56	-22.01	-22.13	-21.56	-21.21	-21.08			-20.86	-20.52	-20.49	-20.38		-20.23
MBFC	Montrose	BF-03										-24.81	-24.46		-23.90	-23.54		-23.03	-22.81	-22.73	-22.05	-22.17	-21.62	-21.27	-21.16			-20.93	-20.56	-20.52	-20.41		-20.31
MBFC	Montrose	BF-04										-24.92	-24.59		-24.00	-23.67		-23.20	-22.94	-22.86	-22.20	-22.31	-21.77	-21.40	-21.29			-21.06	-20.72	-20.67	-20.56		-20.45
MBFC MBFC	Montrose Montrose	BF-05 BF-06																			-22.97 -23.16	-23.07 -23.34	-22.59 -22.77	-22.26 -22.45	-22.11 -22.28			-21.84 -22.00	-21.49 -21.78	-21.47 -21.62	-21.23 -21.44		-21.15 -21.32
MBFC	Montrose	BF-07																			-23.10	-23.34	-22.77	-22.45	-22.28			-22.00	-21.78	-21.02	-21.44		-21.32
MBFC	Montrose	BF-09																			-22.21	-23.21	-21.43	-21.11	-21.01			-20.68	-20.41	-20.43	-20.54		-20.22
MBFC	Montrose	BF-10																								-24.60		-24.39	-23.97	-23.98	-23.68		-23.61
MBFC	Montrose	BF-11																								-25.54		-25.31	-24.98	-24.79	-24.74		-24.27
MBFC	Montrose	BF-12																								-25.95		-25.72	-25.30	-25.26	-25.19		-24.79
MBFC	Montrose	BF-13																							-23.83			-23.52	-23.14	-23.14	-22.84		-22.70
MBFC	Montrose	BF-14																						-23.55	-23.37			-23.13	-22.73	-22.75	-22.46		-22.35
MBFC	Montrose	BF-15																						-23.26	-23.13			-22.83	-22.47	-22.49		-22.38	-21.79
MBFC	Montrose	BF-16																								-25.26	-25.05	-24.87	-24.52	-24.42	-24.41		-23.92
MBFC	Montrose	BF-17																								-25.89	-25.68	-25.54	-25.15	-25.09	-25.04		-24.58
MBFC	Montrose	BF-19																															
MBFC	Montrose	BF-20																															
MBFC	Montrose	BF-21																															
MBFC MBFC	Montrose Montrose	BF-22 BF-23																															
MBFC	Montrose	BF-24																															
MBFC	Montrose	BF-25																															
MBFC	Montrose	BF-26																															
MBFC	Montrose	BF-27																															
MBFC	Montrose	BF-28																															
MBFC	Montrose	BF-29																															
MBFC	Montrose	BF-30																															
MBFC	Montrose	BF-31																															
MBFC	Montrose	BF-34																															
MBFC	Montrose	BF-35																															
MBFC	Montrose	BF-36																															
MBFC	Montrose	BF-EW-1																															
MBFC MBFC	Montrose Montrose	BF-EW-2 BF-EW-3																															
MBFC	Montrose	BF-EW-4																															
MBFC	Montrose	BF-EW-5																															
MBFC	Montrose	BF-IW-1																															
MBFC	Montrose	BF-OW-1																															
MBFC	Montrose	BF-OW-3																															
MBFC	Montrose	BF-OW-4																															
MBFC	Montrose	LBF-OW-3																															
Gage	Boeing	EWG001																															
Gage	Boeing	EWG002																															
Gage	Boeing	MWG001																															
Gage	Boeing	MWG002																															
Gage	Boeing	MWG003																															
Gage	Boeing Del Amo	MWG004 SWL0020																															
Gage Gage	Del Amo	SWL0020																															
Gage	Del Amo	SWL0025																															
Gage	Del Amo	SWL0026																															
Gage	Del Amo	SWL0034																															
Gage	Del Amo	SWL0036																															
Gage	Del Amo	SWL0063													-																		
Gage	Del Amo	SWL0066																															
Gage	Montrose	G-01										-24.87	-24.47	-24.27	-24.03	-23.43		-23.01	-22.86	-22.74	-22.03	-22.12	-21.61	-21.34	-21.17			-21.24	-20.82	-20.68	-20.70		-20.73
Gage	Montrose	G-02										-25.64	-25.25	-25.12	-24.81	-24.18		-23.78	-23.58	-23.50	-22.79	-22.87	-22.40	-22.11	-21.94			-21.75	-21.62	-21.42	-21.40		-21.43
			•																														

			1991	1991	1992	1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
HSU	Facility	Location	Oct	Nov	Jul	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
MBFC	Del Amo	SWL0061																								-			1				
MBFC	Del Amo	SWL0064																															
MBFC	Del Amo	SWL0065																															
MBFC	Montrose	BF-01	-20.85	-21.01	-21.36					-19.29															-19.26		-19.37			-19.45			
MBFC	Montrose	BF-02	-20.99	-21.18	-21.46					-21.42												-19.67			-19.39		-19.39			-19.43			
MBFC	Montrose	BF-03	-20.96	-21.14	-21.38					-21.30															-19.30		-19.42			-19.36			
MBFC MBFC	Montrose	BF-04 BF-05	-21.06 -21.53	-21.28 -21.69	-21.52 -21.64					-21.46 -21.59		-21.37		-20.67						-19.89	-19.87				-19.41 -19.21		-19.37 -19.30			-19.52 -19.78			
MBFC	Montrose Montrose	BF-05 BF-06	-21.55	-21.85	-21.87					-21.59		-21.62		-20.67		-20.64				-19.89	-19.87				-19.21		-19.30			-19.78			
MBFC	Montrose	BF-07	-21.80	-21.82	-21.90					-21.90		-21.02		-21.41		-20.04				-20.54	-20.50				-19.86		-19.91			-20.16			
MBFC	Montrose	BF-09	-20.88	-21.09	-21.37					-21.32															-19.28		-19.41			-19.46			
MBFC	Montrose	BF-10	-23.96	-24.03	-23.81					-23.41				-22.92		-22.79						-21.96			-21.19		-21.32			-21.48			
MBFC	Montrose	BF-11	-24.58	-24.68	-24.75					-24.45																							
MBFC	Montrose	BF-12	-25.20	-25.23	-25.14					-24.59												-23.07			-22.36		-22.50			-22.62			
MBFC	Montrose	BF-13	-23.14	-23.20	-22.94					-22.50	-22.59	-22.24				-21.88				-21.00		-21.04			-20.44		-20.53			-20.67			
MBFC	Montrose	BF-14	-22.67	-22.81	-22.75					-22.55				-22.13		-21.94				-20.99		-21.20			-20.45		-20.59			-20.64			
MBFC	Montrose	BF-15	-22.48	-22.65	-22.65					-22.52		-22.51		-22.50		-22.37					-21.52				-20.82		-20.93		-	-21.01			
MBFC	Montrose	BF-16	-24.21	-24.34	-24.45					-24.24																							
MBFC	Montrose	BF-17	-24.97	-25.03	-25.01					-24.55															-21.33		-21.40			-21.58			
MBFC	Montrose	BF-19	-21.21	-21.37	-21.29					-21.16				-20.64		-20.58				-19.87	-19.84				-19.18		-19.29		-	-19.33			
MBFC	Montrose	BF-20	-21.11	-21.32	-21.73					-22.79																							
MBFC	Montrose	BF-21	-22.28	-22.50	-22.77					-22.79				-22.30											-20.45		-20.54			-20.69			
MBFC	Montrose	BF-22	-24.04	-24.19	-24.32					-24.16																							
MBFC	Montrose	BF-23	-22.61	-22.73	-22.62					-22.42												-21.05			-20.34		-20.40			-20.52			
MBFC	Montrose	BF-24	-23.87	-23.99	-23.95					-23.68												-21.84			-21.14		-21.19			-21.31			
MBFC	Montrose	BF-25	-25.71	-25.76	-25.77					-25.35																							
MBFC	Montrose	BF-26	-26.38	-26.43	-26.36					-26.07																							
MBFC MBFC	Montrose	BF-27 BF-28	-25.56 -26.23	-25.63 -26.24	-25.70					-25.36 -25.66																							
MBFC	Montrose Montrose	BF-28	-20.23	-20.24	-26.14 -22.94					-23.00															-20.54		-20.58			-20.77			
MBFC	Montrose	BF-30	-23.83	-24.00	-24.25					-24.18															-20.54		-20.36			-20.77			
MBFC	Montrose	BF-31	-22.14	-22.40	-22.86					-22.99																							
MBFC	Montrose	BF-34																															
MBFC	Montrose	BF-35																															
MBFC	Montrose	BF-36																															
MBFC	Montrose	BF-EW-1																															
MBFC	Montrose	BF-EW-2																															
MBFC	Montrose	BF-EW-3																								-			-				
MBFC	Montrose	BF-EW-4																															
MBFC	Montrose	BF-EW-5																															
MBFC	Montrose	BF-IW-1																															
MBFC	Montrose	BF-OW-1																															
MBFC	Montrose	BF-OW-3																															
MBFC	Montrose	BF-OW-4																															
MBFC	Montrose	LBF-OW-3																															
Gage	Boeing	EWG001																															
Gage	Boeing	EWG002																															
Gage	Boeing	MWG001																															
Gage	Boeing	MWG002																															
Gage	Boeing	MWG003																															
Gage	Boeing Del Amo	MWG004 SWL0020																-24.53		-23.96		-23.86			-23.05		-23.62			-24.21			
Gage Gage	Del Amo	SWL0020 SWL0022																-24.55		1	-22.70	-23.80			-23.05		-23.62			-24.21			
Gage	Del Amo	SWL0025																-23.33			-23.85				-21.93		-23.63			-24.30			
Gage	Del Amo	SWL0025																	-23.89	-23.64					-23.02		-23.17			-23.61			
Gage	Del Amo	SWL0020																	-23.89	-23.04	-23.33	-21.98			-21.27		-21.62			-22.03			
Gage	Del Amo	SWL0034																							-21.36		-21.97			-13.07			
Gage	Del Amo	SWL0063																															
Gage	Del Amo	SWL0066																															
Gage	Montrose	G-01	-21.92		-22.74					-21.87															-18.72		-19.01			-19.37			
Gage	Montrose	G-02		-22.56	-22.96					-22.41															-20.10		-20.41			-20.75			
																										1							

			1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1997	1998	1998	1999	1999	2000	2000	2000	2001	2002	2002	2002
HSU	Facility	Location	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	May	Jun	Aug	Sep	Oct	Jan	Feb	Mar	Jan	Feb	Jun	Jul	Aug	Jan	Jan	Sep	Oct
MBFC	Del Amo	SWL0061																														
MBFC	Del Amo	SWL0064																														
MBFC	Del Amo	SWL0065																														
MBFC	Montrose	BF-01		-18.90			-18.48				-18.39			-17.71		-17.48				-17.30	-17.28	-16.10		-15.28		-15.78					-15.36	
MBFC	Montrose	BF-02		-19.03			-18.66				-18.57			-18.00		-17.63				-17.46	-17.45	-16.33		-15.61		-16.05					-15.39	
MBFC	Montrose	BF-03		-18.93			-18.57				-18.37			-17.92		-17.55				-17.41	-17.40	-16.29		-15.56		-15.97					-15.44	
MBFC MBFC	Montrose Montrose	BF-04 BF-05		-19.01 -19.02			-18.63 -18.57				-18.50 -18.47			-16.62 -25.83	-24.96	-17.27 -17.89				-17.36 -17.89	-17.50 -17.52	-16.35 -16.95		-15.64 -16.01		-16.05 -16.21					-15.54 -15.70	
MBFC	Montrose	BF-06		-19.02			-18.82				-18.66			-23.83	-24.90	-17.89				-17.89	-17.32	-10.93		-16.46		-16.21					-13.70	-16.03
MBFC	Montrose	BF-07		-19.55			-19.02				-18.80			-18.55		-18.29				-18.21	-18.20	-17.31		-16.60		-16.68					-15.81	
MBFC	Montrose	BF-09		-18.93			-18.55				-18.18			-17.87		-17.53				-18.55	-13.04	-16.02		-15.22		-15.76					-15.23	
MBFC	Montrose	BF-10		-20.44			-19.99				-20.11			-19.12			-19.65			-19.85	-19.90	-19.06		-18.41			-18.55				-17.74	
MBFC	Montrose	BF-11									-21.24																				-18.56	
MBFC	Montrose	BF-12		-21.63			-21.20				-21.41			-20.28		-20.84				-21.09	-20.94	-20.47		-19.65							-18.88	
MBFC	Montrose	BF-13		-19.57			-19.18				-19.27			-18.66		-18.96				-19.14	-19.16	-18.18		-17.57			-17.69				-16.94	
MBFC	Montrose	BF-14		-19.83			-19.34				-19.35			-18.84		-18.84				-18.81	-18.90	-18.11		-17.03		-17.38					-16.70	
MBFC	Montrose	BF-15		-20.27			-19.76				-19.35			-19.25		-19.16				-20.55	-19.18	-18.40		-17.41		-17.64					-16.56	
MBFC	Montrose	BF-16									-20.96																				-18.25	
MBFC	Montrose	BF-17		-20.69			-20.21				-20.29			-19.55		-19.85				-19.96	-19.76	-19.38		-18.73			-18.68				-18.80	
MBFC	Montrose	BF-19		-18.59			-18.28				-18.14			-17.82		-17.52				-17.52	-17.26	-16.51		-15.66		-15.80					-15.33	
MBFC	Montrose	BF-20		10.04			10.56				-18.69			10.00		10 01				19.60	10 72	10.02		17.45		17.50					-15.54	
MBFC MBFC	Montrose Montrose	BF-21 BF-22		-19.94			-19.56				-19.54 -20.99			-19.09		-18.81				-18.69	-18.72	-18.03		-17.45		-17.50					-16.67 -18.15	
MBFC	Montrose	BF-23		-19.66			-19.16				-19.18			-18.77		-18.69				-18.73	-18.81	-18.03			-17.32	-17.26					-16.13	
MBFC	Montrose	BF-24					-19.95				-20.47			-19.90		-19.52				-19.48	-19.25	-18.95		-18.11			-18.24				-17.76	
MBFC	Montrose	BF-25									-22.15																				-19.55	
MBFC	Montrose	BF-26									-22.76																				-20.23	
MBFC	Montrose	BF-27									-22.16																				-19.66	
MBFC	Montrose	BF-28									-22.42																				-19.85	
MBFC	Montrose	BF-29		-20.06			-19.76				-19.62			-19.22		-18.88				-18.76	-18.67	-18.15									-16.66	
MBFC	Montrose	BF-30									-20.97																				-18.09	
MBFC	Montrose	BF-31									-19.60																				-16.49	
MBFC	Montrose	BF-34																														
MBFC	Montrose	BF-35																														
MBFC	Montrose	BF-36																														
MBFC MBFC	Montrose Montrose	BF-EW-1 BF-EW-2																														
MBFC	Montrose	BF-EW-3																														
MBFC	Montrose	BF-EW-4																														
MBFC	Montrose	BF-EW-5																														
MBFC	Montrose	BF-IW-1																														
MBFC	Montrose	BF-OW-1																														
MBFC	Montrose	BF-OW-3																														
MBFC	Montrose	BF-OW-4																														
MBFC	Montrose	LBF-OW-3																														
Gage	Boeing	EWG001																														
Gage	Boeing	EWG002																														
Gage	Boeing	MWG001																														
Gage	Boeing	MWG002 MWG003																														
Gage	Boeing Boeing	MWG003																														
Gage Gage	Del Amo	SWL0020		-22.40			-22.52				-22.76			-21.93		-23.37				-23.22		-22.46		-22.07								
Gage	Del Amo	SWL0020		-22.40			-22.52				-22.76			-21.93		-23.37				-23.22		-22.46		-22.07								
Gage	Del Amo	SWL0025		-22.42			-21.42				-21.41			-20.98		-23.06				-23.56		-22.77		-20.33		-21.78					-20.51	
Gage	Del Amo	SWL0026		-21.98			-22.10				-22.18			-21.37		-22.12				-22.42		-21.70		-21.12		-21.14					-20.03	
Gage	Del Amo	SWL0034		-20.67			-20.66				-20.64			-20.10		-20.34				-20.40		-19.54		-19.13		-19.21						
Gage	Del Amo	SWL0036		-20.77			-20.98				-20.91			-20.34		-20.78				-21.07		-20.16		-19.67		-19.90					-19.38	
Gage	Del Amo	SWL0063																														
Gage	Del Amo	SWL0066								-																						
Gage	Montrose	G-01		-19.25			-19.10				-18.93			-18.32		-18.11				-15.40	-17.88	-16.91		-16.44		-17.03					-16.32	
Gage	Montrose	G-02		-19.65			-19.57				-19.44			-18.86		-18.76				-18.77	-18.67	-17.67		-17.15		-17.67					-16.85	
·	<del></del>																															

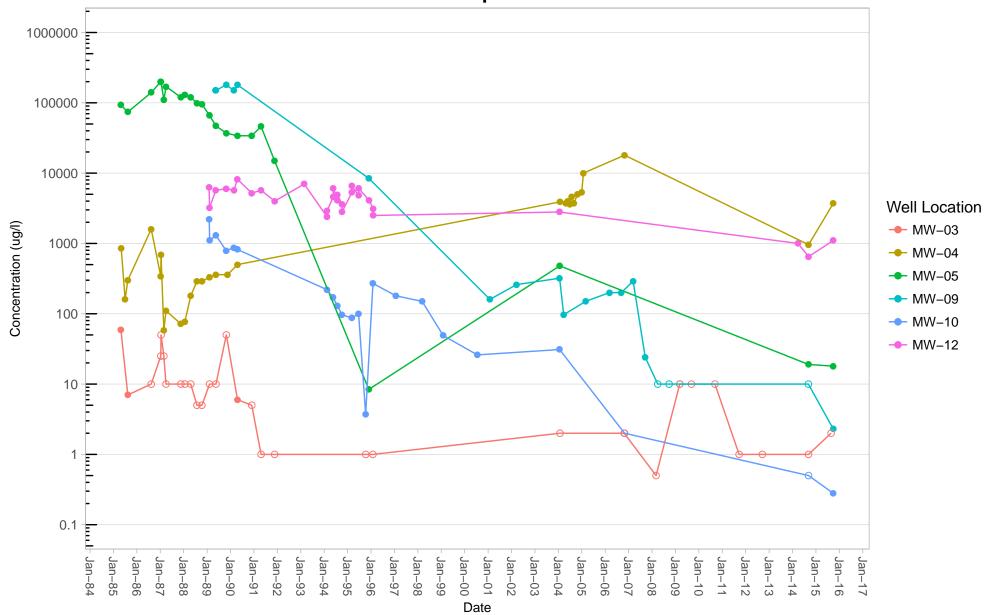
			2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2004	2005	2005	2005	2005	2006	2006	2006	2011	2012	2012	2012	2014
HSU	Facility	Location	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Feb	Mar	Jul	Dec	Sep	Oct	Dec	Feb	Feb	Mar	Nov	Sep
MBFC	Del Amo	SWL0061								-14.57									-11.51			-9.74			-10.50
MBFC	Del Amo	SWL0064																	-11.95			-9.86			-10.50
MBFC	Del Amo	SWL0065																	-11.71			-9.36			-9.95
MBFC	Montrose	BF-01	-15.02	-15.19		-14.76	-14.85	-14.68		-14.90									-11.80			-10.05			-10.52
MBFC	Montrose	BF-02	-15.05	45.24		-14.98	-15.01	-15.11		-15.09									-11.92			-9.80			-10.17
MBFC MBFC	Montrose	BF-03 BF-04	-14.99 -15.12	-15.24		-15.04	-14.88	-15.37		-15.32					-14.68				-12.85 -12.11			-9.99 -9.84			-10.57 -10.31
MBFC	Montrose Montrose	BF-04 BF-05	-15.12			-15.04	-14.00	-13.37		-15.05					-14.00				-12.11			-9.93			-10.51
MBFC	Montrose	BF-06	-15.50																-12.08			-10.00			-10.53
MBFC	Montrose	BF-07	-15.32												-14.44				-12.22			-10.20			-10.61
MBFC	Montrose	BF-09	-14.79	-15.06															-11.76			-11.01			-10.41
MBFC	Montrose	BF-10	-17.99	-17.57															-13.21			-11.11			-11.50
MBFC	Montrose	BF-11	-18.14																-14.13			-11.56			-11.98
MBFC	Montrose	BF-12	-18.54																-14.32			-12.00			-12.29
MBFC	Montrose	BF-13	-16.62												-14.75				-12.58			-10.35			-11.09
MBFC	Montrose	BF-14	-16.29																-12.70			-10.56			-11.00
MBFC	Montrose	BF-15	-16.26												-14.93				-12.63			-10.43			-10.87
MBFC	Montrose	BF-16	-17.84																-14.01			-11.26			-11.58
MBFC	Montrose	BF-17	-18.40																-14.21			-11.84			-12.08
MBFC	Montrose	BF-19	-15.02							-14.72							42.22		-11.73			-9.68			-10.61
MBFC	Montrose	BF-20	-15.20												15.54		-13.32		-12.09			-10.27			-10.28
MBFC MBFC	Montrose Montrose	BF-21 BF-22	-16.29 -17.76												-15.54				-12.79 -13.90			-10.64 -11.20			-10.76 -11.49
MBFC	Montrose	BF-23	-16.30																-13.90			-11.20			-11.49
MBFC	Montrose	BF-24	-17.37												-16.00				-13.38			-11.01			-11.44
MBFC	Montrose	BF-25	-19.24																-14.92			-12.20			-12.28
MBFC	Montrose	BF-26	-19.91																-15.44			-12.54			-12.62
MBFC	Montrose	BF-27	-19.13																-14.93			-12.14			-12.36
MBFC	Montrose	BF-28	-19.59												-18.11				-15.01			-12.43			-12.57
MBFC	Montrose	BF-29	-16.31																-12.87			-11.02			-11.10
MBFC	Montrose	BF-30	-17.50																-13.89			-11.22			-11.28
MBFC	Montrose	BF-31	-16.07																	-12.58		-10.85			-10.78
MBFC	Montrose	BF-34									-14.92								-11.86			-10.18			-10.47
MBFC	Montrose	BF-35									-14.73	-14.65							-11.72			-9.95			-10.58
MBFC	Montrose	BF-36										-21.07	-20.57						-16.04			-13.22			-13.44
MBFC MBFC	Montrose	BF-EW-1 BF-EW-2																	-12.18 -11.06			-10.37 -8.68			-10.65 -11.62
MBFC	Montrose Montrose	BF-EW-3																	-11.06			-0.00			-11.02
MBFC	Montrose	BF-EW-4																							-11.91
MBFC	Montrose	BF-EW-5																							-10.19
MBFC	Montrose	BF-IW-1																	-11.83			-10.53			-10.04
MBFC	Montrose	BF-OW-1																	-11.87			-10.54			-9.78
MBFC	Montrose	BF-OW-3																	-14.58			-10.94			-10.94
MBFC	Montrose	BF-OW-4																	-12.91			-10.85			-10.85
MBFC	Montrose	LBF-OW-3																	-14.56			-12.63			-12.77
Gage	Boeing	EWG001																							-53.82
Gage	Boeing	EWG002																							-13.40
Gage	Boeing	MWG001																							-9.26
Gage	Boeing	MWG002																							-10.07
Gage	Boeing	MWG003 MWG004																							-8.85 -9.09
Gage	Boeing Del Amo	SWL0020	-20.32																			-14.25			-13.94
Gage Gage	Del Amo	SWL0020	-19.08																-14.52			-13.40			-13.39
Gage	Del Amo	SWL0025	-20.11																-15.00			-13.36			-13.43
Gage	Del Amo	SWL0026	-19.51																-14.95			-13.25			-13.28
Gage	Del Amo	SWL0034	-17.95											-16.76			-15.03		-13.84						-10.36
Gage	Del Amo	SWL0036	-18.63																-14.27			-12.99			-13.16
Gage	Del Amo	SWL0063																	-13.51			-12.26			-12.57
Gage	Del Amo	SWL0066																	-13.00			-11.88			-12.24
Gage	Montrose	G-01	-15.87											-15.21		-14.38	-13.57		-12.27			-11.16			-11.48
Gage	Montrose	G-02	-16.18											-15.85		-15.01	-14.20		-12.66			-11.67			-11.85
	•	•						•							•	•	•					•			

			1005	1985	1005	1985	1005	1005	1985	1986	1986	1987	1987	1987	1987	1988	1988	1988	1988	1988	1989	1989	1989	1989	1989	1000	1000	1990	1000	1000	1990	1990	1991
HSU	Facility	Location	1985 Apr	May	1985 Jun	Jul	1985	1985 Oct	Nov	Jan		Jan	Feb	Mar	Nov	Jan	Mar	Apr	Jul	Oct	Jan	Feb	May	Oct	Nov	1989 Dec	1990 Jan	Feb	1990 Apr	1990	Nov	Dec	Apr
_	Montrose	G-03		iviay 			Aug 				Aug 	-25.19	-24.78		-24.33	-23.76	IVIdI 	-23.29	-23.13	-23.04	-22.34	-22.41	-21.89	-21.52	-21.47		Jaii 	-21.25	-21.02	-20.96	-21.00		-20.96
Gage Gage	Montrose	G-04										-23.13	-24.76	-24.01	-24.33	-23.70		-23.23	-23.13	-23.04	-23.28	-23.34	-22.93	-22.67	-22.53			-22.29	-21.98	-21.96	-21.86		-21.97
Gage	Montrose	G-05																			-23.44	-23.52	-23.04	-22.78	-22.60			-22.37	-22.08	-22.07	-22.02		-22.08
Gage	Montrose	G-06																			-23.35	-23.39	-22.92	-22.66	-22.48			-22.24	-21.96	-21.98	-22.08		-22.01
Gage	Montrose	G-08																								-23.68	-23.48	-23.45	-23.16	-23.21	-23.11		-23.19
Gage	Montrose	G-09																								-25.61		-25.42	-25.08	-25.07	-24.89		-25.00
Gage	Montrose	G-12																						-24.65	-24.55			-24.27	-24.23	-23.98	-23.87		-23.94
Gage	Montrose	G-13																						-24.64	-24.27			-23.99	-23.71	-23.75	-23.61		-23.71
Gage	Montrose	G-14																															
Gage	Montrose	G-15																															
Gage	Montrose	G-16																															
Gage	Montrose	G-17																															
Gage	Montrose	G-18																															
Gage	Montrose	G-19A																															
Gage	Montrose	G-20																															
Gage	Montrose	G-21																															
Gage	Montrose	G-22																															
Gage	Montrose	G-23																															
Gage	Montrose	G-24																															
Gage	Montrose	G-25																															
Gage	Montrose	G-26																															
Gage	Montrose	G-27																															
Gage	Montrose	G-28																															
Gage	Montrose	G-29																															
Gage	Montrose	G-30																															
Gage	Montrose	G-31																															
Gage	Montrose	G-32																															
Gage	Montrose	G-33									1																						
Gage	Montrose	G-34									1																						
Gage	Montrose	G-35																															
Gage	Montrose	G-EW-1																															
Gage	Montrose	G-EW-2																															
Gage	Montrose	G-EW-3																															
Gage	Montrose	G-IW-1																															
Gage	Montrose	G-IW-2																															
Gage	Montrose	G-IW-3																															
Gage	Montrose	G-IW-4																															
Gage	Montrose	G-IW-5																															
Gage	Montrose	G-IW-6																							-25.19			-24.97	-24.62	-24.61	-24.45		-24.55
Gage	Montrose	G-IW-7																															
Gage	Montrose	G-0W-1																															
Gage	Montrose	G-OW-3																															
Gage	Montrose	G-OW-4																															
Gage	Montrose	LG-01										-25.67	-25.29	-25.12	-24.83	-24.18		-23.81	-23.60	-23.50		-22.94			-22.01			-21.86	-21.61				-21.51
Gage	Montrose	LG-02																			-22.41	-22.48	-21.96		-21.57					-21.06	1		-21.07
Lynwood	Montrose	LW-01																						-33.01	-32.69		-32.43			-33.12	1		-33.85
Lynwood	Montrose	LW-02																						-33.35	-32.98		-32.70		-32.96		-33.28		-34.18
Lynwood	Montrose	LW-03																								-32.60	-32.55	-32.30	-32.77	-33.17	-33.03		-33.93
Lynwood	Montrose	LW-04																															
Lynwood	Montrose	LW-05																															
Lynwood	Montrose	LW-06																															
Lynwood	Montrose	LW-07																															

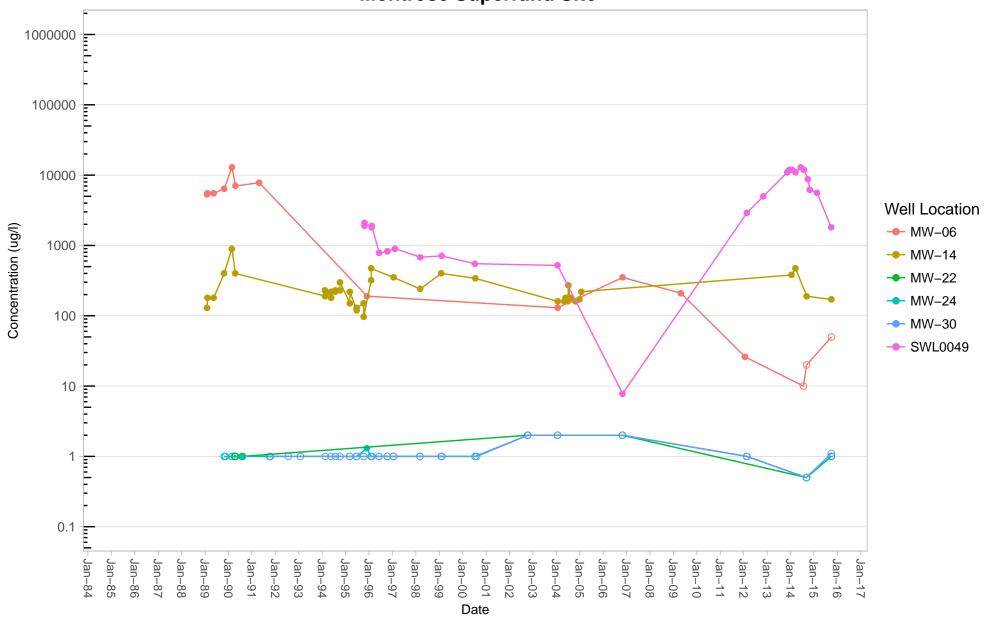
			1991	1991	1992	1992	1992	1992	1992	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1994	1995
HSU	Facility	Location	Oct	Nov	Jul	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Gage	Montrose	G-03	-22.14	-22.24	-22.68					-22.17												-20.27			-19.90		-20.17			-20.49			
Gage	Montrose	G-04	-23.00	-22.96	-23.27					-22.60				-22.18								-20.87			-20.37		-20.70		-21.11	-21.14			
Gage	Montrose	G-05	-23.09	-23.09	-23.42					-22.81			-21.61	-21.80						-20.77	-20.64				-20.48		-20.81		-21.19	-21.19			
Gage	Montrose	G-06	-23.01	-23.06	-23.42					-22.81				-22.41						-21.37	-21.23	-21.05			-20.53		-20.86		-21.22	-21.25			
Gage	Montrose	G-08	-24.13	-24.15	-24.48					-23.72				-26.26						-21.99		-21.88			-21.11		-21.48			-21.89			
Gage	Montrose	G-09	-25.82	-25.68	-25.67					-24.60			-24.27	-24.32						-24.21							-22.74			-23.17			
Gage	Montrose	G-12	-24.85	-24.75	-24.94					-24.01												-22.37			-21.62		-22.03			-22.49			
Gage	Montrose	G-13	-24.59	-24.54	-24.80					-23.94				-23.60						-22.51		-22.39			-21.62		-22.02			-22.53			
Gage	Montrose	G-14	-22.63	-22.58	-22.90					-22.19										-20.94		-20.78			-20.12		-20.45		-20.85	-20.85			
Gage	Montrose	G-15	-22.22	-22.29	-22.74					-22.36															-20.01		-20.30			-20.59			
Gage	Montrose	G-16	-23.85	-23.89	-24.26					-23.54				-23.18											-21.23		-21.59			-22.00			
Gage	Montrose	G-17	-24.22	-24.12	-24.28					-23.42		-23.33								-21.97		-21.90			-21.17		-21.55			-21.95			
Gage	Montrose	G-18	-26.12	-26.00	-26.05					-25.02												-23.38			-22.62		-23.00			-23.38			
Gage	Montrose	G-19A																															
Gage	Montrose	G-20																															
Gage	Montrose Montrose	G-21 G-22																															
Gage	Montrose	G-23																															
Gage Gage	Montrose	G-24																															
Gage	Montrose	G-25																															
Gage	Montrose	G-26																															
Gage	Montrose	G-27																															
Gage	Montrose	G-28																															
Gage	Montrose	G-29																															
Gage	Montrose	G-30																															
Gage	Montrose	G-31																															
Gage	Montrose	G-32																															
Gage	Montrose	G-33																															
Gage	Montrose	G-34																															
Gage	Montrose	G-35																															
Gage	Montrose	G-EW-1																															
Gage	Montrose	G-EW-2																															
Gage	Montrose	G-EW-3																															
Gage	Montrose	G-IW-1																															
Gage	Montrose	G-IW-2																															
Gage	Montrose	G-IW-3																															
Gage	Montrose Montrose	G-IW-4 G-IW-5																															
Gage Gage	Montrose	G-IW-5	-25.51	-25.34	-25.41					-24.23	-24.24			-23.95						-22.79	-22.67				-21.91		-22.36			-22.86			
Gage	Montrose	G-IW-7	-25.51	-25.34	-25.41					-24.23	-24.24	-22.51		-23.95						-22.79	-22.07				-21.91		-22.30			-22.80			
Gage	Montrose	G-OW-1																															
Gage	Montrose	G-OW-3																															
Gage	Montrose	G-OW-4																															
Gage	Montrose	LG-01	-22.63	-22.63	-23.01					-22.44															-20.05		-20.42			-20.75			
Gage	Montrose	LG-02	-22.23							-22.14															-19.87		-20.18			-20.53			
Lynwood	Montrose	LW-01	-36.13	-35.37	-36.78					-31.27																				-33.57			
Lynwood	Montrose	LW-02	-36.36	-35.62	-36.91					16.73																			-33.63	-33.46			
Lynwood	Montrose	LW-03	-36.09	-35.36	-36.69					-31.26				-32.67															-33.37	-33.33			
Lynwood	Montrose	LW-04	-36.29	-35.56	-36.85					-31.38																			-33.39	-33.33			
Lynwood	Montrose	LW-05	-36.06	-35.29	-36.76					-31.28																				-33.38			
Lynwood	Montrose	LW-06	-36.11	-35.36	-36.74					-31.27																				-33.34			
Lynwood	Montrose	LW-07	-36.10	-35.34	-36.76					-31.26												-29.70								-33.36			
<u> </u>		<u> </u>																															

			1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1996	1996	1996	1996	1996	1996	1996	1997	1998	1998	1999	1999	2000	2000	2000	2001	2002	2002	2002
HSU	Facility	Location	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	May	Jun	Aug	Sep	Oct	Jan	Feb	Mar	Jan	Feb	Jun	Jul	Aug	Jan	Jan	Sep	Oct
Gage	Montrose	G-03		-19.49			-19.35				-20.19			-18.49		-18.30				-16.38	-18.24	-17.32		-16.78		-17.33					-16.54	
Gage	Montrose	G-04		-19.89			-19.00				-19.66			-19.18		-19.18				-19.24	-18.77	-18.27		-17.67		-18.04					-17.22	
Gage	Montrose	G-05		-20.01			-19.90				-19.82			-19.28		-19.29				-19.36	-19.15	-18.42		-17.95		-18.16						-17.66
Gage	Montrose	G-06		-20.03			-19.89				-19.90			-19.31		-19.28					42.54	-18.40		-18.02		-18.23					-17.28	
Gage	Montrose	G-08		-20.60			-20.57				-20.86			-19.98		-20.12				-18.71	-20.09	-19.48		-18.81		-18.99					-18.31	
Gage	Montrose	G-09		-21.64			-21.70				-21.72			-40.69		-22.01				-21.90	-21.60	-21.11		-20.55		-20.66					-19.59	
Gage	Montrose	G-12		-20.99			-20.97				-21.15			-20.43		-20.75				-20.94	-20.93	-20.18		-19.57							-18.84	
Gage	Montrose	G-13		-21.03			-21.01				-21.07			-20.47		-20.72				-20.86	-20.75	-20.12		-19.49			-19.65				-18.71	
Gage	Montrose	G-14		-19.61			-19.60				-19.31			-18.87		-18.86				-18.93	-18.49	-17.88		-17.37		-19.32					-16.95	
Gage	Montrose	G-15		-19.68			-22.13				-19.34			-18.74		-18.53				-21.07	-18.28	-17.52		-17.10		-17.50					-16.56	
Gage	Montrose	G-16		-20.74			-20.70				-20.67			-20.12		-20.17				-20.19	-20.13	-19.50		-19.88			-19.05				-18.03	
Gage	Montrose	G-17		-20.56			-20.58				-20.53			-20.01		-20.24				-20.40	-20.21	-19.51		-19.06								-18.54
Gage	Montrose	G-18		-24.09			-21.90				-22.14			-21.23		-21.82				-22.13	-21.85	-21.45		-20.85		-20.82					-19.91	
Gage	Montrose	G-19A																														
Gage	Montrose	G-20																														
Gage	Montrose	G-21																														
Gage	Montrose	G-22																														
Gage	Montrose	G-23								-																						
Gage	Montrose	G-24																														
Gage	Montrose	G-25																														
Gage	Montrose	G-26																														
Gage	Montrose	G-27																														
Gage	Montrose	G-28																														
Gage	Montrose	G-29 G-30																														
Gage	Montrose Montrose	G-31																														
Gage	Montrose	G-32																														
Gage	Montrose	G-33																														
Gage Gage	Montrose	G-34																														
Gage	Montrose	G-35																														
Gage	Montrose	G-EW-1																														
Gage	Montrose	G-EW-2																														
Gage	Montrose	G-EW-3																														
Gage	Montrose	G-IW-1																														
Gage	Montrose	G-IW-2																														
Gage	Montrose	G-IW-3																														
Gage	Montrose	G-IW-4																														
Gage	Montrose	G-IW-5																														
Gage	Montrose	G-IW-6		-21.23			-21.35				-21.39			-20.84		-21.33				-21.58	-21.47	-20.84		-20.36			-20.39				-19.49	
Gage	Montrose	G-IW-7																														
Gage	Montrose	G-0W-1																														
Gage	Montrose	G-OW-3								1					-																	
Gage	Montrose	G-OW-4																														
Gage	Montrose	LG-01		-19.66			-19.58				-19.49			-18.87		-18.72				-21.45	-18.60	-17.66		-17.21		-17.68					-16.92	
Gage	Montrose	LG-02		-19.51			-19.36				-19.22			-18.63		-18.41				-18.45	-18.32	-17.35		-16.88		-17.38					-16.60	
Lynwood	Montrose	LW-01		-28.64			-30.90				-30.79			-30.54		-32.85				-34.14	-33.59	-33.29		-33.72		-32.35					-30.25	-30.62
Lynwood	Montrose	LW-02		-28.64			-30.86				-30.93			-30.65		-32.90				-34.27	-33.81			-33.94		-32.43						-30.79
Lynwood	Montrose	LW-03		-28.40			-29.66				-30.70			-30.29		-32.63				-33.92	-33.31	-33.00		-33.45		-32.16						-30.72
Lynwood	Montrose	LW-04		-28.37			-30.64				-30.91			-30.45		-32.79				-34.08	-33.56			-33.74		-32.18						-30.62
Lynwood	Montrose	LW-05		-28.48			-30.69				-30.72			-30.29		-32.55				-33.85	-33.28	-32.93		-33.37		-31.31						-30.59
Lynwood	Montrose	LW-06		-28.42			-30.64				-30.71			-30.31		-30.33				-33.85	-33.37	-33.03		-33.47		-32.14						-30.61
Lynwood	Montrose	LW-07		-28.42			-30.66				-30.73			-30.33		-32.64				-33.92	-33.39	-33.05		-33.48		-32.12					-30.17	-30.55

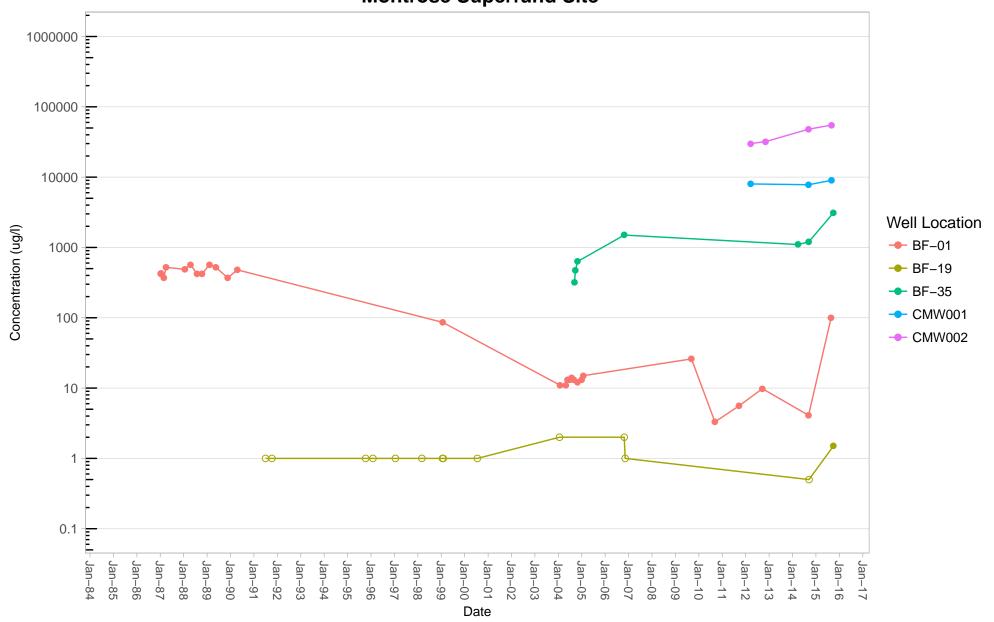
												T	T							2006					
HSU	Facility	Location	2004 Jan	2004 Feb	2004 Mar	2004 Apr	2004 May	2004 Jun	2004 Jul	2004	2004	2004 Oct	2004 Nov	2005 Feb	2005 Mar	2005 Jul	2005 Dec	2006	2006 Oct	2006 Dec	2011 Feb	2012 Feb	2012 Mar	2012 Nov	2014 Son
_	Montrose	G-03	-16.11		IVIdI 	Apr 	May			Aug 	Sep 			-15.41	IVIAI	-14.59	-13.79	Sep	-12.48			-11.24	IVIAI		-11.38
Gage	Montrose	G-04	-16.72											-15.41		-14.39	-13.79		-12.48			-11.75			-11.38
Gage	Montrose	G-05	-17.02											-13.80		-15.23	-14.30		-13.11			-11.70			-11.88
Gage		G-06	-16.93						-16.68					-15.97	-15.97	-15.21	-14.30		-13.11			-11.70			-11.83
Gage	Montrose	G-08	-10.93						-10.08					-15.97			-15.20		-13.82			-11.06			-11.83
Gage	Montrose													1		-16.06									
Gage	Montrose	G-09	-19.19													-16.83	-15.91		15.39			-13.10			-13.12
Gage	Montrose	G-12	-18.50											17.00		-16.31	-15.42		-15.10			-12.65			-12.77 -12.56
Gage	Montrose	G-13	-18.26											-17.06		-16.24	-15.36		-14.03			-12.56			
Gage	Montrose	G-14	-16.58											-15.57		-14.77	-13.94		-12.80			-11.57			-12.03
Gage	Montrose	G-15	-17.88											-15.47		-14.72	-13.84		-12.53			-11.17			-11.18
Gage	Montrose	G-16	-17.63											-16.65		-15.85	-15.00		-13.68			-12.15			-12.10
Gage	Montrose	G-17	-17.31													-15.81	-14.93		-13.61			-12.22			-12.26
Gage	Montrose	G-18	-19.50										40.42	-18.01	47.42	-17.09	-16.18		-14.89			-13.13			-13.15
Gage	Montrose	G-19A											-18.13	-18.47	-17.42	-16.63	-15.70		-14.45			-12.37			-12.88
Gage	Montrose	G-20									-15.64				-14.95	-14.20	-13.37					-11.00			-11.02
Gage	Montrose	G-21									-15.86	-15.75		-15.24	-15.13	-14.39	-13.53		-12.30			-11.65			-11.79
Gage	Montrose	G-22										-18.73	-18.60	-17.84	-17.74	-16.87	-16.02		-14.64			-12.59			-12.73
Gage	Montrose	G-23										-18.57	-18.22	-17.75	-17.71	-16.82	-15.95		-14.67			-12.45			-12.58
Gage	Montrose	G-24										-17.10	-16.77	-16.41	-16.40	-15.60	-14.72		-13.45			-11.78			-11.58
Gage	Montrose	G-25														-14.50	-13.73		-12.40			-10.76			-10.61
Gage	Montrose	G-26														-16.99	-14.55		-13.22			-11.15			-11.03
Gage	Montrose	G-27														-16.52	-15.66		-14.38			-12.04			-11.99
Gage	Montrose	G-28														-18.20	-17.35		-15.97			-13.45			-13.34
Gage	Montrose	G-29														-19.09	-18.25		-16.79			-14.82			-14.55
Gage	Montrose	G-30															-14.01		-12.59			-10.96			-10.59
Gage	Montrose	G-31															-20.92		-19.25			-17.12			-16.32
Gage	Montrose	G-32															-20.86		-19.27			-17.75			-16.89
Gage	Montrose	G-33															-13.58		-12.22			-10.82			-10.51
Gage	Montrose	G-34																	-16.53			-13.36			-13.21
Gage	Montrose	G-35																				-12.43			-12.55
Gage	Montrose	G-EW-1																	-13.35			-11.68			-11.85
Gage	Montrose	G-EW-2																	-14.79			-12.62			-12.78
Gage	Montrose	G-EW-3																	-13.41			-11.64			-11.57
Gage	Montrose	G-IW-1																	-11.83			-10.80			-10.55
Gage	Montrose	G-IW-2																	-14.56			-14.56			-13.57
Gage	Montrose	G-IW-3																							-10.49
Gage	Montrose	G-IW-4																							-13.36
Gage	Montrose	G-IW-5																							-13.37
Gage	Montrose	G-IW-6	-19.04												-17.43	-16.66	-15.80		-14.46			-13.19			-13.36
Gage	Montrose	G-IW-7																							-10.54
Gage	Montrose	G-OW-1																	-11.86			-10.82			-10.34
Gage	Montrose	G-OW-3																	-14.56			-12.71		-13.13	-12.66
Gage	Montrose	G-OW-4																	-13.49			-11.65			-11.64
Gage	Montrose	LG-01	-16.45											-15.69		-14.87	-14.04		-12.73			-11.48			-11.68
Gage	Montrose	LG-02	-16.22											-15.45		-14.63	-13.80	-12.76				-11.27			-11.59
Lynwood	Montrose	LW-01	-29.59																-22.58			-22.78		-23.28	-21.47
Lynwood	Montrose	LW-02	-29.81																-22.73			-22.91		-23.38	-21.48
Lynwood	Montrose	LW-03	-29.68																-22.65			-23.00		-23.47	-21.67
Lynwood	Montrose	LW-04	-29.63												-26.36				-22.58			-22.74		-23.26	-21.46
Lynwood	Montrose	LW-05	-29.54																-22.45			-22.84		-23.27	-21.43
Lynwood	Montrose	LW-06	-29.49																-22.53			-22.84		-23.30	-21.40
Lynwood	Montrose	LW-07	-29.54																-22.48			-22.69		-23.22	-21.31
Notes:		1.		1	1	1	1	1	l	i.	1	i.	i.		i	1									


-- = Not Available

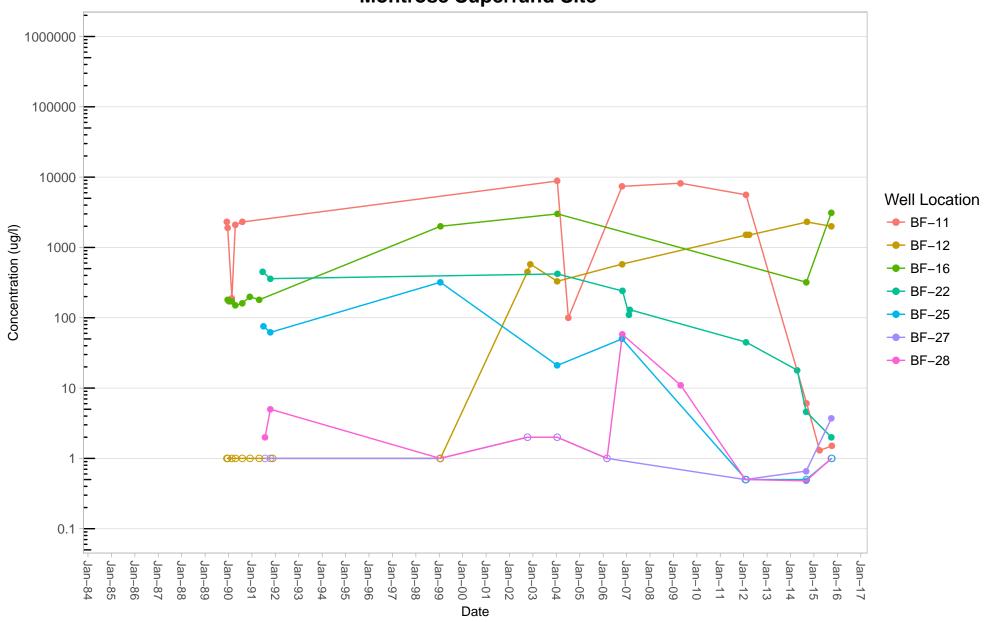
All elevations in feet MSL


# **APPENDIX D-Not Used**

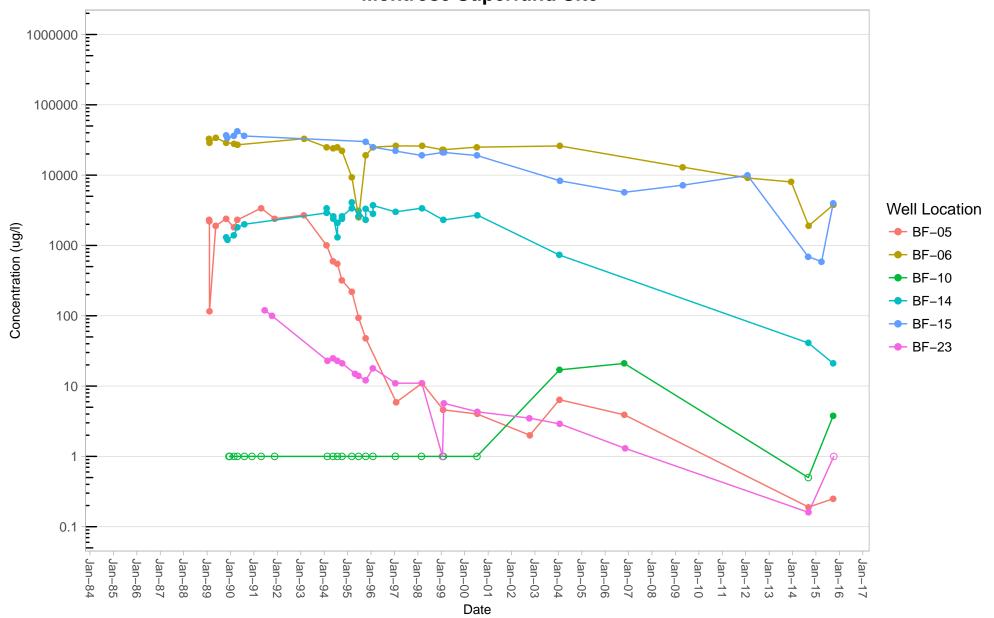
# APPENDIX E CHLOROBENZENE, pCBSA, AND CHLOROFORM


Graph E-01 - Chlorobenzene Time vs Concentration Plot, North of Montrose Property, Water Table Montrose Superfund Site

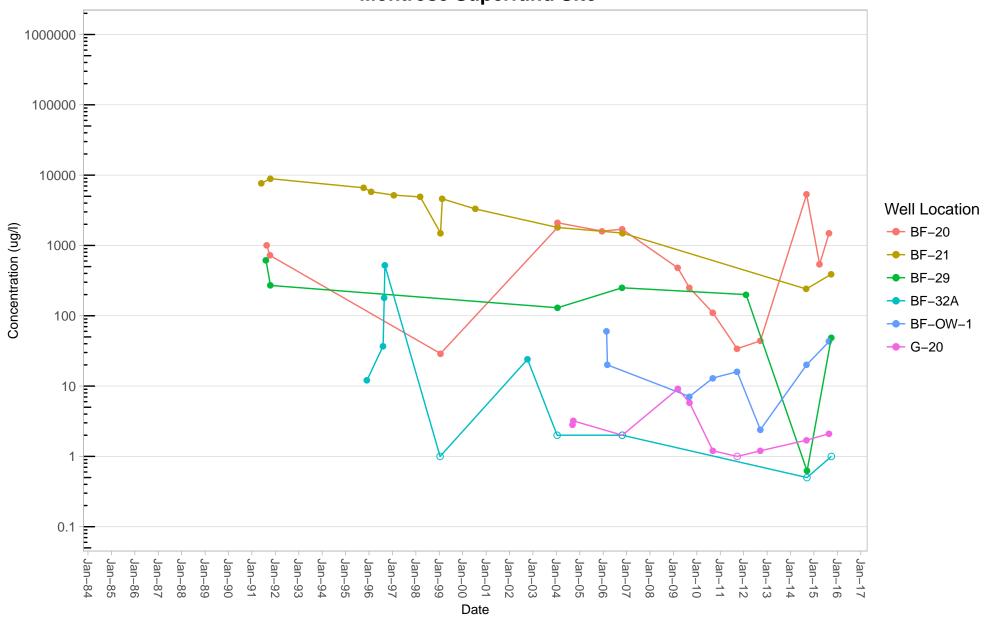



Graph E-02 - Chlorobenzene Time vs Concentration Plot, South of Montrose Property, Water Table Montrose Superfund Site




Graph E-03 - Chlorobenzene
Time vs Concentration Plot, North of Montrose Property, MBFC Aquifer
Montrose Superfund Site

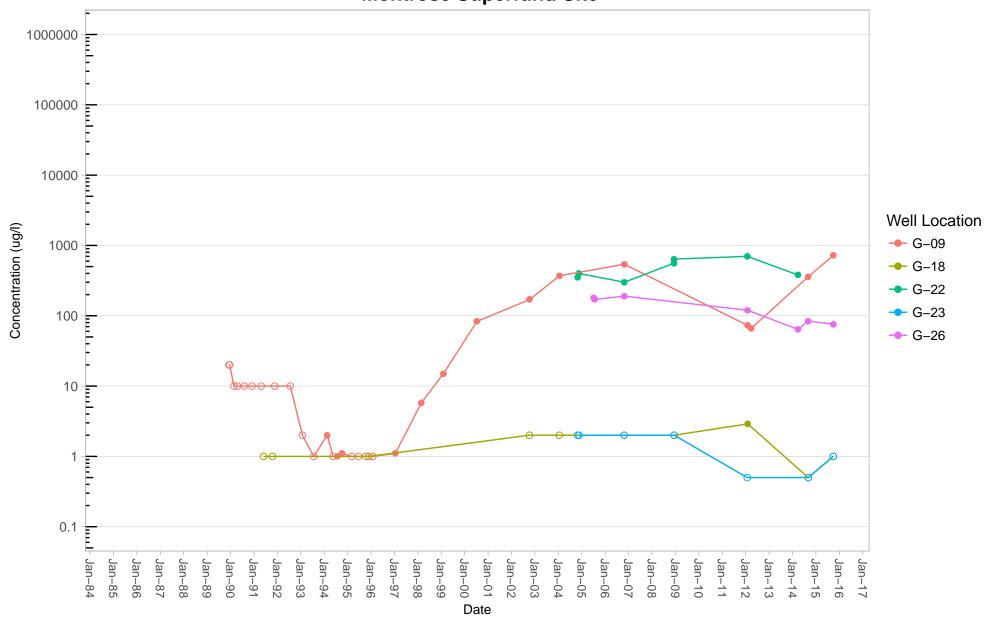



Graph E-04 - Chlorobenzene
Time vs Concentration Plot, South of Montrose Property, MBFC Aquifer
Montrose Superfund Site

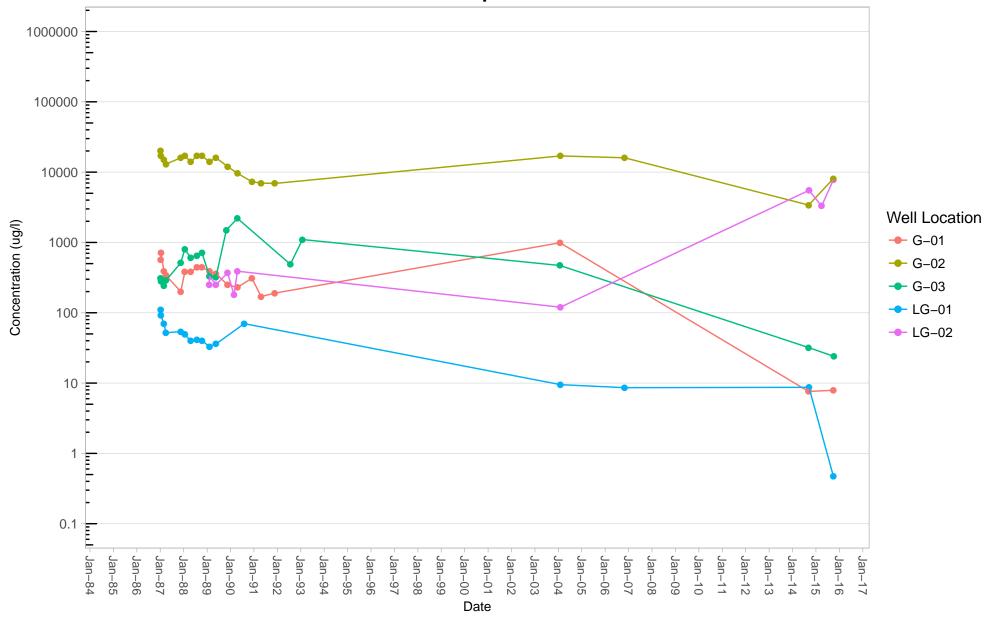



Graph E-05 - Chlorobenzene
Time vs Concentration Plot, East of Montrose Property, MBFC Aquifer
Montrose Superfund Site




Graph E-06 - Chlorobenzene
Time vs Concentration Plot, West of Montrose Property, MBFC Aquifer
Montrose Superfund Site

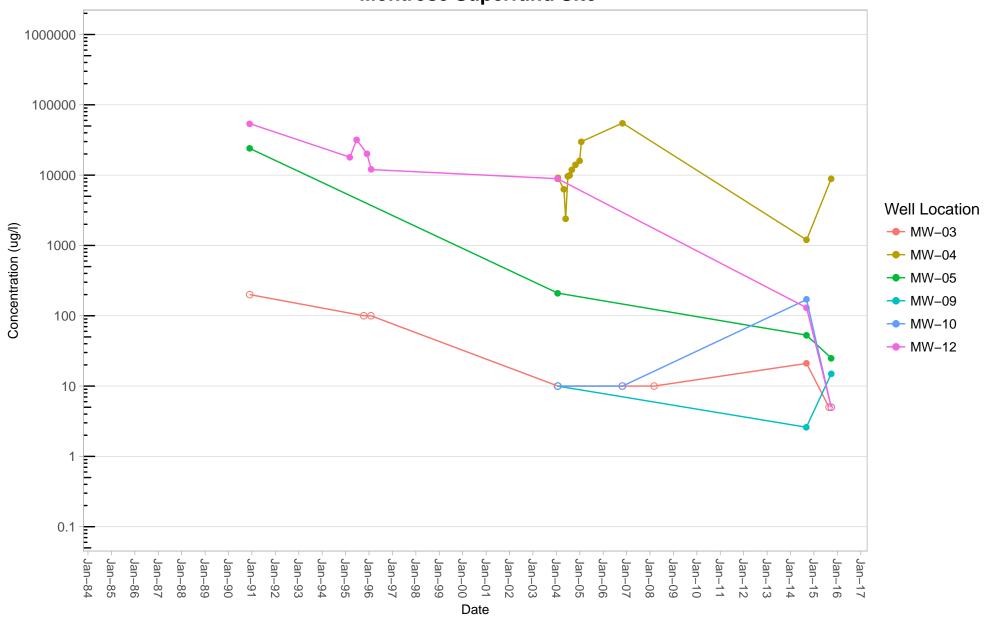



Graph E-07 - Chlorobenzene
Time vs Concentration Plot, Northwest of Montrose Property, Gage Aquifer
Montrose Superfund Site



Graph E-08 - Chlorobenzene
Time vs Concentration Plot, Southeast of Montrose Property, Gage Aquifer
Montrose Superfund Site

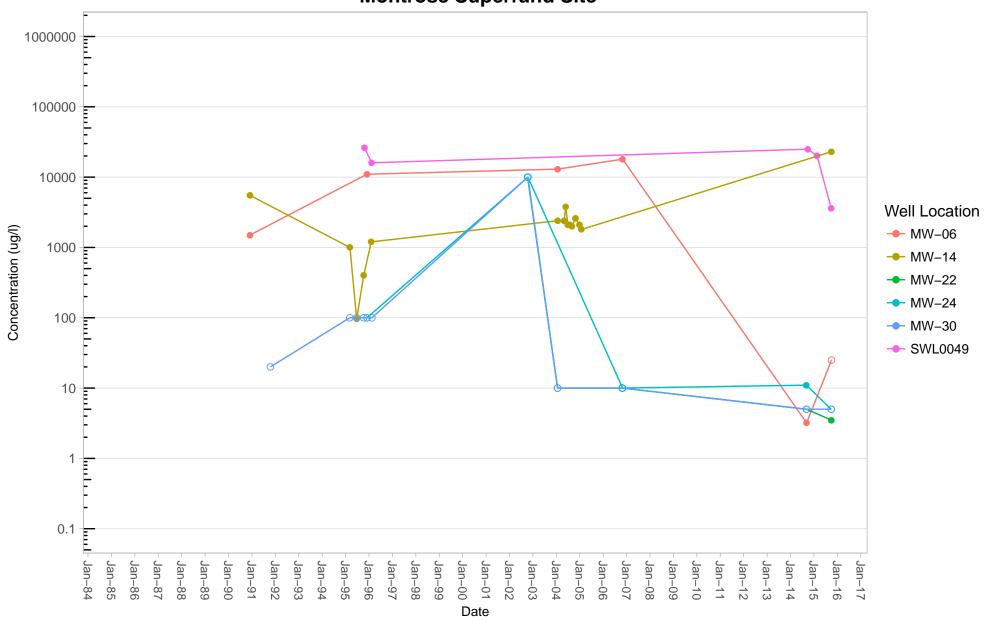



Graph E-09 - Chlorobenzene Time vs Concentration Plot, Montrose Property, Gage Aquifer Montrose Superfund Site



Graph E-10 - pCBSA

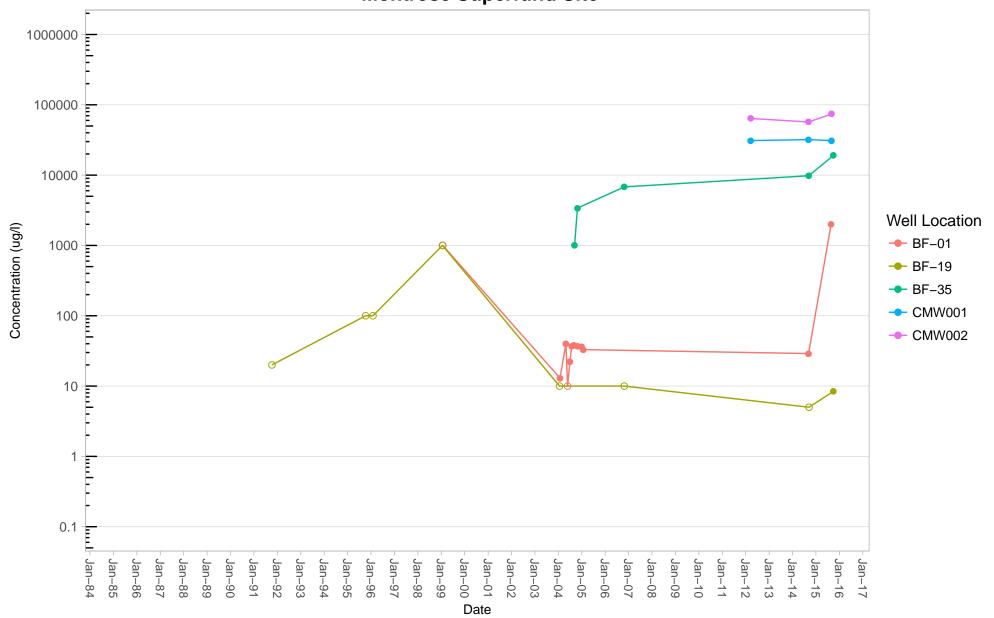
Time vs Concentration Plot, North of Montrose Property, Water Table


Montrose Superfund Site



Graph E-11 - pCBSA

Time vs Concentration Plot, South of Montrose Property, Water Table


Montrose Superfund Site



Graph E-12 - pCBSA

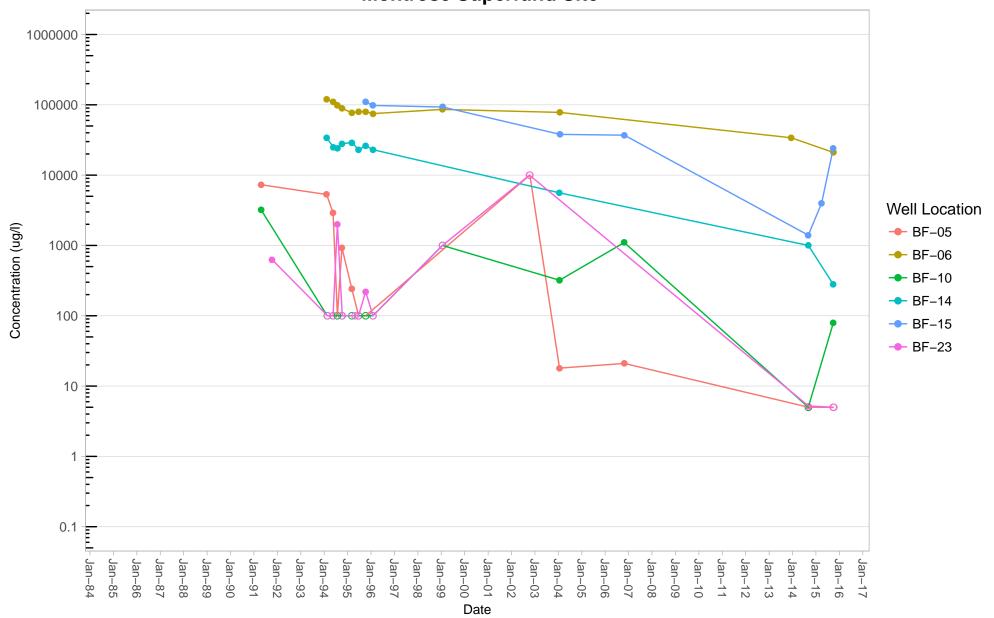
Time vs Concentration Plot, North of Montrose Property, MBFC Aquifer

Montrose Superfund Site



Graph E-13 - pCBSA

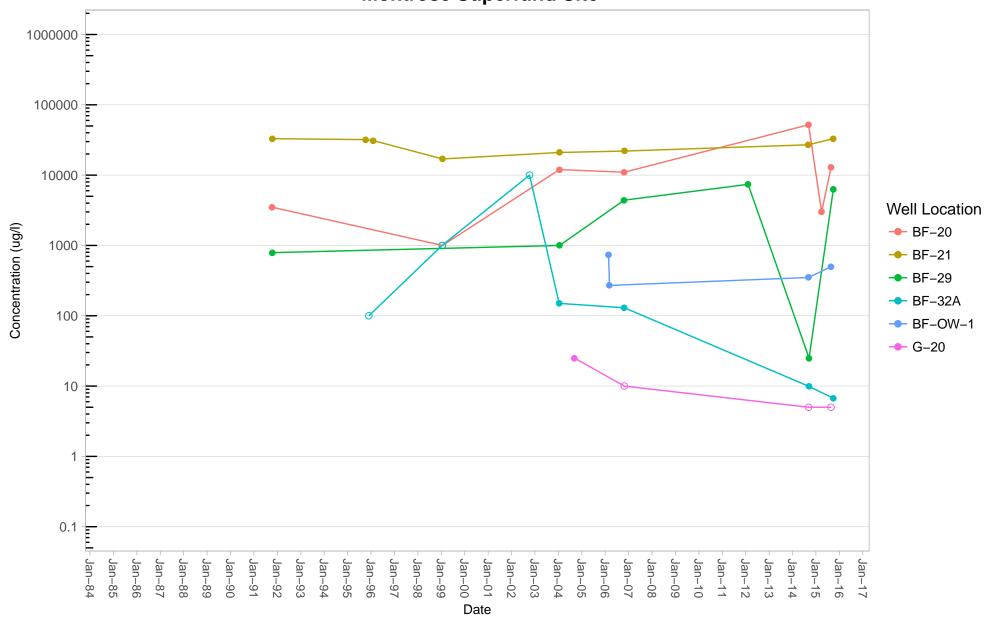
Time vs Concentration Plot, South of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-14 - pCBSA

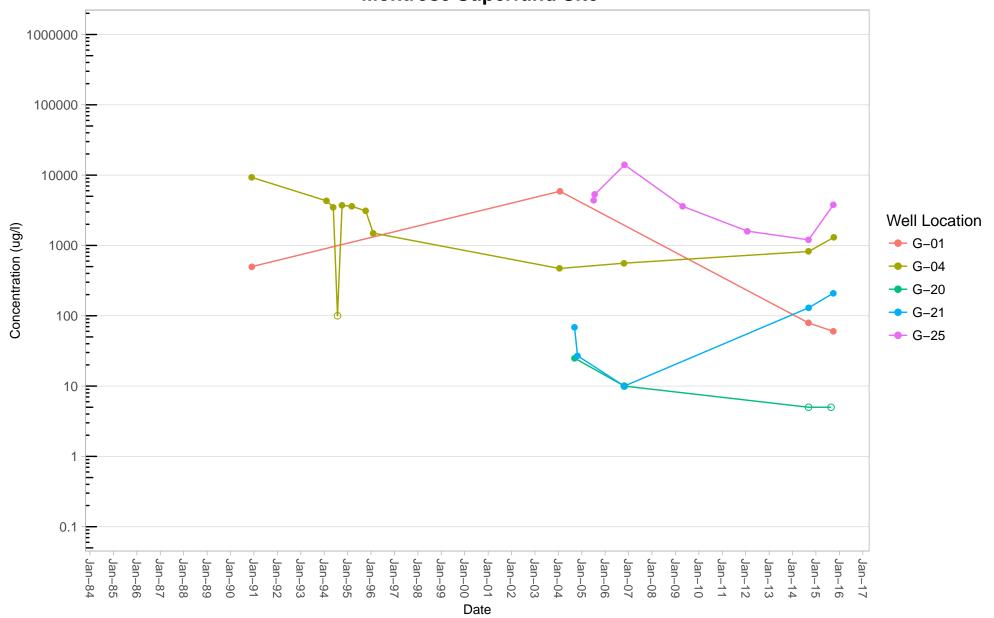
Time vs Concentration Plot, East of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-15 - pCBSA

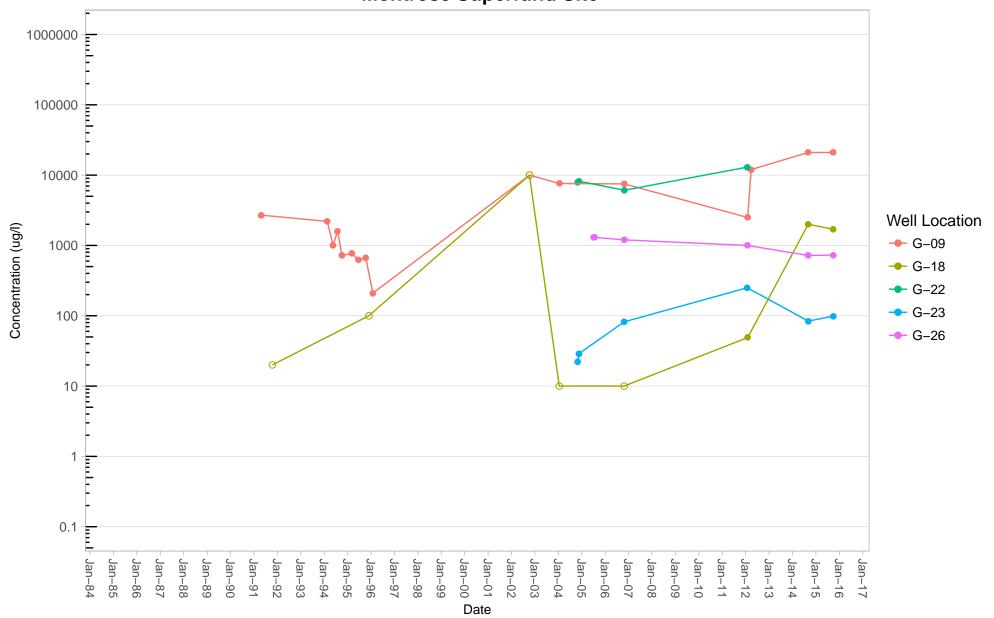
Time vs Concentration Plot, West of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-16 - pCBSA

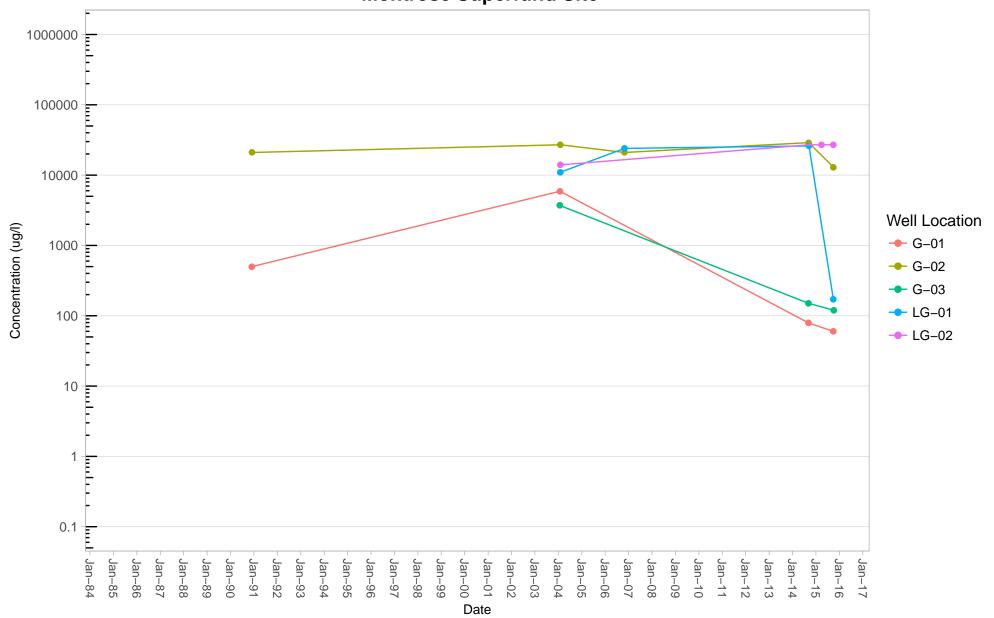
Time vs Concentration Plot, Northwest of Montrose Property, Gage Aquifer


Montrose Superfund Site



Graph E-17 - pCBSA

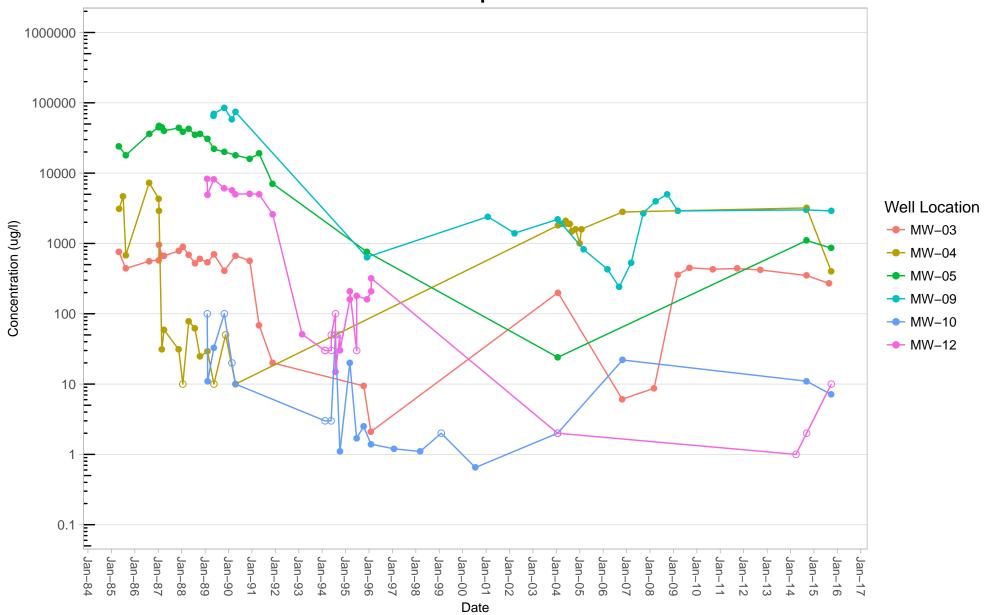
Time vs Concentration Plot, Southeast of Montrose Property, Gage Aquifer


Montrose Superfund Site



Graph E-18 - pCBSA

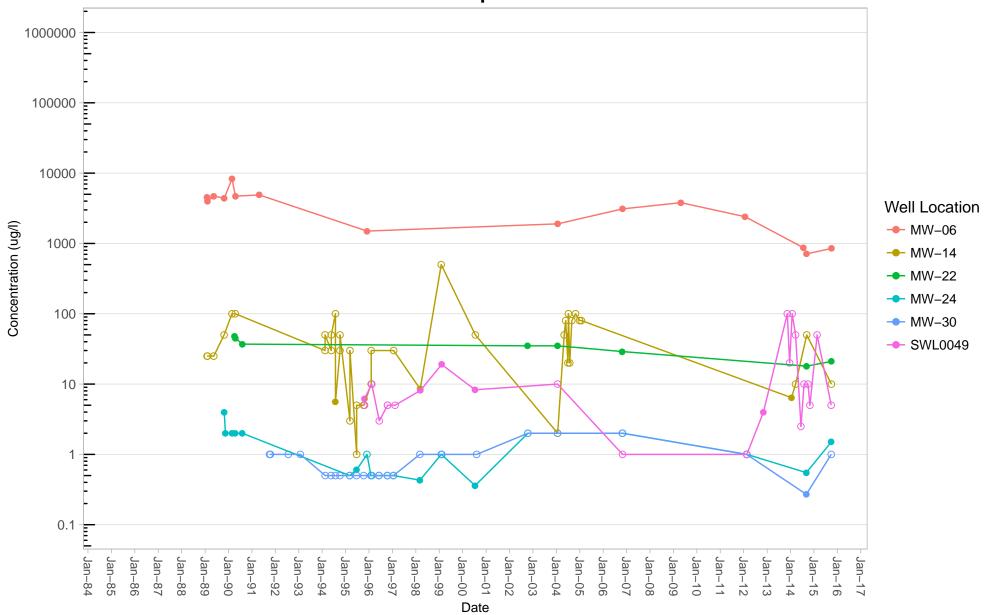
Time vs Concentration Plot, Montrose Property, Gage Aquifer


Montrose Superfund Site



Graph E-19 - Chloroform

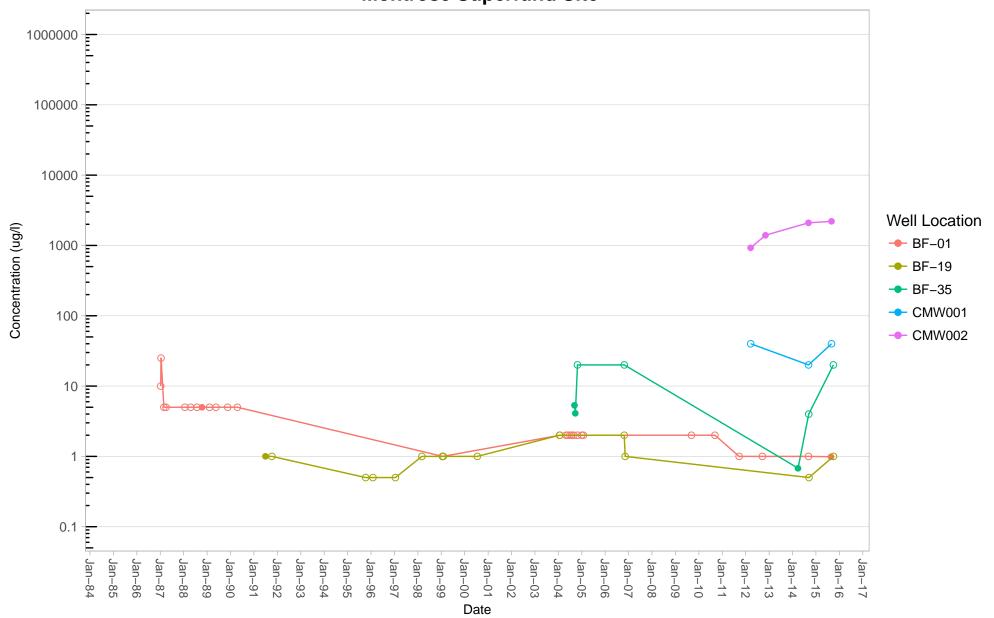
Time vs Concentration Plot, North of Montrose Property, Water Table


Montrose Superfund Site



Graph E-20 - Chloroform

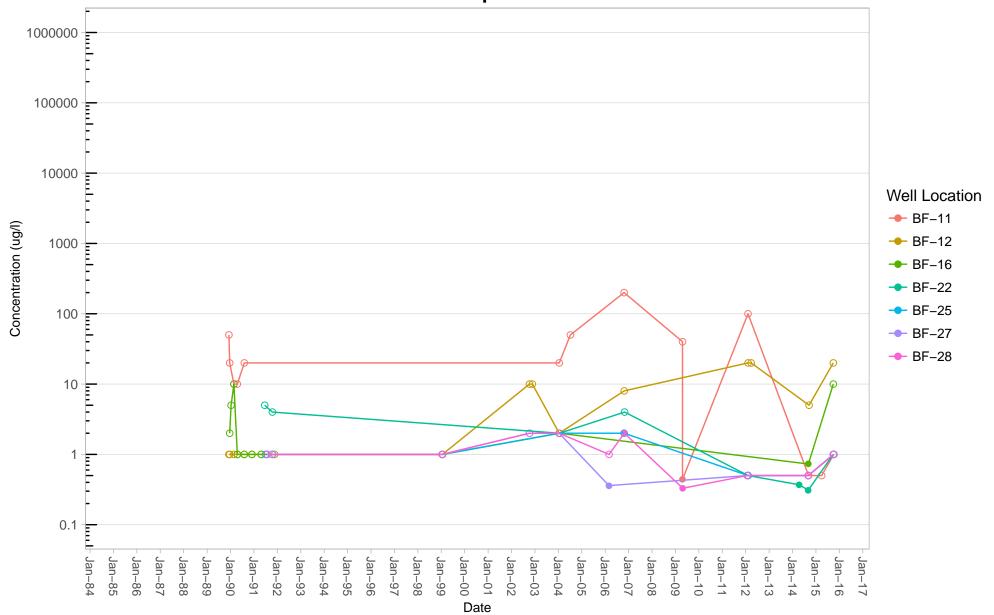
Time vs Concentration Plot, South of Montrose Property, Water Table


Montrose Superfund Site



Graph E-21 - Chloroform

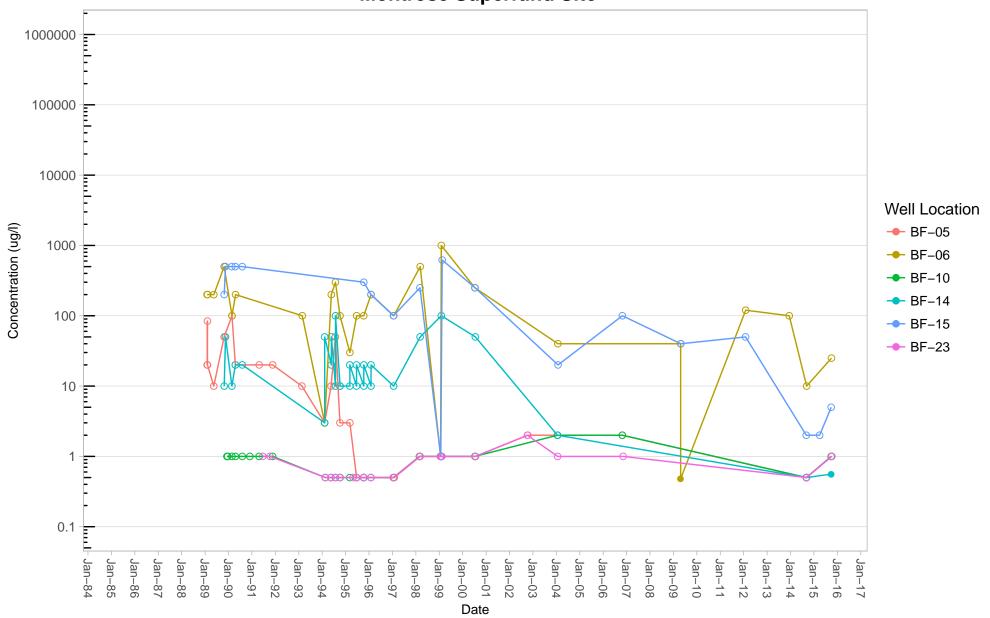
Time vs Concentration Plot, North of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-22 - Chloroform

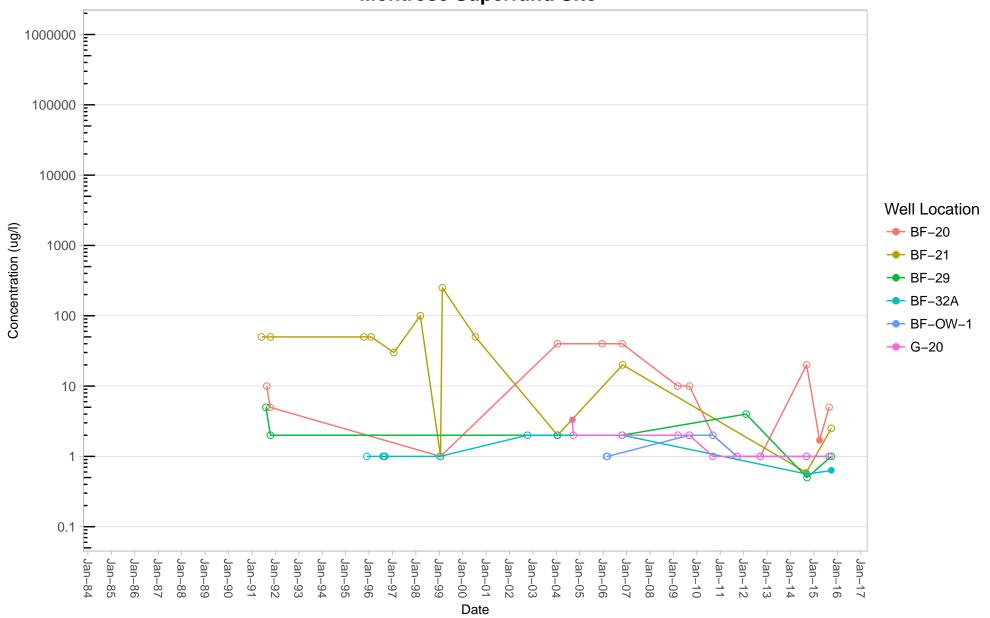
Time vs Concentration Plot, South of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-23 - Chloroform

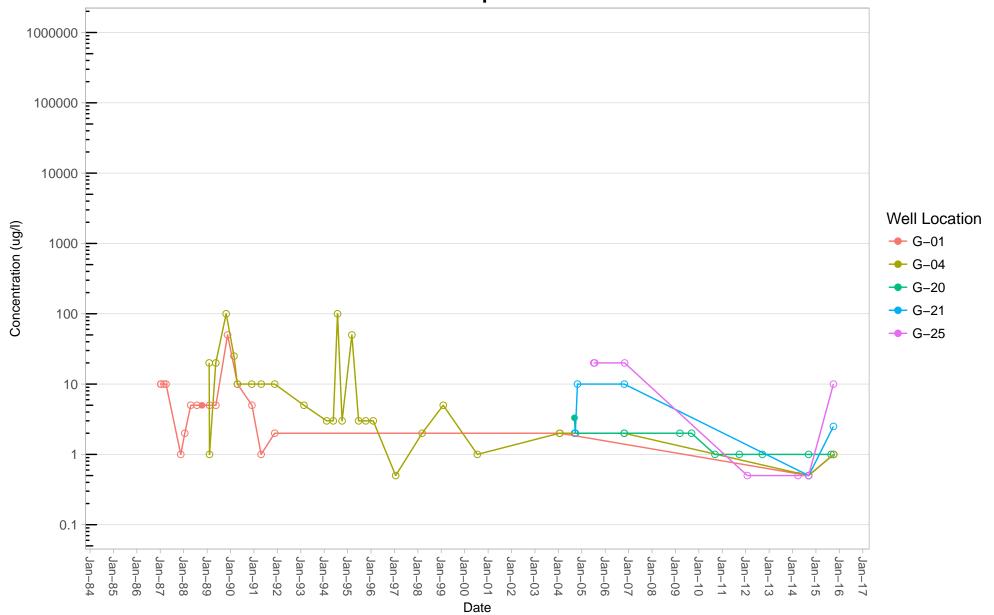
Time vs Concentration Plot, East of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-24 - Chloroform

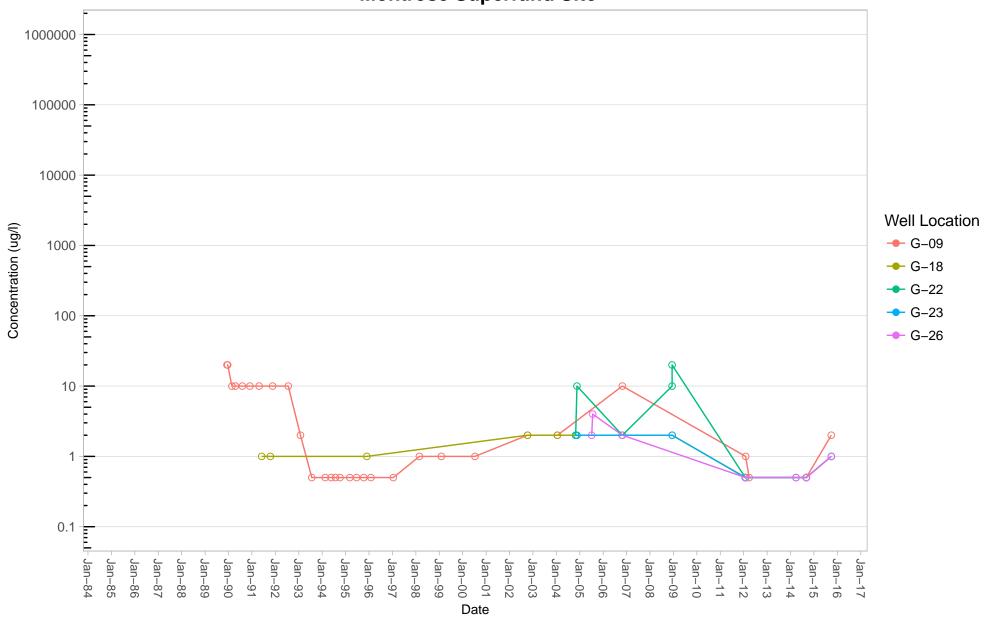
Time vs Concentration Plot, West of Montrose Property, MBFC Aquifer


Montrose Superfund Site



Graph E-25 - Chloroform

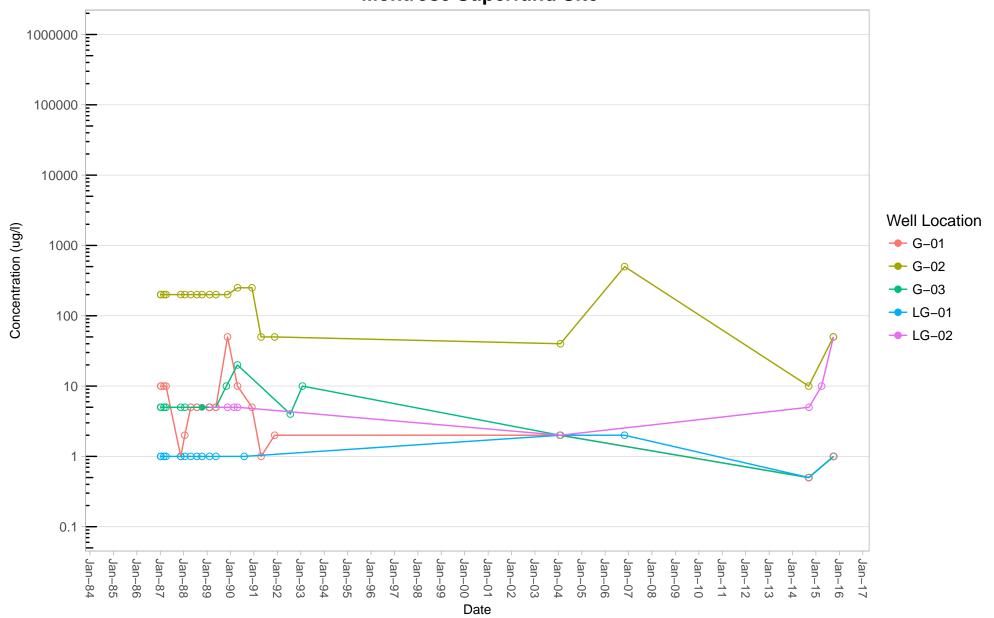
Time vs Concentration Plot, Northwest of Montrose Property, Gage Aquifer


Montrose Superfund Site



Graph E-26 - Chloroform

Time vs Concentration Plot, Southeast of Montrose Property, Gage Aquifer


Montrose Superfund Site

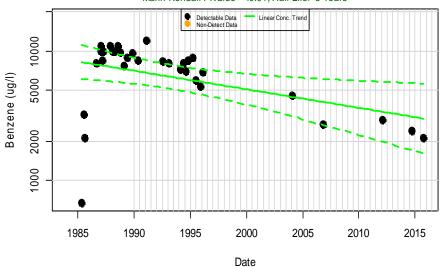


Graph E-27 - Chloroform

Time vs Concentration Plot, Montrose Property, Gage Aquifer

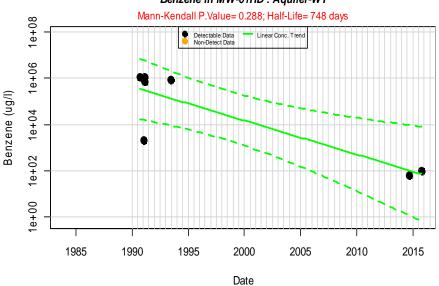
Montrose Superfund Site



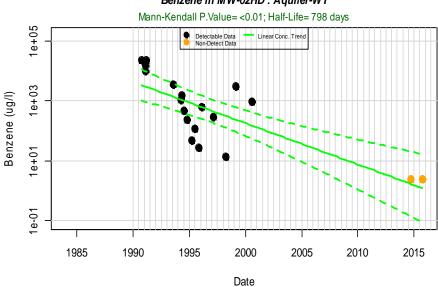

# APPENDIX F BENZENE GRAPHS

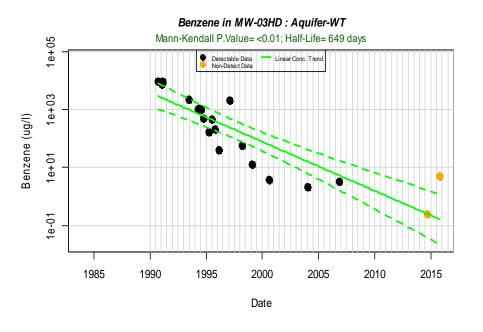
#### Benzene in GW-07A: Aquifer-WT

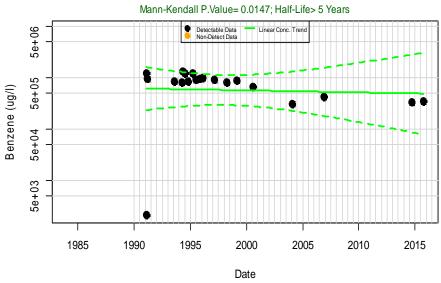
### 


#### Benzene in MW-01 : Aquifer-WT

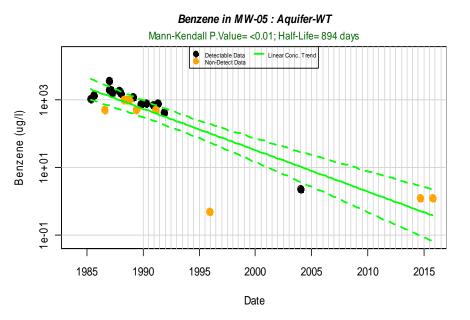
Mann-Kendall P.Value = < 0.01; Half-Life > 5 Years

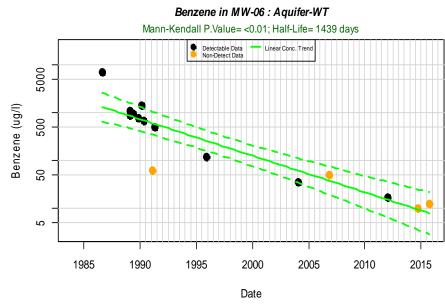


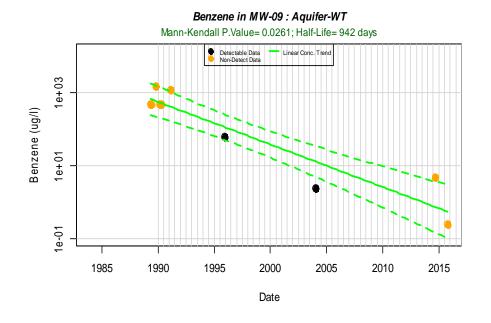


#### Benzene in MW-01HD: Aquifer-WT

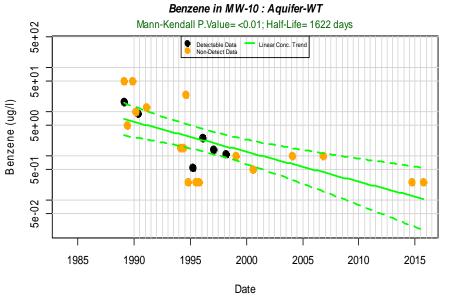

Date



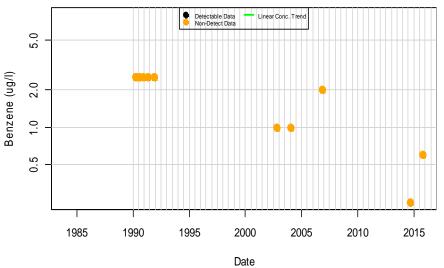

#### Benzene in MW-02HD : Aquifer-WT



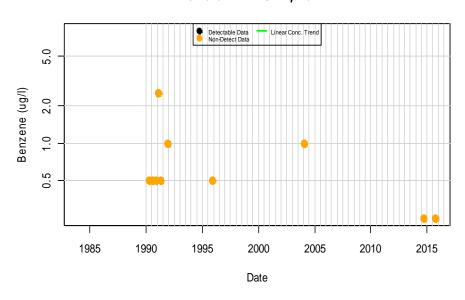




Benzene in MW-04HD: Aquifer-WT

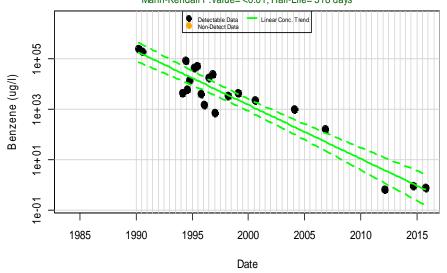




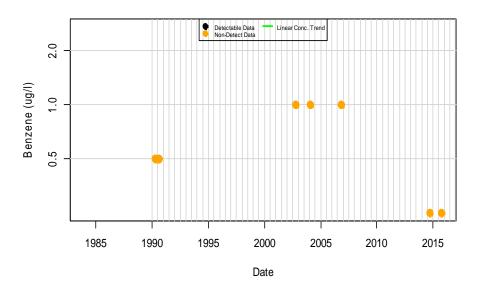






Benzene in MW-16 : Aquifer-WT




Benzene in MW-19: Aquifer-WT



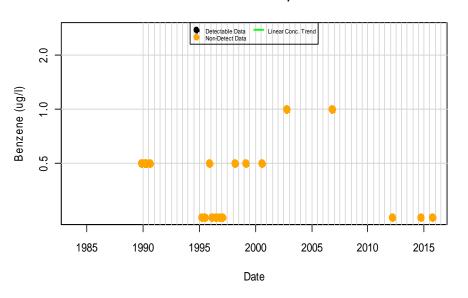

Benzene in MW-21 : Aquifer-WT

Mann-Kendall P.Value= <0.01; Half-Life= 518 days

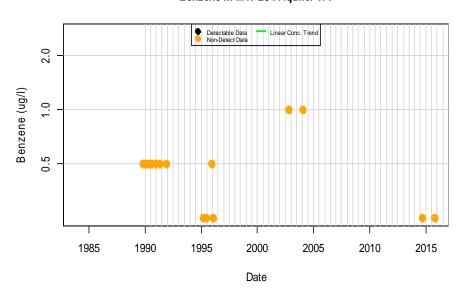


Benzene in MW-22 : Aquifer-WT

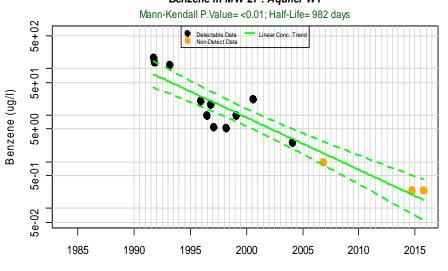



Benzene in MW-23: Aquifer-WT

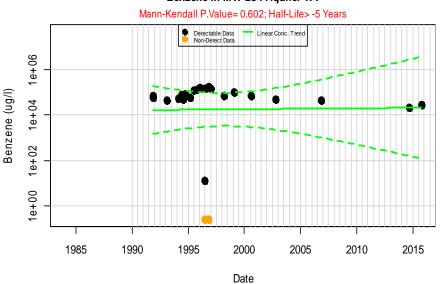
Beuzeue (ng/l)


1985 1990 1995 2000 2005 2010 2015

Date

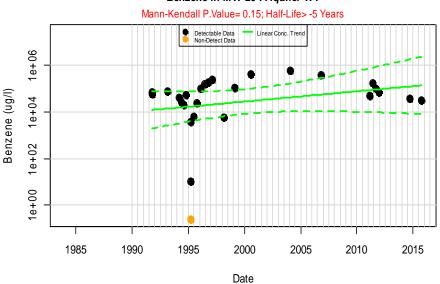

Benzene in MW-24 : Aquifer-WT



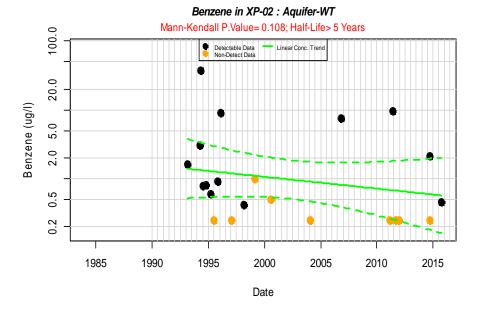

Benzene in MW-26 : Aquifer-WT

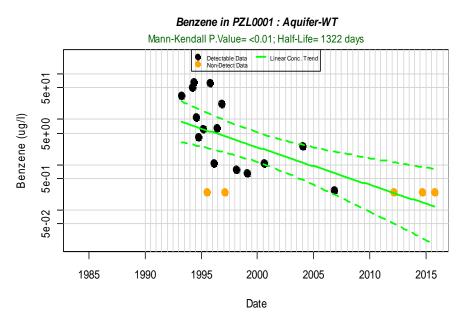


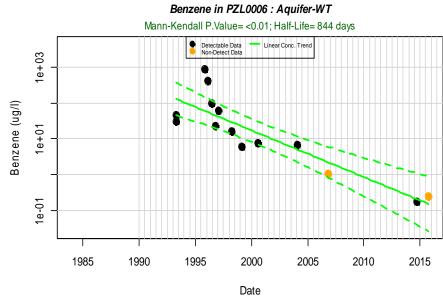
#### Benzene in MW-27 : Aquifer-WT




#### Benzene in MW-28: Aquifer-WT



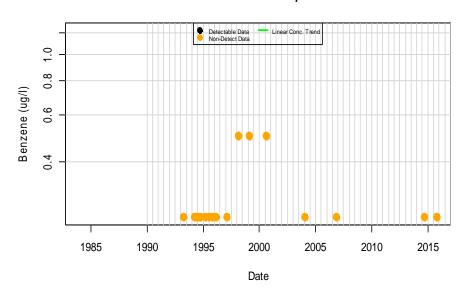


#### Benzene in MW-29: Aquifer-WT

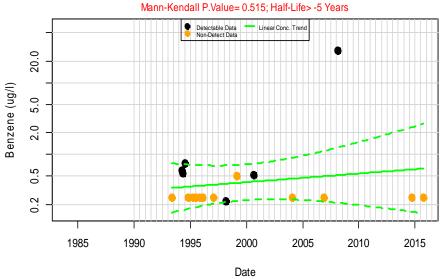

Date

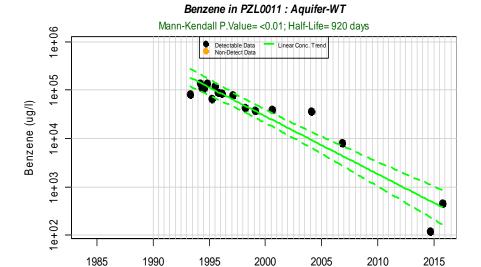


Benzene in MW-30 : Aquifer-WT Mann-Kendall P.Value= 0.445; Half-Life> 5 Years Detectable Data Linear Conc. Trend
Non-Detect Data 20.0 Benzene (ug/I) 5.0 2.0 0.5 1985 1990 1995 2000 2005 2010 2015 Date

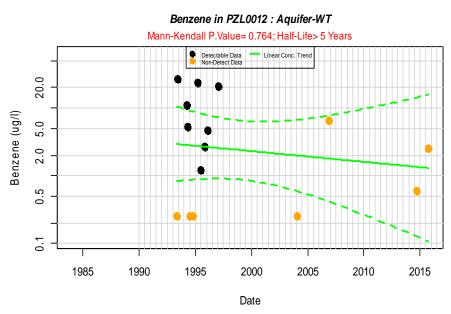




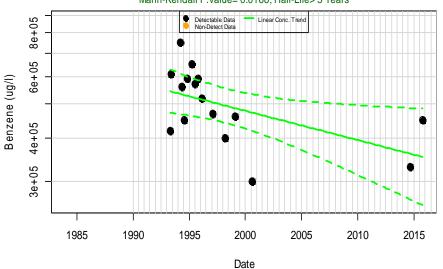


#### Benzene in PZL0007: Aquifer-WT

# Benzene in PZL0010 : Aquifer-WT



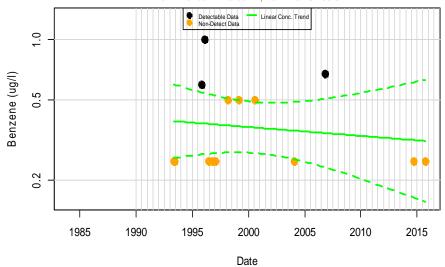




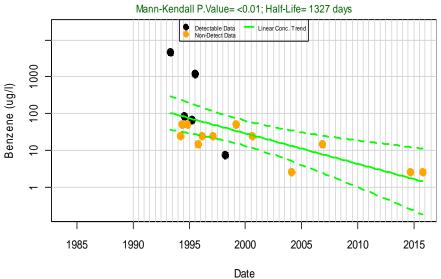




Date

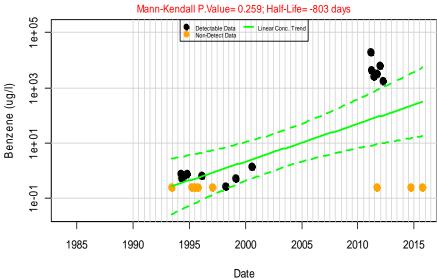



#### Benzene in PZL0013: Aquifer-WT

#### Mann-Kendall P.Value= 0.0168; Half-Life> 5 Years

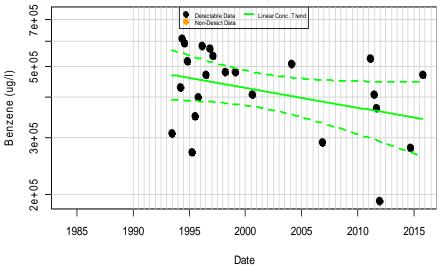



#### Benzene in PZL0014 : Aquifer-WT


Mann-Kendall P.Value= 1; Half-Life> 5 Years

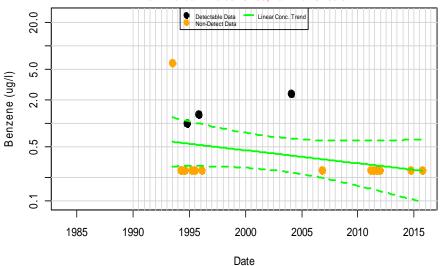


#### Benzene in PZL0016: Aquifer-WT

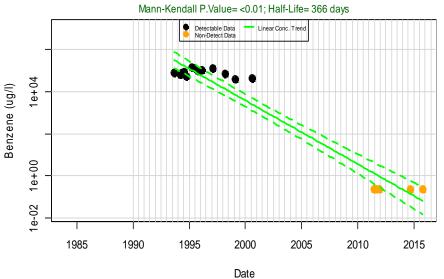



#### Benzene in PZL0018 : Aquifer-WT



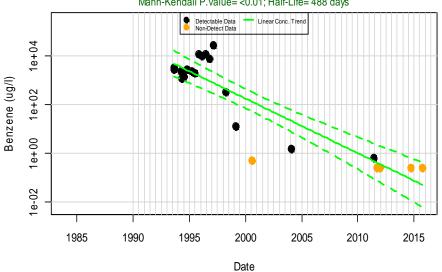

#### Benzene in PZL0020 : Aquifer-WT

#### Mann-Kendall P.Value= 0.146; Half-Life> 5 Years




#### Benzene in PZL0022 : Aquifer-WT

#### Mann-Kendall P.Value= 0.199; Half-Life> 5 Years




#### Benzene in PZL0024 : Aquifer-WT

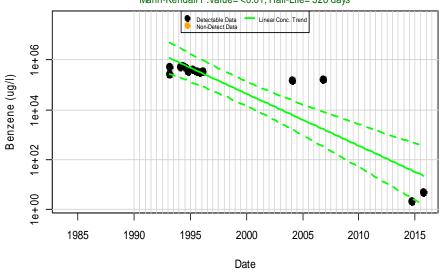


#### Benzene in PZL0025 : Aquifer-WT

Mann-Kendall P.Value= < 0.01; Half-Life= 488 days



# Benzene in SWL0002: Aquifer-WT Mann-Kendall P.Value= 0.0667; Half-Life= 398 days Detectable Data Linear Conc. Trend Non-Detect Data Linear Conc. Trend


1985

1990

1995

# Benzene in SWL0003 : Aquifer-WT

Mann-Kendall P.Value= <0.01; Half-Life= 526 days

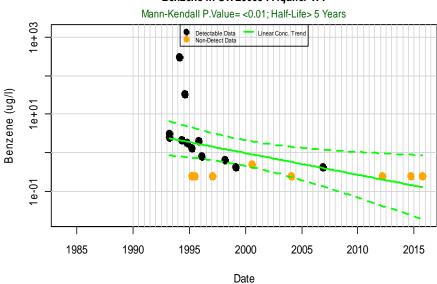


Benzene in SWL0004 : Aquifer-WT

2000

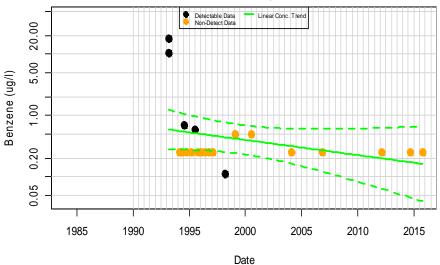
Date

2005


2010

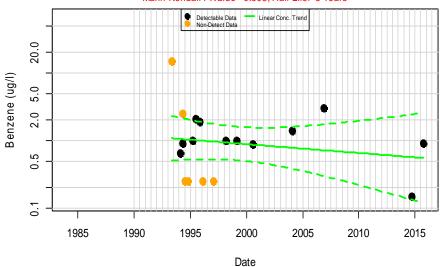
2015

Mann-Kendall P.Value= <0.01; Half-Life> 5 Years


| Poetectable Data | Linear Conc. Trend | Non-Detect Data | Linear Conc. Trend | Non-Detect Data | Linear Conc. Trend | Non-Detect Data | Non-Detect Data | Linear Conc. Trend | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | Non-Detect Data | No

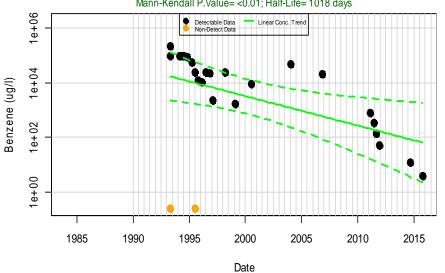
#### Benzene in SWL0005 : Aquifer-WT



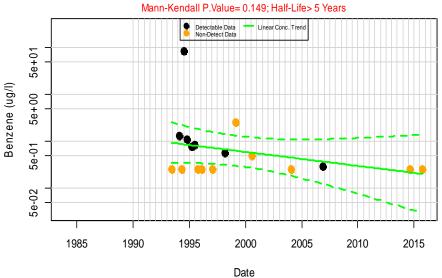

#### Benzene in SWL0006 : Aquifer-WT

#### Mann-Kendall P.Value= 0.0504; Half-Life> 5 Years



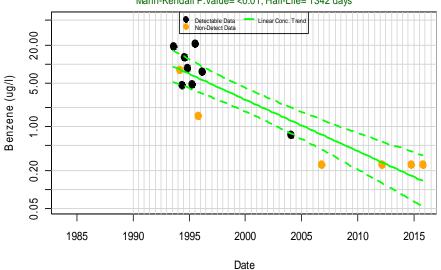

#### Benzene in SWL0007: Aquifer-WT

#### Mann-Kendall P.Value= 0.593; Half-Life> 5 Years



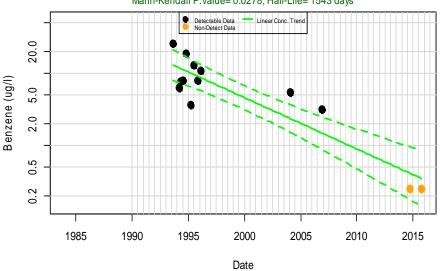

#### Benzene in SWL0008: Aquifer-WT

Mann-Kendall P.Value= <0.01; Half-Life= 1018 days



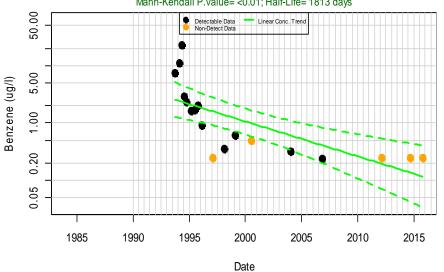

#### Benzene in SWL0009 : Aquifer-WT



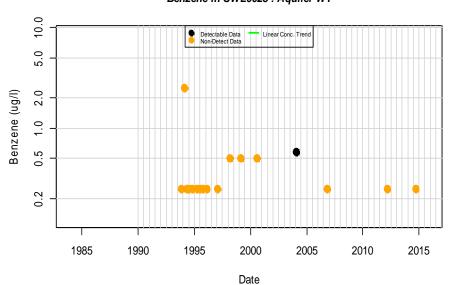

#### Benzene in SWL0016: Aquifer-WT

Mann-Kendall P.Value= <0.01; Half-Life= 1342 days

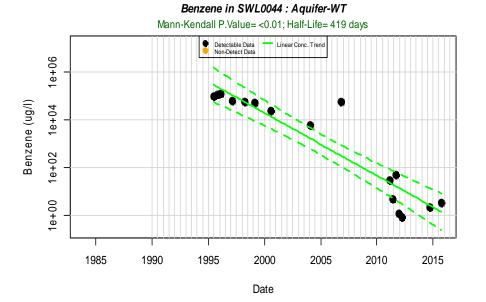


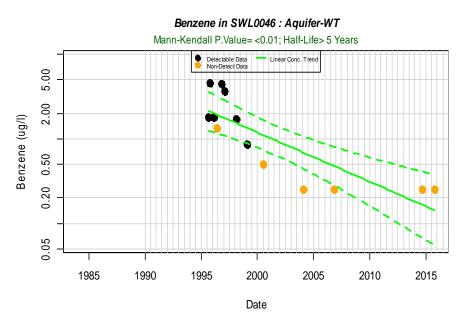

#### Benzene in SWL0017 : Aquifer-WT

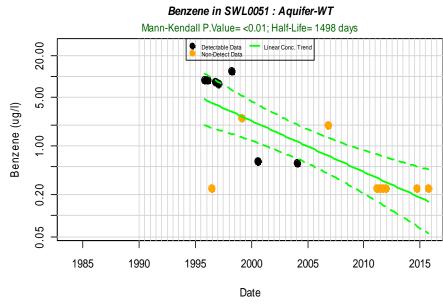
Mann-Kendall P.Value= 0.0278; Half-Life= 1543 days



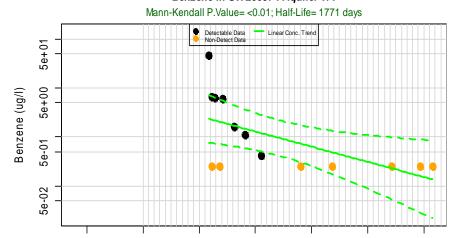

#### Benzene in SWL0024 : Aquifer-WT


Mann-Kendall P.Value= <0.01; Half-Life= 1813 days

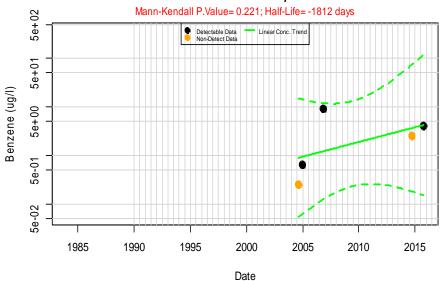




#### Benzene in SWL0028 : Aquifer-WT



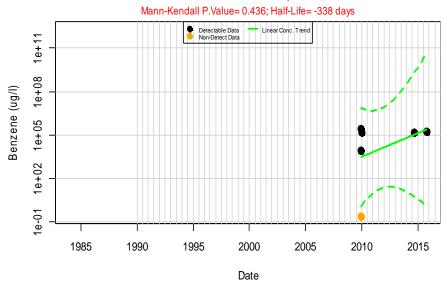

# Benzene in SWL0038 : Aquifer-WT Mann-Kendall P.Value= 0.0372; Half-Life> 5 Years 20.00 Detectable Data Linear Conc. Trend Non-Detect Data 5.00 Benzene (ug/I) 1.00 0.20 0.05 1985 1990 2010 1995 2000 2005 2015 Date





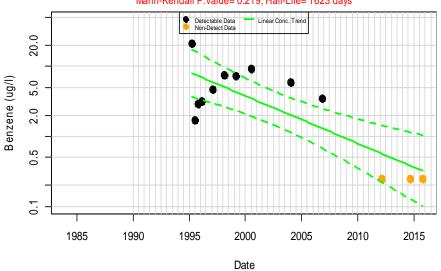



#### Benzene in SWL0057 : Aquifer-WT



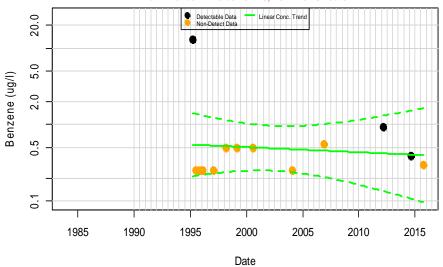

#### Benzene in SWL0059 : Aquifer-WT



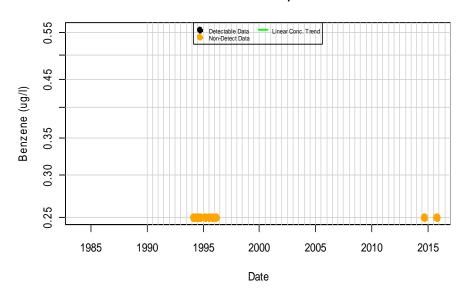

#### Benzene in SWL0068: Aquifer-WT

Date

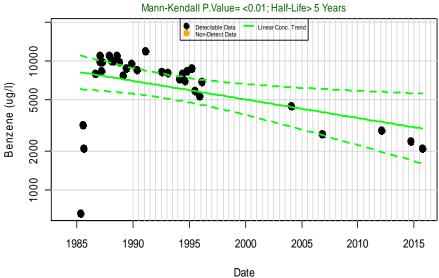



#### Benzene in G-01WC: Aquifer-MBFB

Mann-Kendall P.Value= 0.219; Half-Life= 1623 days



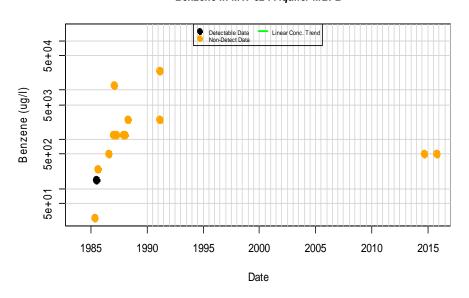

#### Benzene in G-02WC: Aquifer-MBFB

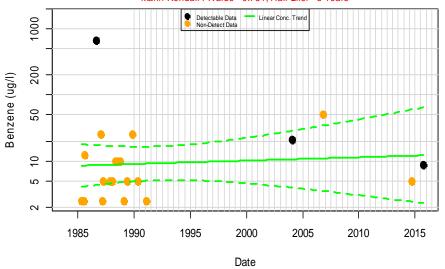

Mann-Kendall P.Value= 0.446; Half-Life> 5 Years



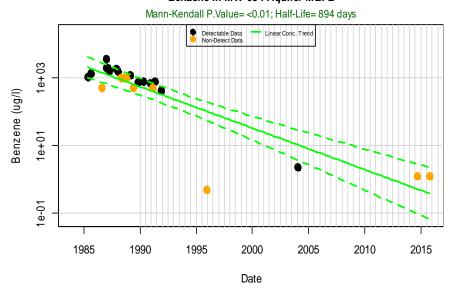
Benzene in GW-07C: Aquifer-MBFB



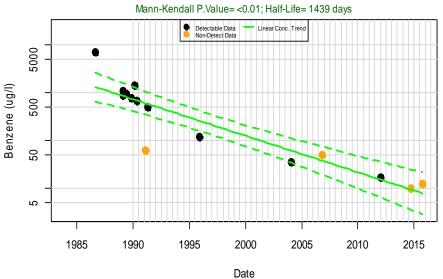

Benzene in MW-01 : Aquifer-MBFB

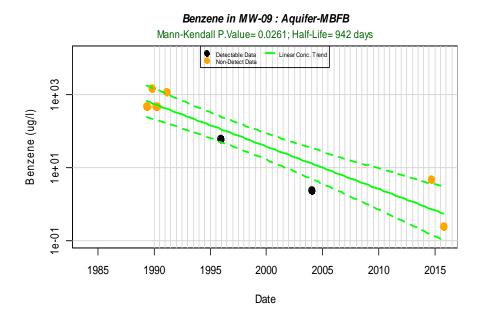


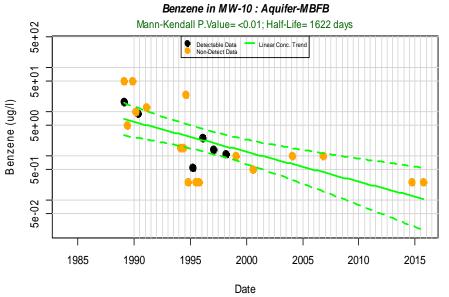

Benzene in MW-02 : Aquifer-MBFB

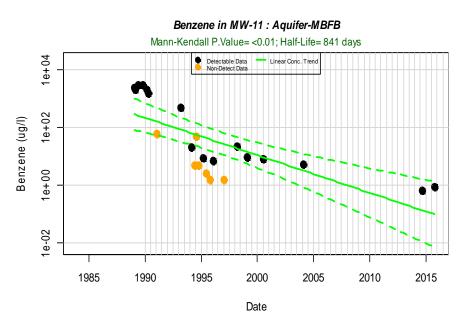

#### Benzene in MW-04 : Aquifer-MBFB

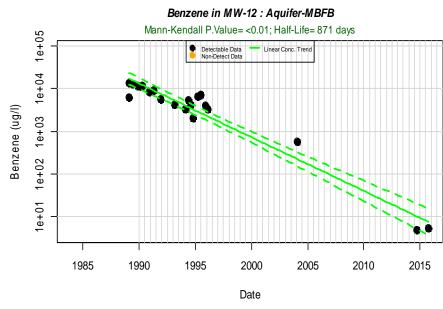
Mann-Kendall P.Value= 0.751; Half-Life> -5 Years



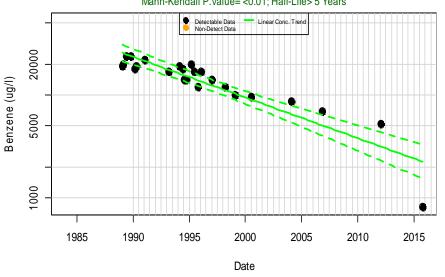


Benzene in MW-05 : Aquifer-MBFB





#### Benzene in MW-06: Aquifer-MBFB









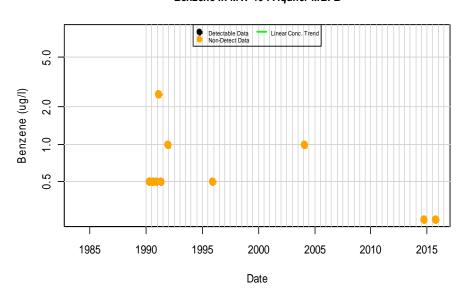



Benzene in MW-13: Aquifer-MBFB

Mann-Kendall P.Value= <0.01; Half-Life> 5 Years

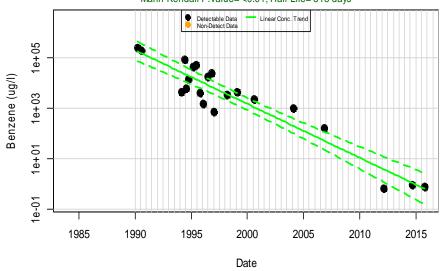


Benzene in MW-14: Aquifer-MBFB

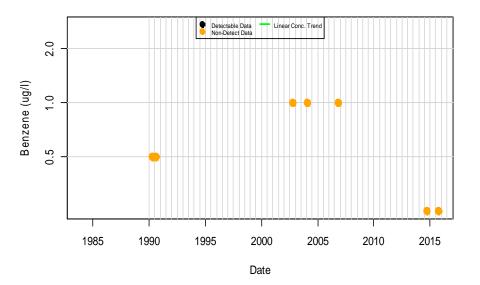

Mann-Kendall P.Value= 0.866; Half-Life> -5 Years



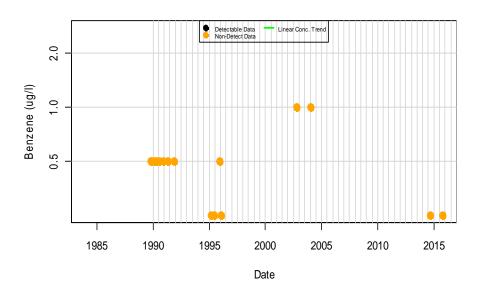
Benzene in MW-16: Aquifer-MBFB


Detectable Data Non-Detect Data Linear Conc. Trend 5.0 Benzene (ug/l) 2.0 1.0 0.5 1985 1990 1995 2000 2005 2010 2015 Date

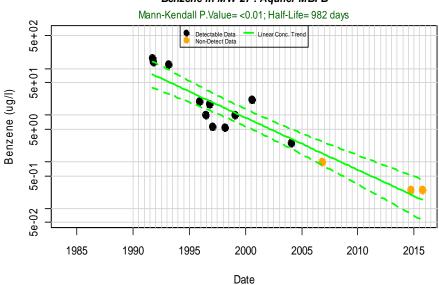
Benzene in MW-19: Aquifer-MBFB



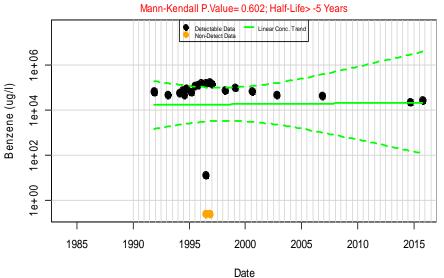

Benzene in MW-21 : Aquifer-MBFB

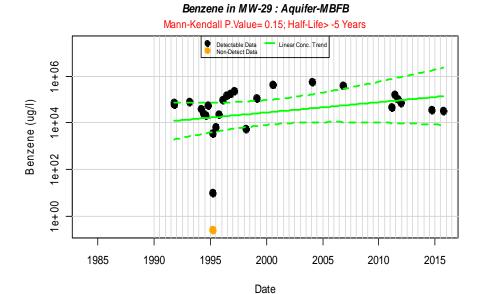

Mann-Kendall P.Value= <0.01; Half-Life= 518 days



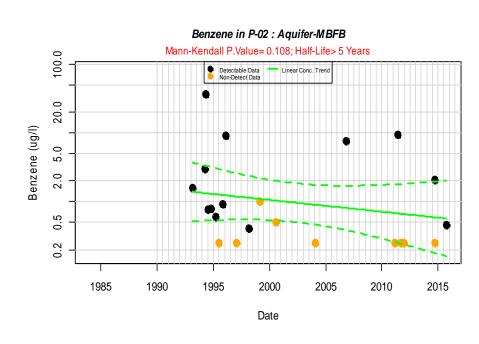

Benzene in MW-22 : Aquifer-MBFB




Benzene in MW-26: Aquifer-MBFB

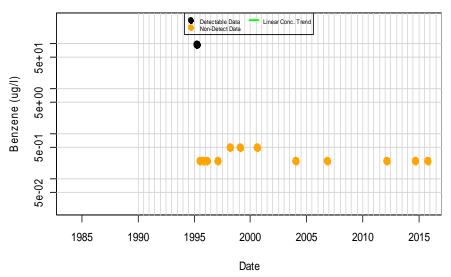


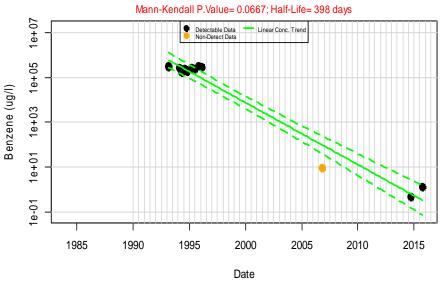

Benzene in MW-27 : Aquifer-MBFB




Benzene in MW-28: Aquifer-MBFB



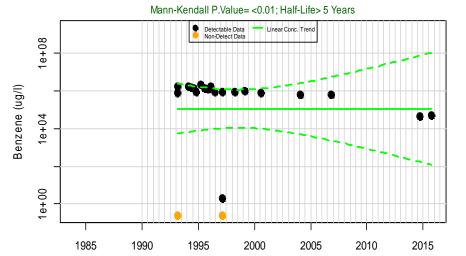




Benzene in MW-30 : Aquifer-MBFB Mann-Kendall P.Value= 0.445; Half-Life> 5 Years Detectable Data Non-Detect Data Linear Conc. Trend 20.0 Benzene (ug/l) 5.0 2.0 2 0 0.1 1985 1990 2010 1995 2000 2005 2015 Date



#### Benzene in P-03: Aquifer-MBFB

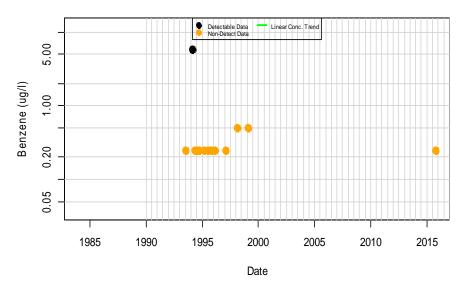
# Benzene in SWL0002 : Aquifer-MBFB

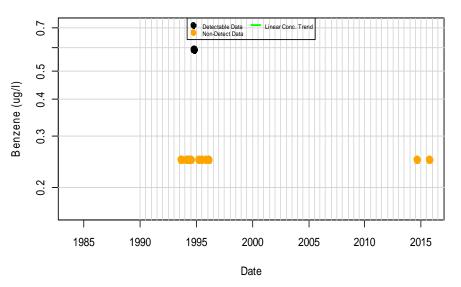





#### Benzene in SWL0003: Aquifer-MBFB

Mann-Kendall P.Value= <0.01; Half-Life= 526 days Detectable Data Non-Detect Data 1e+06 Benzene (ug/l) 1e+04 1e+02 1e+00 1985 1990 1995 2000 2005 2010 2015 Date

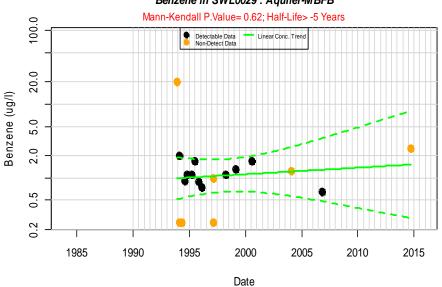

#### Benzene in SWL0004 : Aquifer-MBFB




Date

#### Benzene in SWL0011 : Aquifer-MBFB

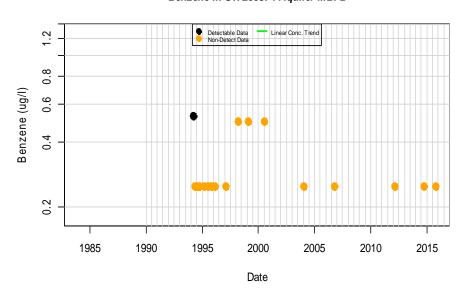
# Benzene in SWL0019 : Aquifer-MBFB

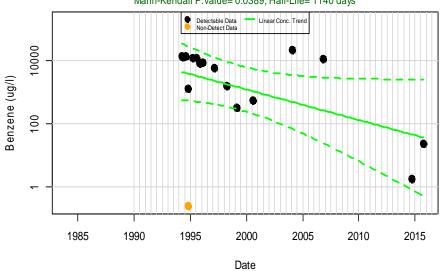




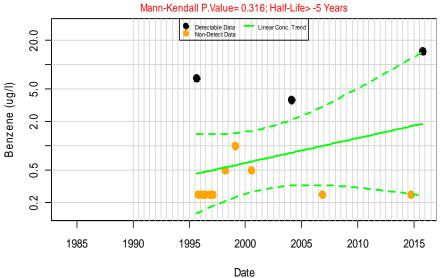

#### Benzene in SWL0023: Aquifer-MBFB

# Detectable Data Non-Detect Data Linear Conc. Trend 5.0 Benzene (ug/l) 2.0 1.0 0.5 1985 2010 1990 1995 2000 2005 2015 Date


#### Benzene in SWL0029 : Aquifer-MBFB

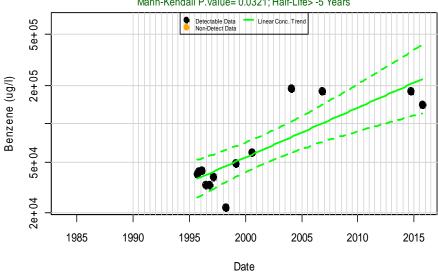



#### Benzene in SWL0037 : Aquifer-MBFB


#### Benzene in SWL0041 : Aquifer-MBFB

Mann-Kendall P.Value= 0.0389; Half-Life= 1140 days

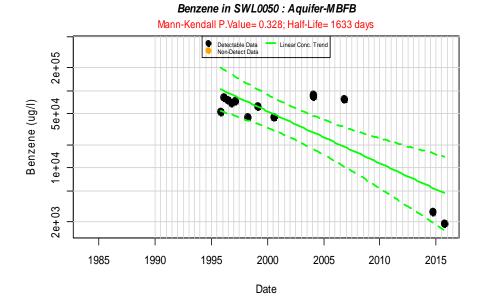





#### Benzene in SWL0047: Aquifer-MBFB

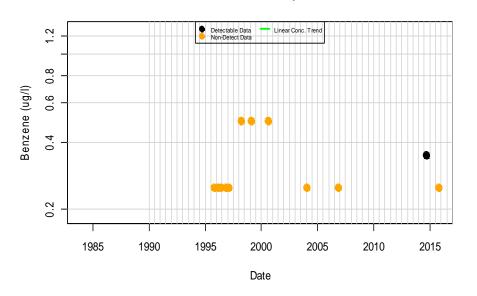


#### Benzene in SWL0048 : Aquifer-MBFB

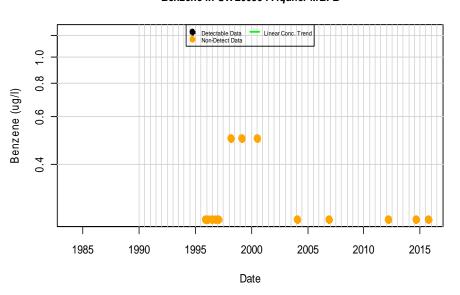

Mann-Kendall P.Value= 0.0321; Half-Life> -5 Years



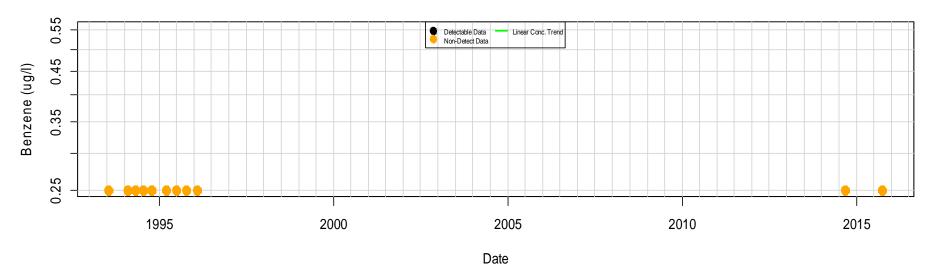
Benzene in SWL0049 : Aquifer-MBFB


Mann-Kendall P.Value= 0.0215; Half-Life> 5 Years

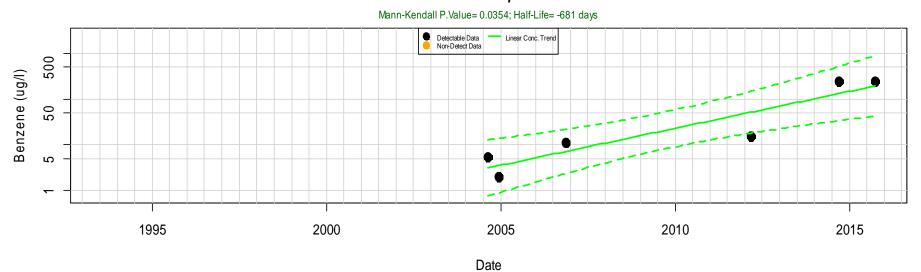
Detectable Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detect Data Non-Detec



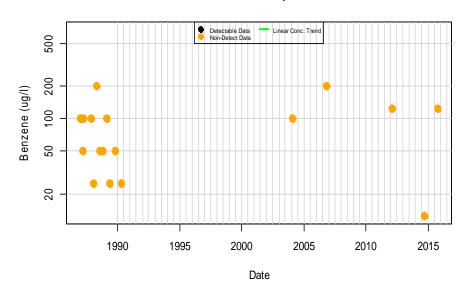

Benzene in SWL0052 : Aquifer-MBFB


Date

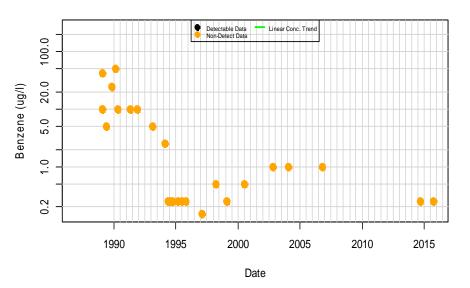



#### Benzene in SWL0056 : Aquifer-MBFB

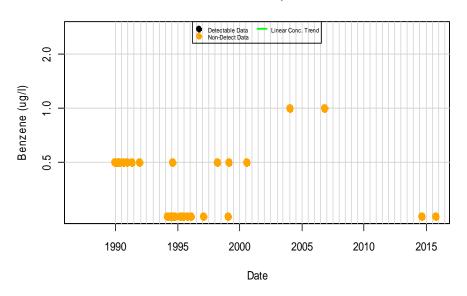



# Benzene in SWL0010 : Aquifer-MBFB/MBFC

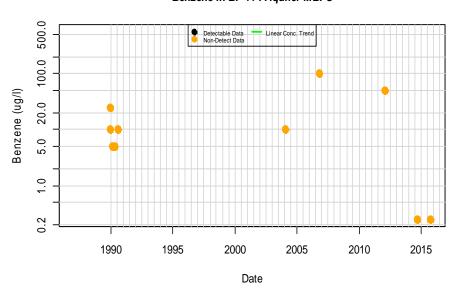



# Benzene in SWL0060 : Aquifer-MBFB/MBFC



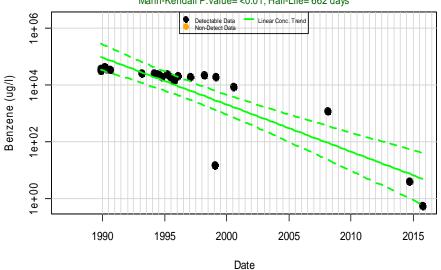

Benzene in BF-02 : Aquifer-MBFC




Benzene in BF-05 : Aquifer-MBFC

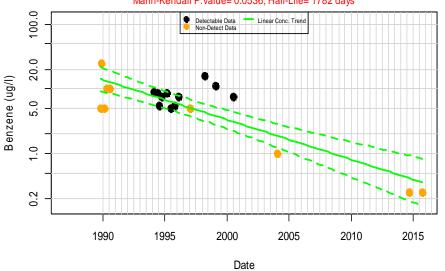


Benzene in BF-10 : Aquifer-MBFC

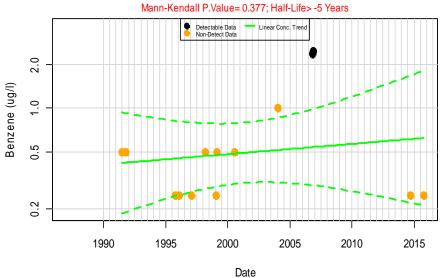



Benzene in BF-11 : Aquifer-MBFC

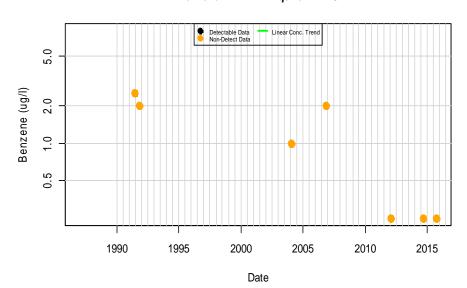



Benzene in BF-13 : Aquifer-MBFC

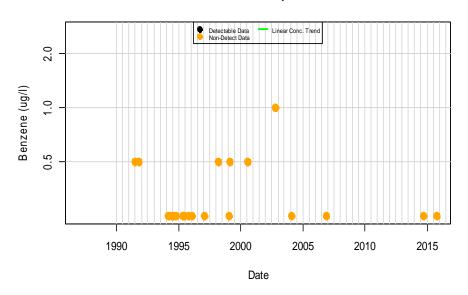
Mann-Kendall P.Value= <0.01; Half-Life= 662 days



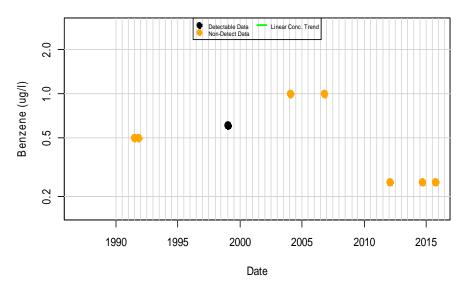

Benzene in BF-14 : Aquifer-MBFC


Mann-Kendall P.Value= 0.0536; Half-Life= 1782 days

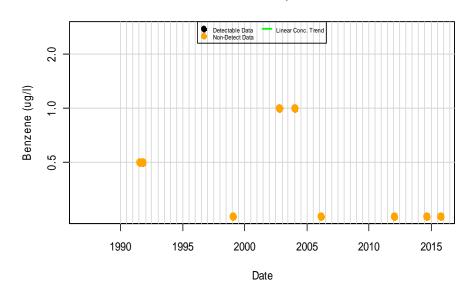



Benzene in BF-19 : Aquifer-MBFC

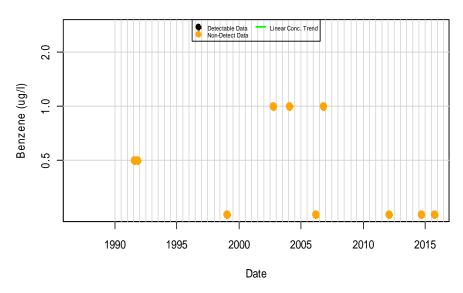



Benzene in BF-22 : Aquifer-MBFC

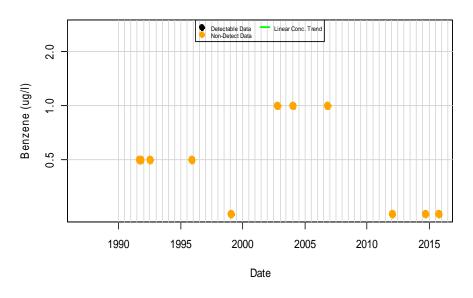



Benzene in BF-23 : Aquifer-MBFC

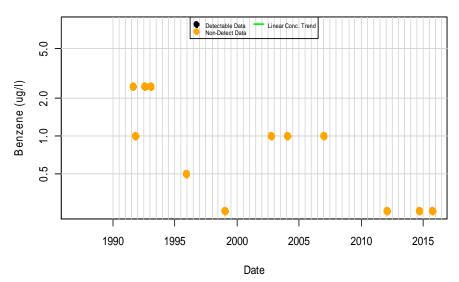



Benzene in BF-25 : Aquifer-MBFC

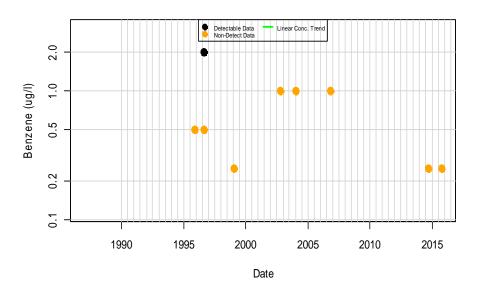



Benzene in BF-27 : Aquifer-MBFC

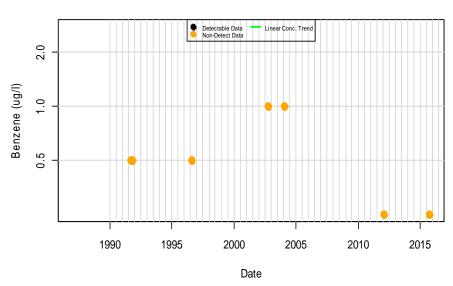


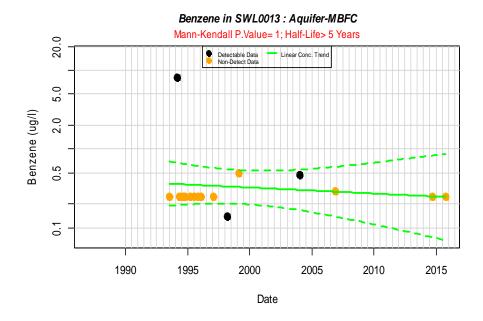

Benzene in BF-28 : Aquifer-MBFC

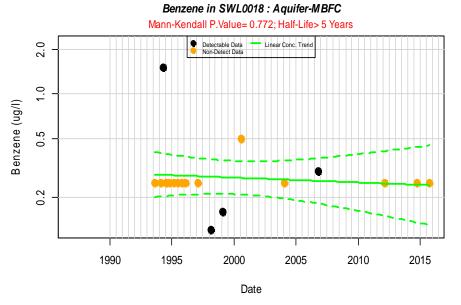



Benzene in BF-30 : Aquifer-MBFC

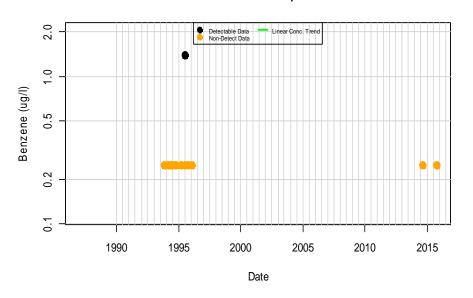



Benzene in BF-31 : Aquifer-MBFC

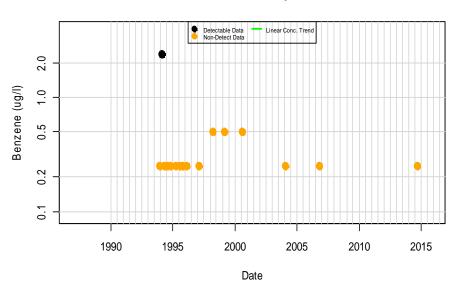




Benzene in BF-32A: Aquifer-MBFC

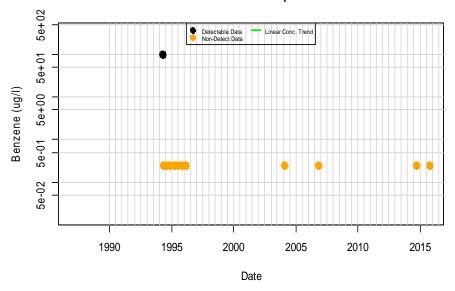



Benzene in BF-33 : Aquifer-MBFC

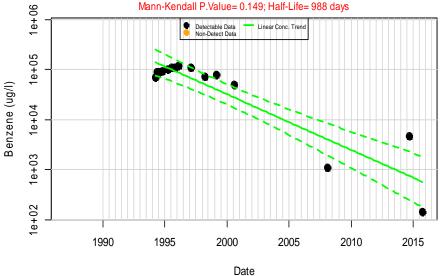




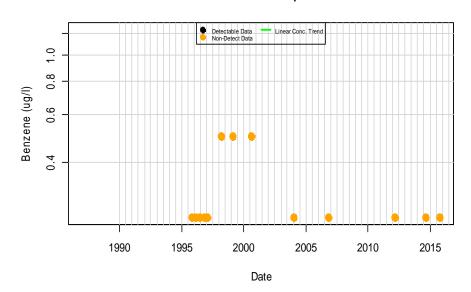




Benzene in SWL0027: Aquifer-MBFC

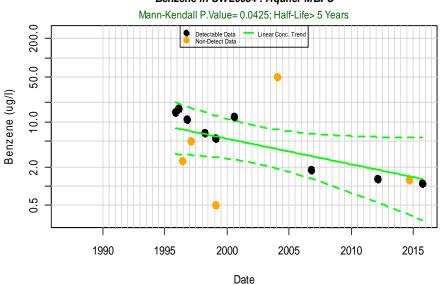



#### Benzene in SWL0030 : Aquifer-MBFC



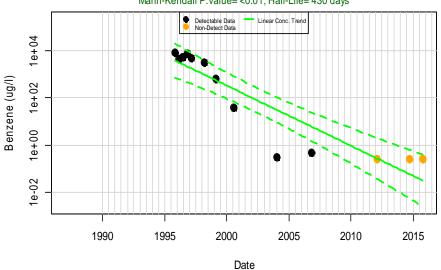

#### Benzene in SWL0035 : Aquifer-MBFC




#### Benzene in SWL0040 : Aquifer-MBFC Mann-Kendall P.Value= 0.149; Half-Life= 988 days

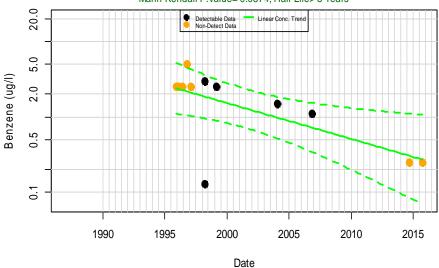


#### Benzene in SWL0053: Aquifer-MBFC



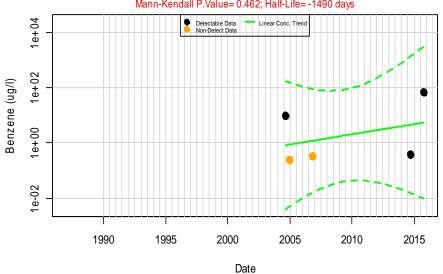

#### Benzene in SWL0054 : Aquifer-MBFC



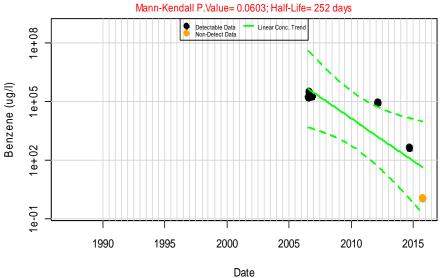

#### Benzene in SWL0055 : Aquifer-MBFC

Mann-Kendall P.Value= <0.01; Half-Life= 430 days

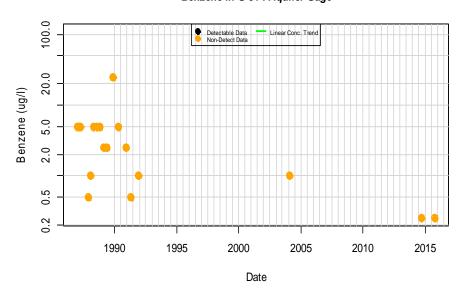



#### Benzene in SWL0058: Aquifer-MBFC

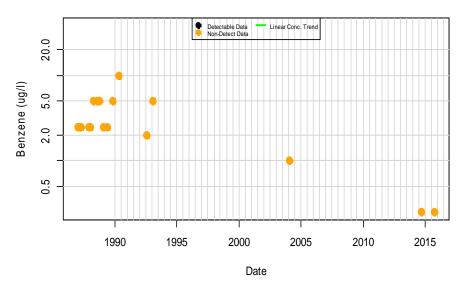
Mann-Kendall P.Value= 0.0374; Half-Life> 5 Years



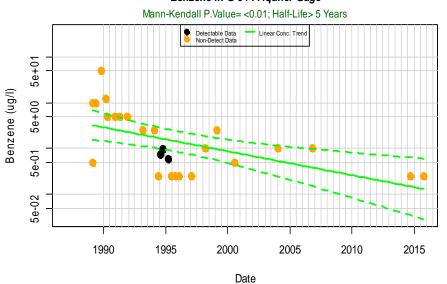

#### Benzene in SWL0061: Aquifer-MBFC


Mann-Kendall P.Value= 0.462; Half-Life= -1490 days

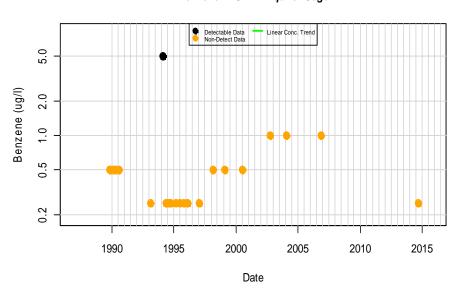



#### Benzene in SWL0065 : Aquifer-MBFC



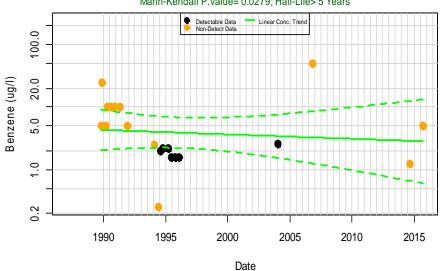

Benzene in G-01 : Aquifer-Gage



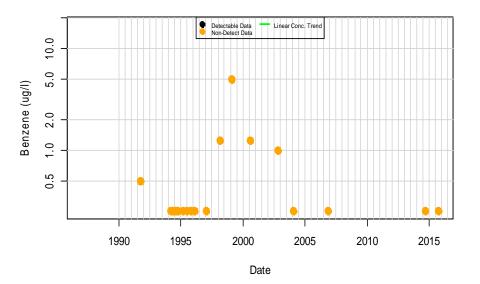

Benzene in G-03 : Aquifer-Gage



Benzene in G-04 : Aquifer-Gage



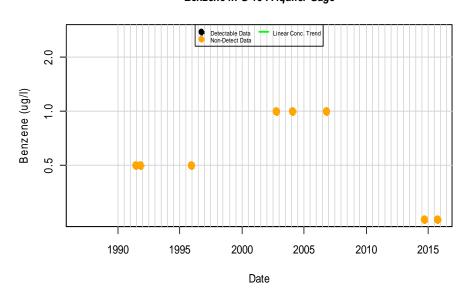

Benzene in G-11 : Aquifer-Gage




Benzene in G-13: Aquifer-Gage

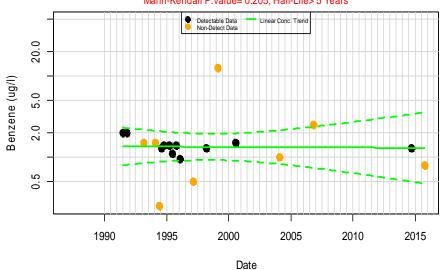
Mann-Kendall P.Value= 0.0279; Half-Life> 5 Years



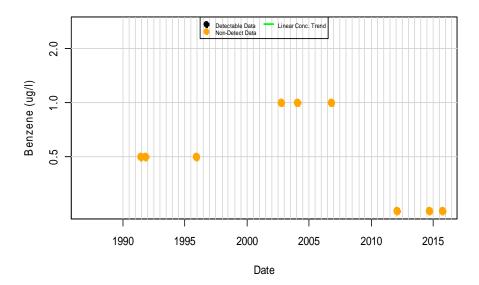

Benzene in G-14: Aquifer-Gage



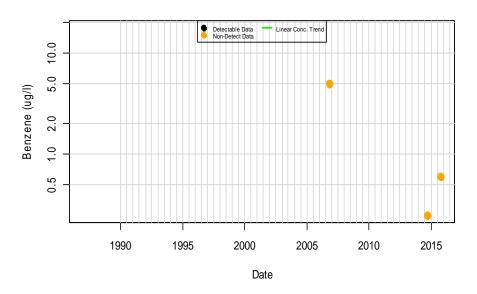
Benzene in G-15 : Aquifer-Gage


Detectable Data Non-Detect Data Linear Conc. Trend 2.0 Benzene (ug/I) 1.0 0.5 2015 1990 1995 2000 2005 2010 Date

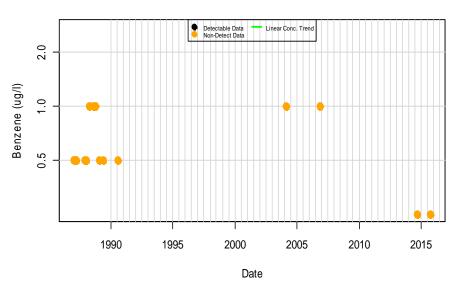
Benzene in G-16: Aquifer-Gage



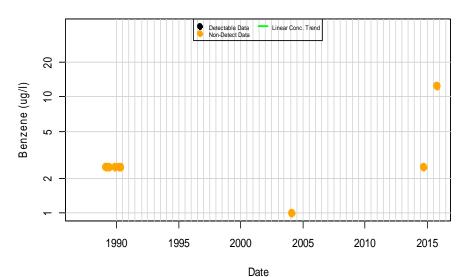

Benzene in G-17: Aquifer-Gage


#### Mann-Kendall P.Value= 0.205; Half-Life> 5 Years

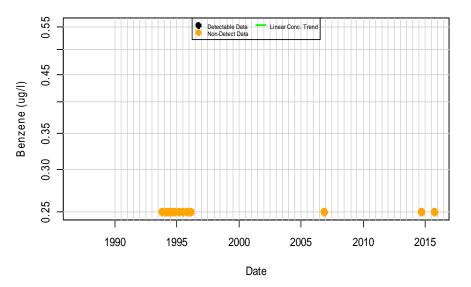



Benzene in G-18 : Aquifer-Gage

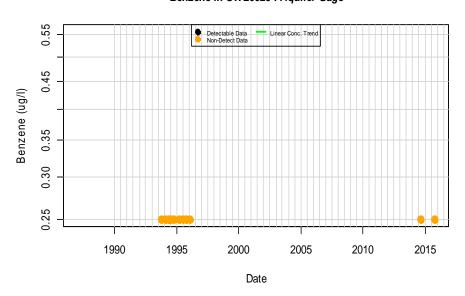



Benzene in G-21: Aquifer-Gage

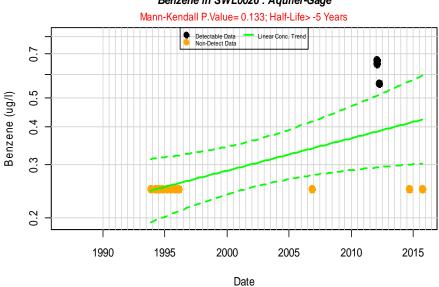



Benzene in LG-01 : Aquifer-Gage




Benzene in LG-02 : Aquifer-Gage

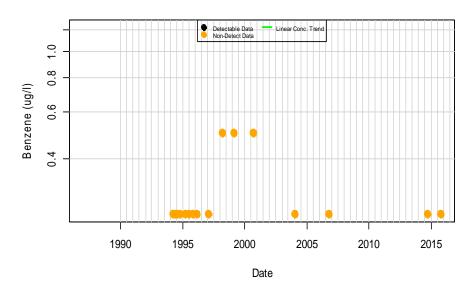


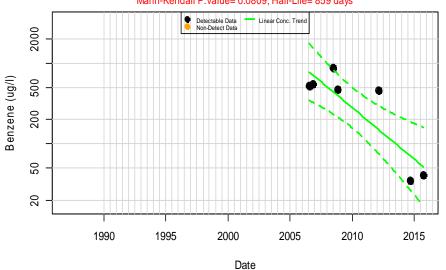

#### Benzene in SWL0022 : Aquifer-Gage



Benzene in SWL0025 : Aquifer-Gage

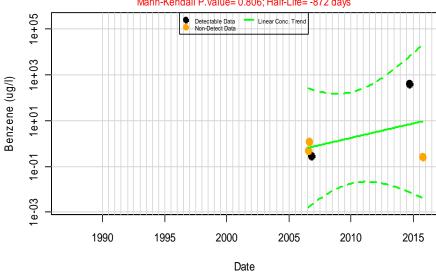



#### Benzene in SWL0026 : Aquifer-Gage




#### Benzene in SWL0036 : Aquifer-Gage

#### Benzene in SWL0063 : Aquifer-Gage


Mann-Kendall P.Value= 0.0809; Half-Life= 859 days





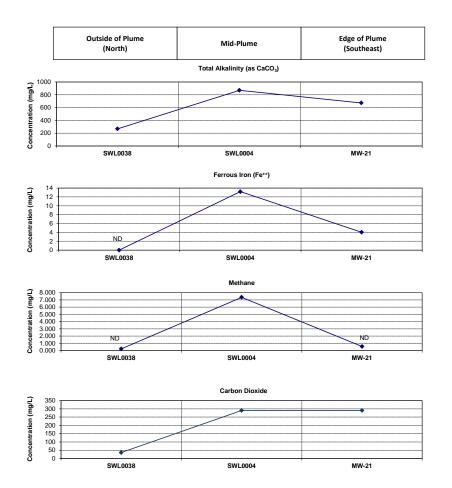
#### Benzene in SWL0066 : Aquifer-Gage

Mann-Kendall P.Value= 0.806; Half-Life= -872 days



# APPENDIX G BIODEGRADATION ANALYSIS

Table G-1


Data Table for Biodegradation Indicator Figures

		Alkalinity, Total (as CaCO3)	Ferrous Iron Fe(II)	Methane	Carbon Dioxide	Nitrate (as N)	Sulfate	Dissolved Oxygen	Oxidation Reduction Potential
		(mg/l)	(mg/l)	(ug/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mV)
Water Table Transect 1	Well ID								
Outside of Plume (North)	SWL0038	269	ND<0.1	0.242	36	0.19	110	1.89	-11.6
Mid-Plume	SWL0004	871	13.2	7.36	290	ND<0.1	10	0.19	-137.0
Edge of Plume (Southeast)	MW-21	674	4.04	0.569	290	ND<0.1	130	0.38	-126.0
Water Table Transect 2					•			·	
Mid-Plume	MW-28	1070	44	37.7	630	ND<0.1	2.2	0.13	-126.1
Edge of Plume	SWL0008	624	7.51	553	230	ND<0.1	26	0.30	-114.1
Outside of Plume	SWL0006	419	ND<0.1	23.6	86	ND<0.1	250	1.78	-3.8
Water Table Transect 3	·	•							
Outside of Plume (North)	PZL0012	580	5.4	17.4	280	ND<0.1	180	2.15	-34.9
Mid-Plume	PZL0013	756	1.8	1840	280	ND<0.1	160	1.11	-176.9
Outside of Plume	SWL0021	885	4.2	85.4	770	ND<0.1	220	0.41	-78.2
Outside of Plume (X)	SWL0024	664	0.26	57.3	270	ND<0.1	250	1.65	-63.5
Water Table Transect 4									
Outside of Plume (Northwest)	SWL0046	534	ND<0.1	0.042	120	13	290	2.2	79.0
Mid-Plume	SWL0068	750	4.2	41.2	300	ND<0.1	13	1.29	-150.7
Edge of Plume (South)	PZL0026	669	1.72	2.96	250	ND<0.1	340	0.19	-44.1
Outside of Plume (South)	SWL0024	664	0.26	57.3	270	ND<0.1	250	1.65	-63.5
Edge of Plume (South; X)	PZL0012	580	5.4	17.4	280	ND<0.1	180	2.15	-34.9
MBFB Transect 1									
Outside of Plume (North)	SWL0047	163	1.35	221	75	ND<0.1	0.77	0.74	-164.2
Mid-Plume	SWL0048	748	0.56	93.8	170	ND<0.1	ND<1	0.56	-166.2
Outside of Plume	XP-02	525	0.065	2.74	140	ND<0.1	46	1.36	25.8
Mid-Plume	SWL0050	538	0.28	6.39	100	ND<0.1	200	0.28	-183.9
Outside of Plume (Southeast)	G-01WC	301	0.64	9.49	78	ND<0.1	220	0.78	-119.4
Outside of Plume (North; X)	SWL0037	231	ND<0.1	1.72	18	ND<0.1	81	0.19	-7.4

#### Note:

The Dissolved Oxygen and Oxidation Reduction Potential values are the last (stabilised) measurement from the groundwater sampling data sheets.

Figure G-1
Biodegradation Indicators
Water Table Transect 1



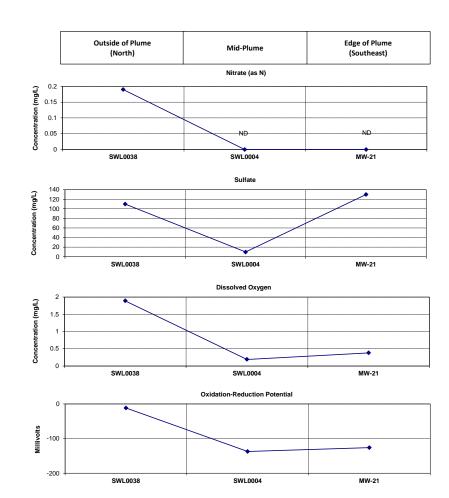
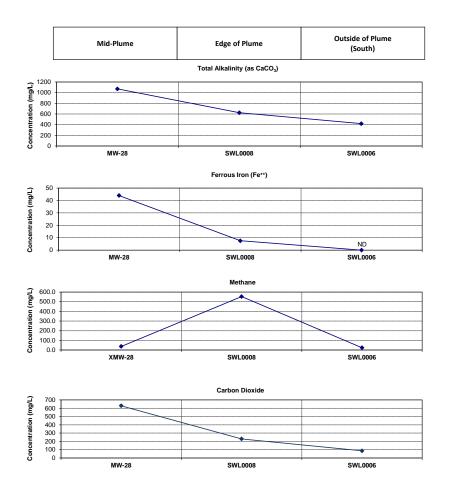




Figure G-2
Biodegradation Indicators
Water Table Transect 2



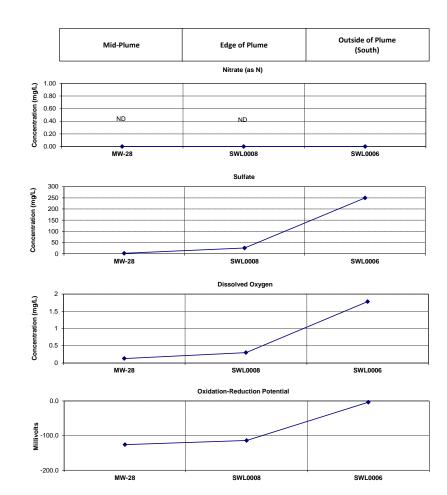
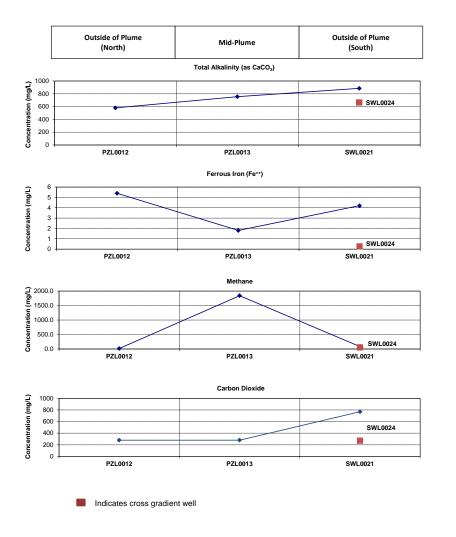
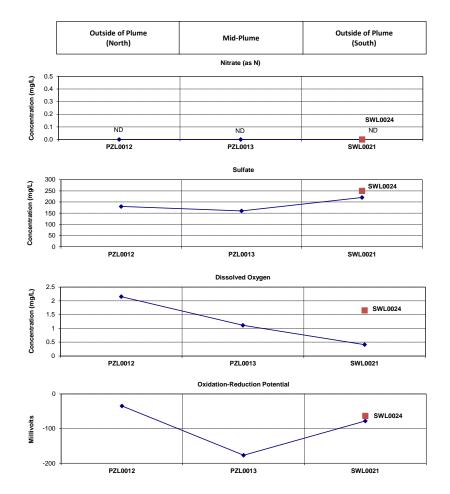
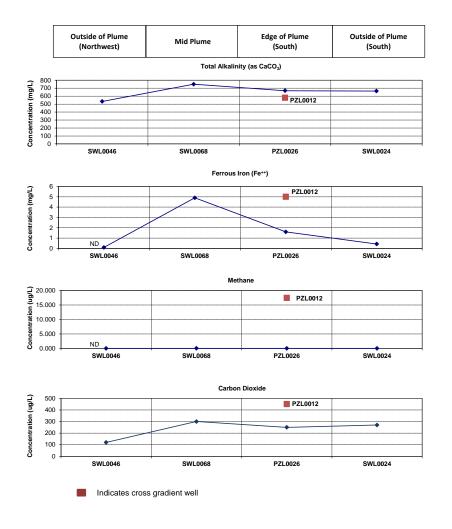
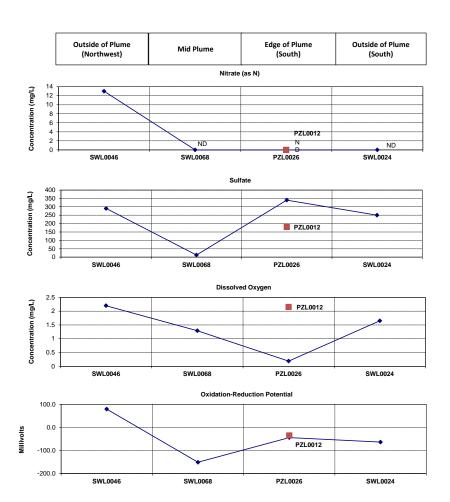
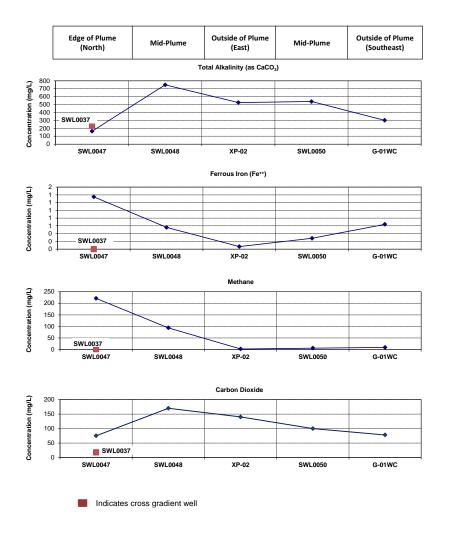
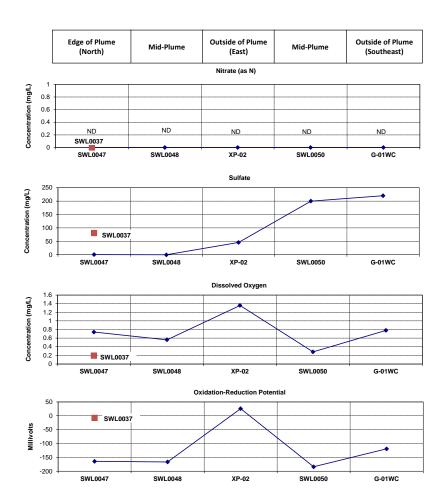
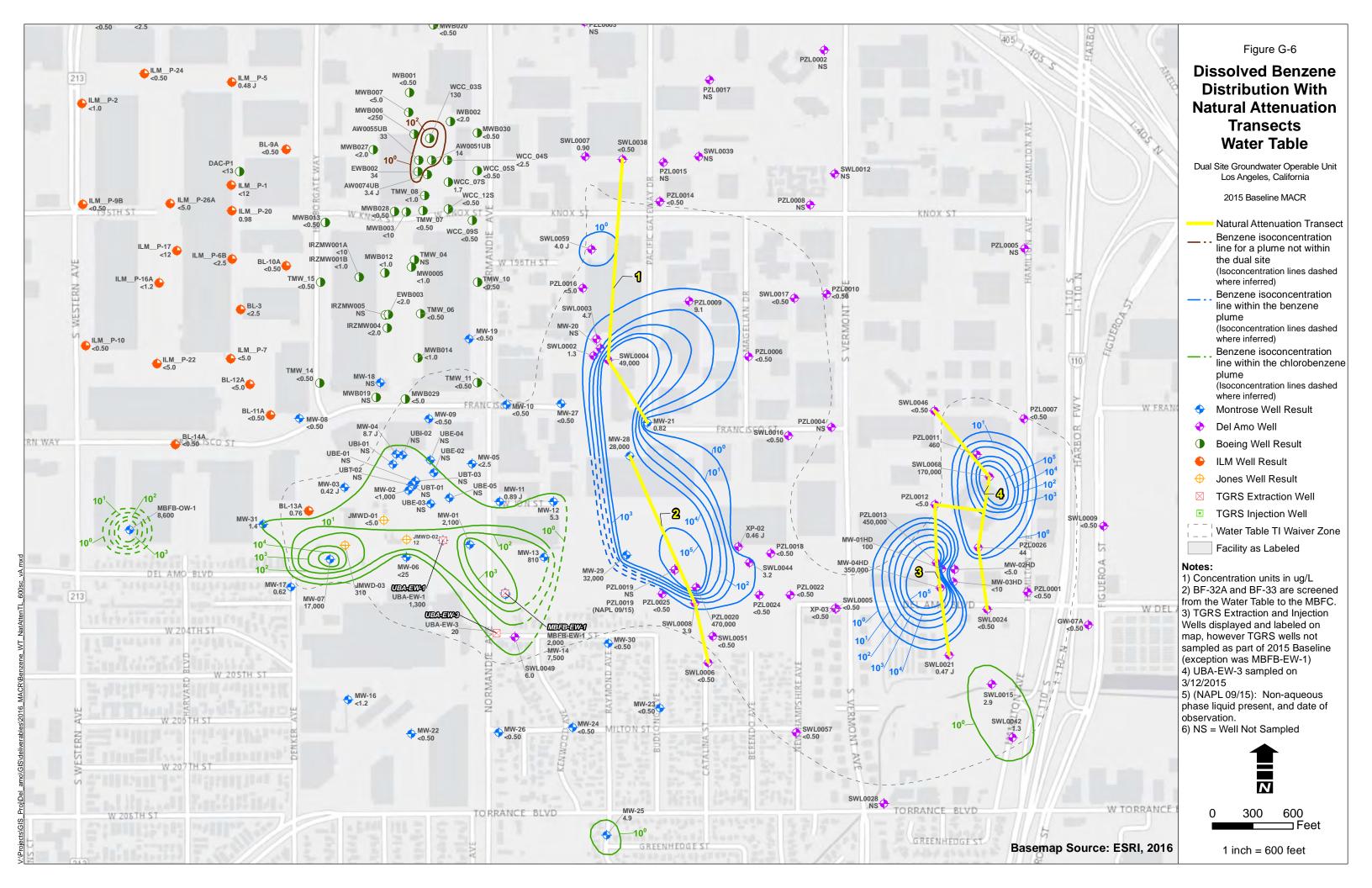



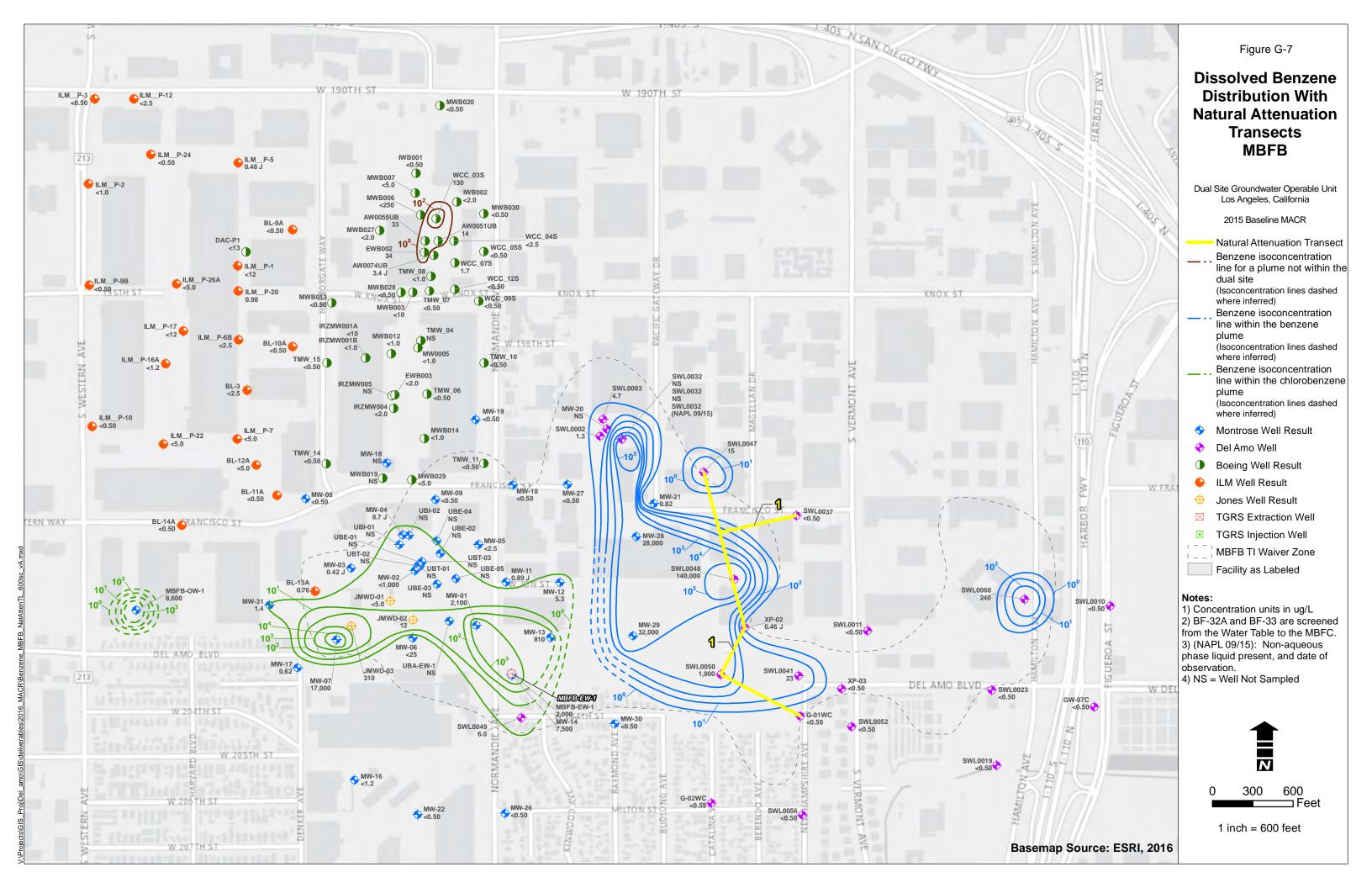

Figure G-3
Biodegradation Indicators
Water Table Transect 3





Figure G-4
Biodegradation Indicators
Water Table Transect 4



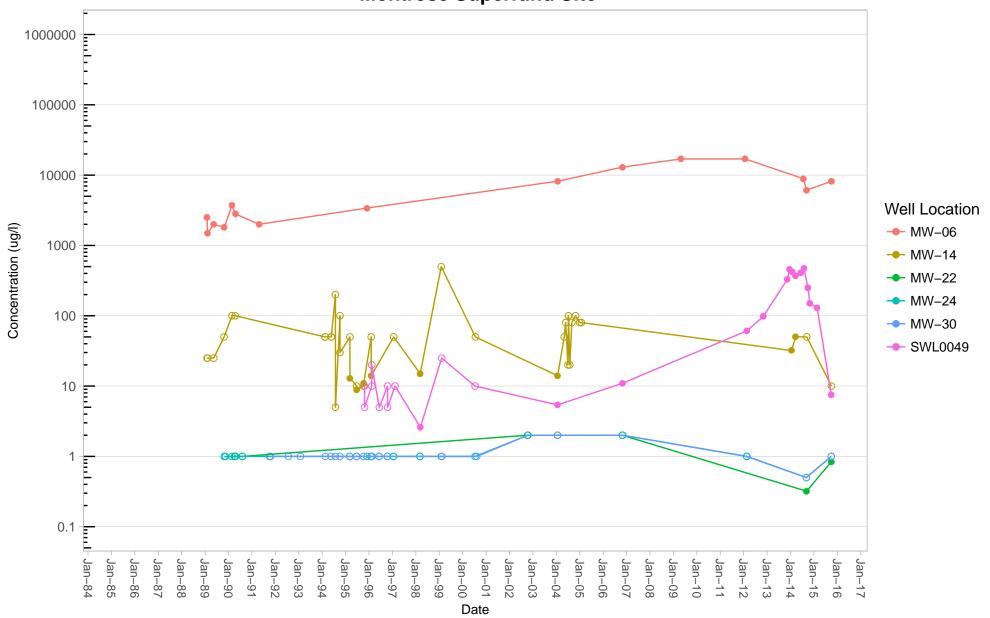




### Figure G-5 Biodegradation Indicators MBFB Transect 1

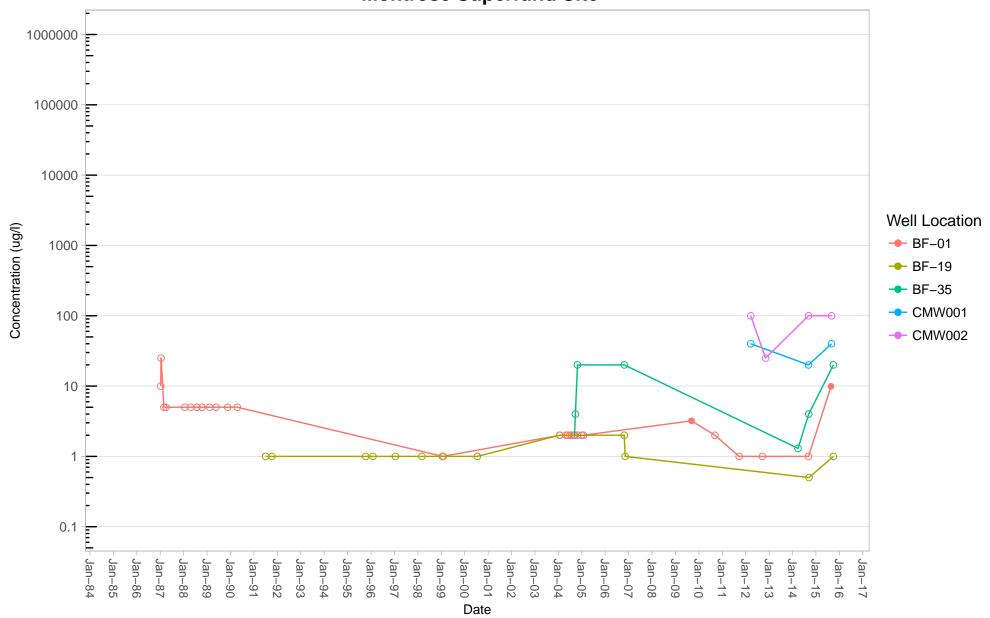




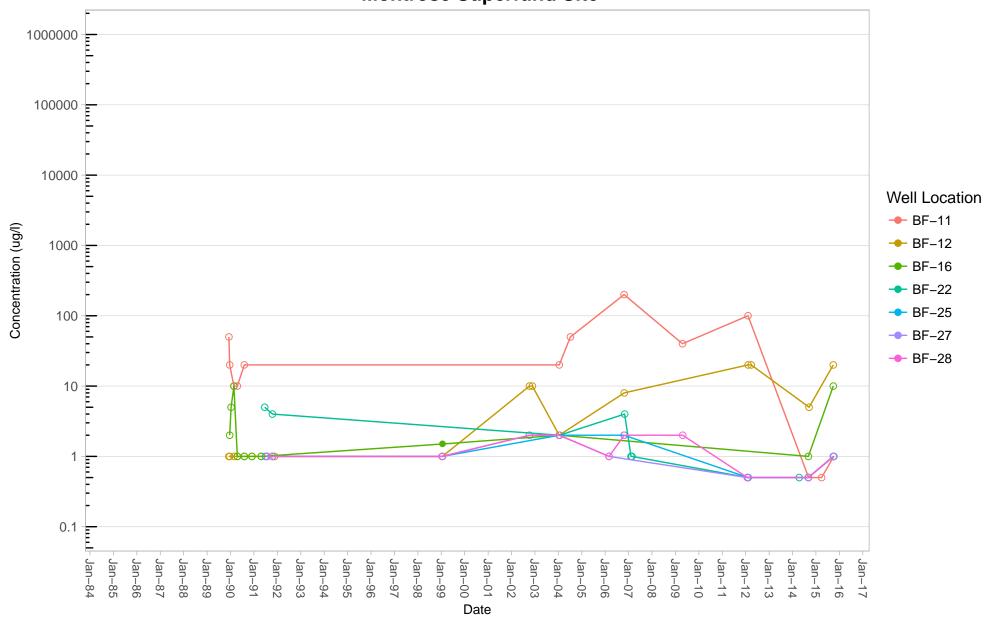


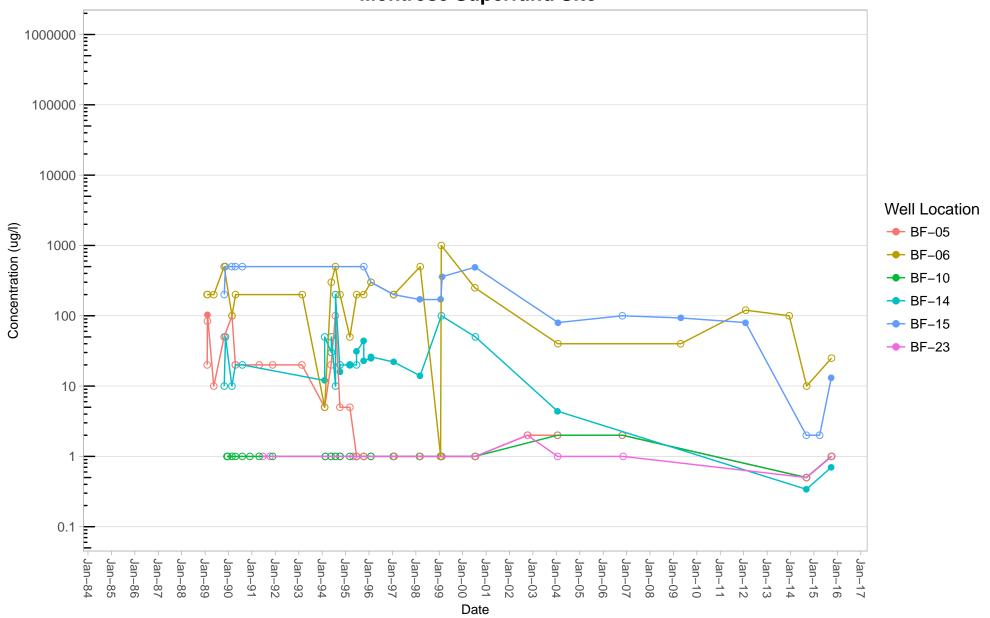

# APPENDIX H PCE AND TCE GRAPHS


Graph H-01 - PCE
Time vs Concentration Plot, North of Montrose Property, Water Table
Montrose Superfund Site

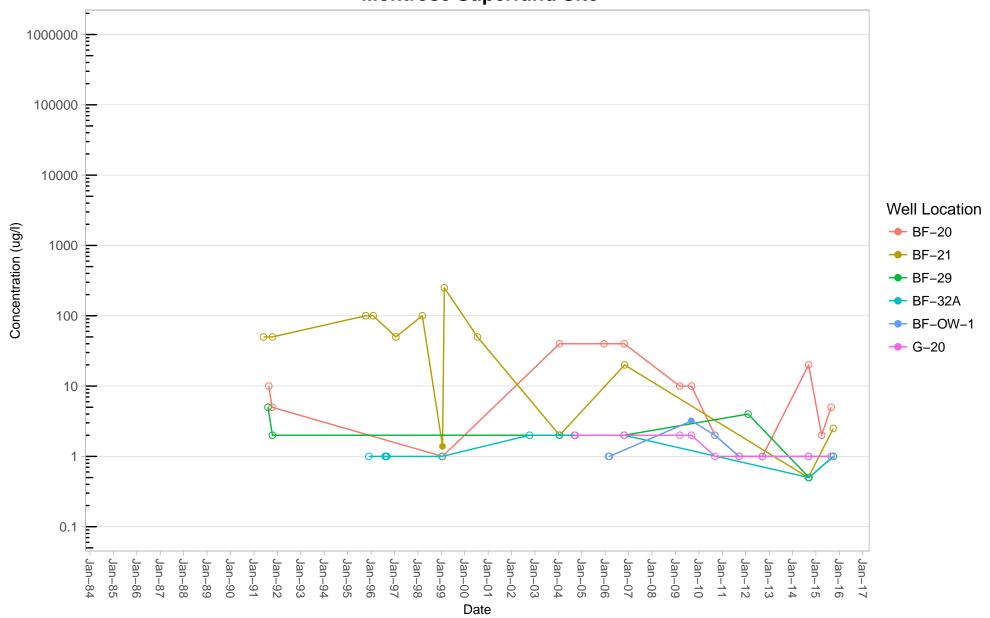



Graph H-02 - PCE
Time vs Concentration Plot, South of Montrose Property, Water Table
Montrose Superfund Site

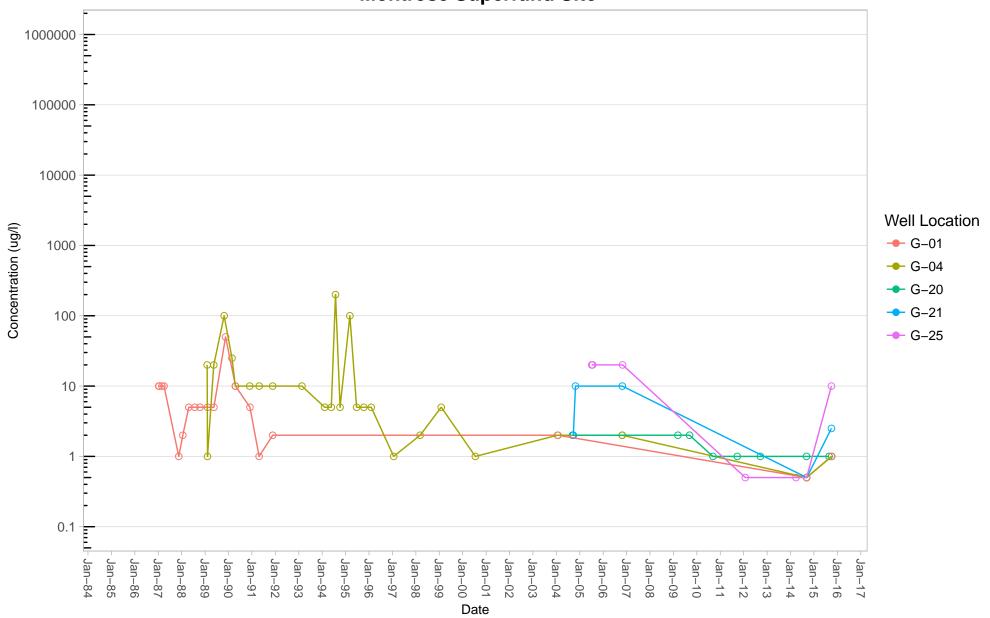



Graph H-03 - PCE
Time vs Concentration Plot, North of Montrose Property, MBFC Aquifer
Montrose Superfund Site

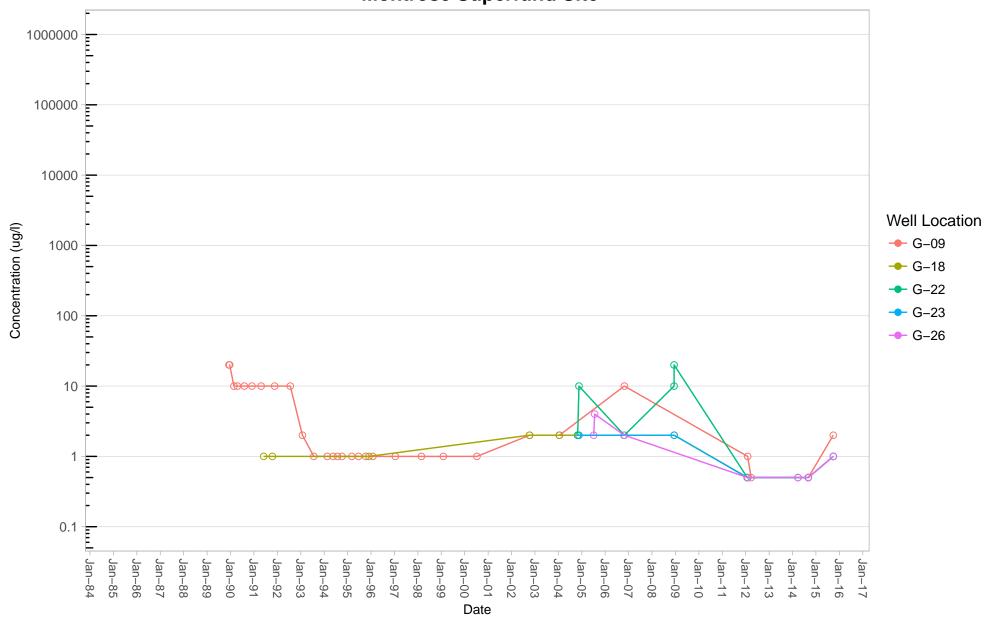



Graph H-04 - PCE
Time vs Concentration Plot, South of Montrose Property, MBFC Aquifer
Montrose Superfund Site

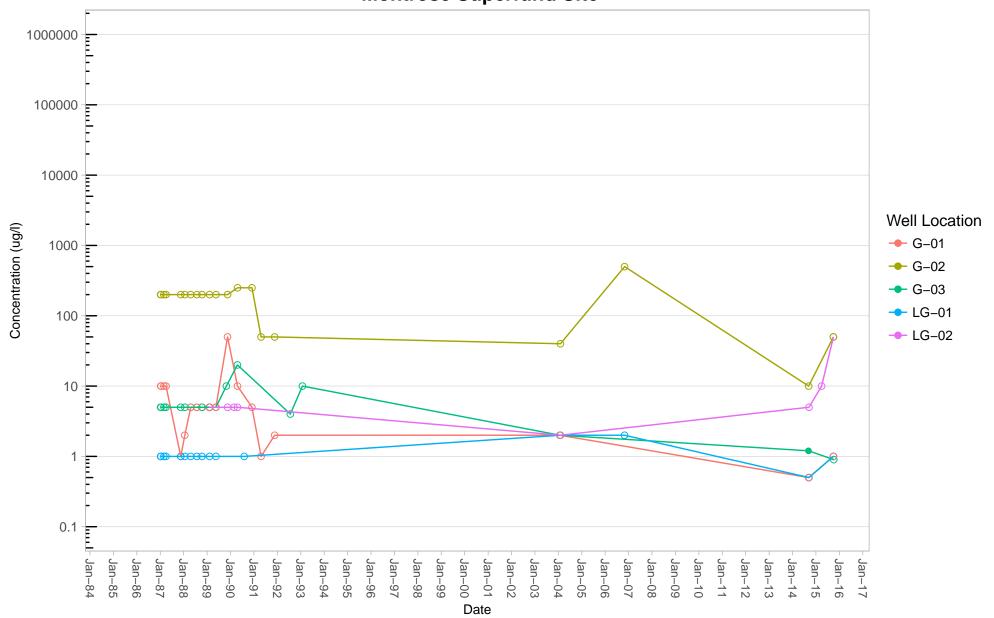



Graph H-05 - PCE
Time vs Concentration Plot, East of Montrose Property, MBFC Aquifer
Montrose Superfund Site




Graph H-06 - PCE
Time vs Concentration Plot, West of Montrose Property, MBFC Aquifer
Montrose Superfund Site




Graph H-07 - PCE
Time vs Concentration Plot, Northwest of Montrose Property, Gage Aquifer
Montrose Superfund Site



Graph H-08 - PCE
Time vs Concentration Plot, Southeast of Montrose Property, Gage Aquifer
Montrose Superfund Site

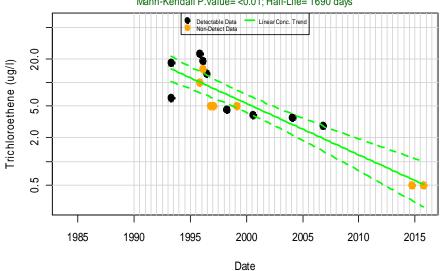


Graph H-09 - PCE
Time vs Concentration Plot, Montrose Property, Gage Aquifer
Montrose Superfund Site



#### Trichloroethene in PZL0001 : Aquifer-WT

## Detectable Data Non-Detect Data Linear Conc. Trend 1.0 Trichloroethene (ug/I) 0.8 9.0


1985

1990

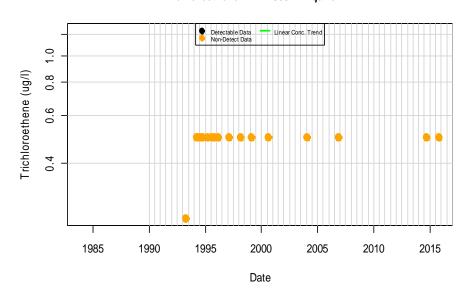
1995

#### Trichloroethene in PZL0006 : Aquifer-WT

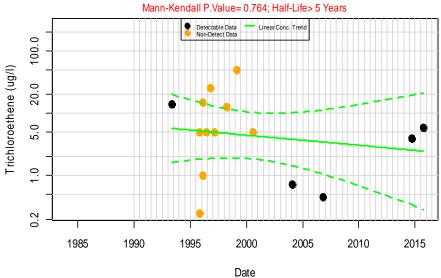
Mann-Kendall P.Value= <0.01; Half-Life= 1690 days



#### Trichloroethene in PZL0007 : Aquifer-WT


2000

Date


2005

2010

2015



#### Trichloroethene in PZL0009 : Aquifer-WT



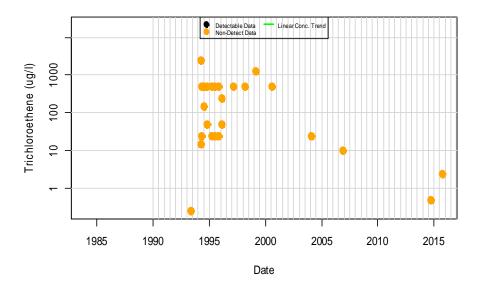
#### Trichloroethene in PZL0010 : Aquifer-WT

1.0

0.8

9.0

1985


1990

1995

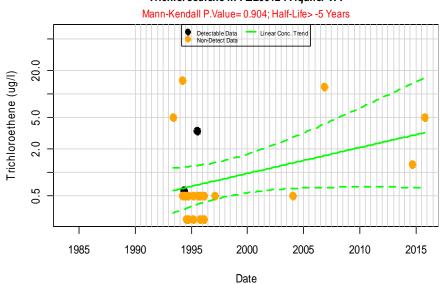
Trichloroethene (ug/I)

# Detectable Data Non-Detect Data Linear Conc. Trend Non-Detect Data

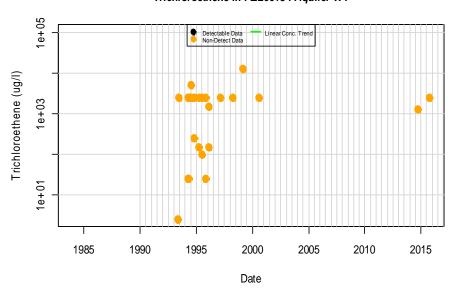
#### Trichloroethene in PZL0011 : Aquifer-WT



#### Trichloroethene in PZL0012 : Aquifer-WT


2000

Date

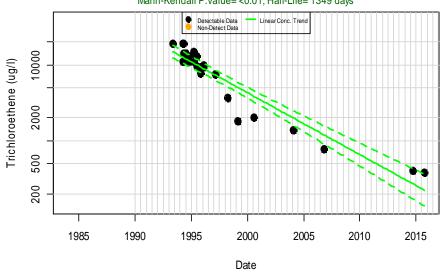

2005

2010

2015

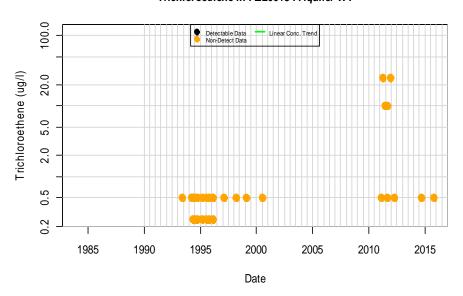


#### Trichloroethene in PZL0013 : Aquifer-WT

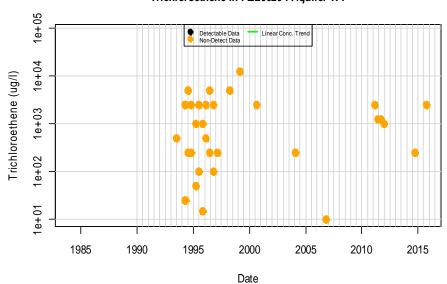



#### Trichloroethene in PZL0014 : Aquifer-WT

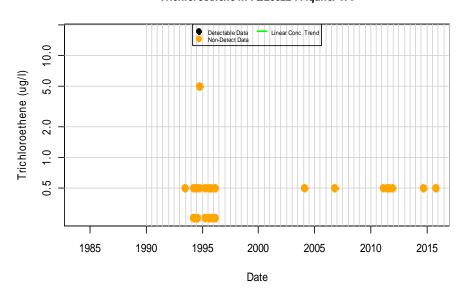
#### 


#### Trichloroethene in PZL0016 : Aquifer-WT

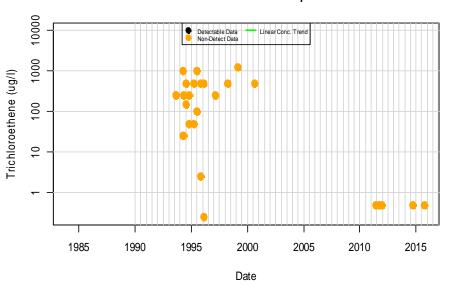
Mann-Kendall P.Value = < 0.01; Half-Life = 1349 days



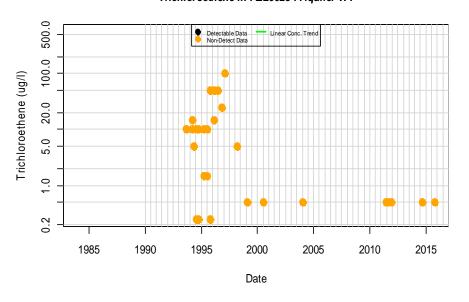

#### Trichloroethene in PZL0018 : Aquifer-WT


Date

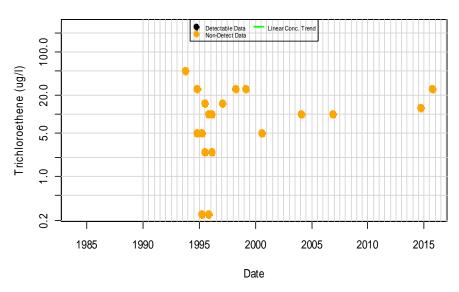


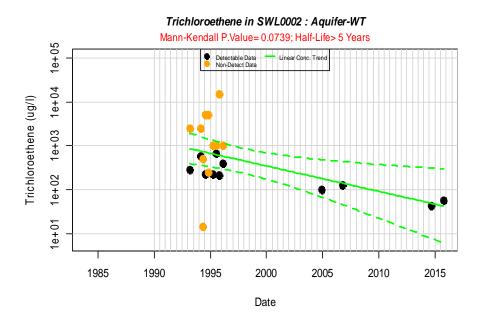

#### Trichloroethene in PZL0020 : Aquifer-WT

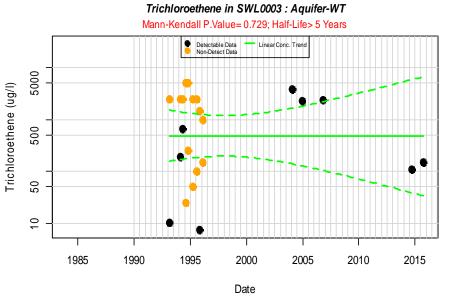


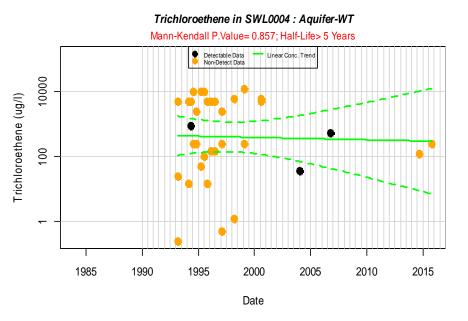

#### Trichloroethene in PZL0022 : Aquifer-WT

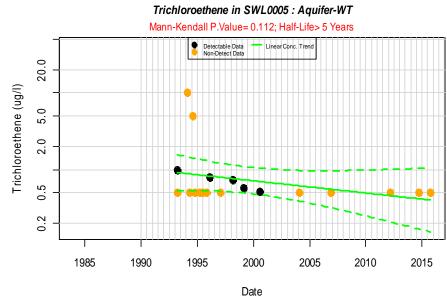



#### Trichloroethene in PZL0024 : Aquifer-WT

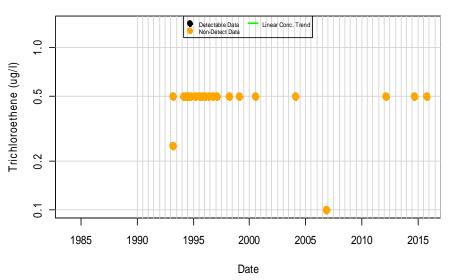




#### Trichloroethene in PZL0025 : Aquifer-WT



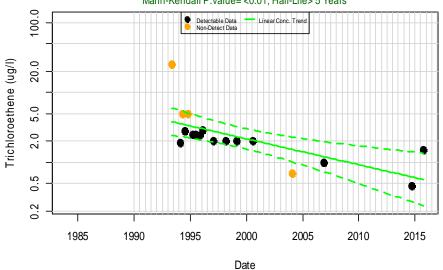


#### Trichloroethene in PZL0026 : Aquifer-WT



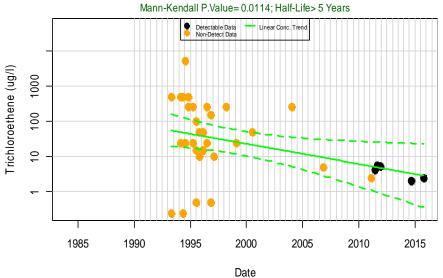




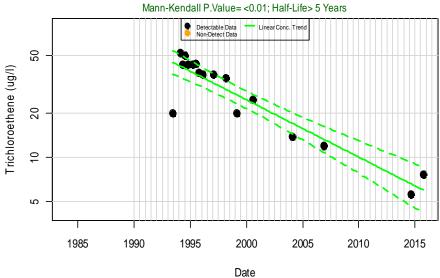



#### Trichloroethene in SWL0006: Aquifer-WT

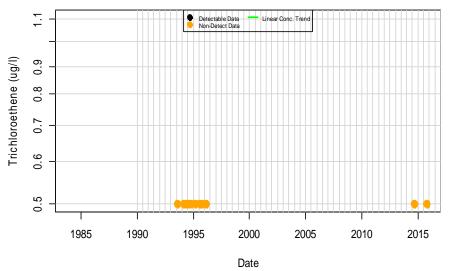



#### Trichloroethene in SWL0007: Aquifer-WT


Mann-Kendall P.Value = < 0.01; Half-Life > 5 Years



#### Trichloroethene in SWL0008: Aquifer-WT

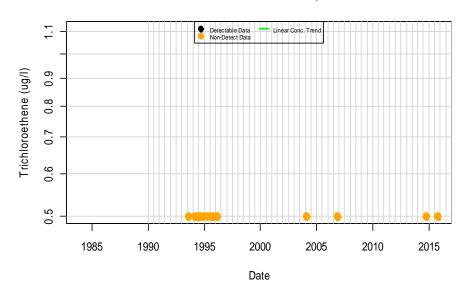



#### Trichloroethene in SWL0009 : Aquifer-WT

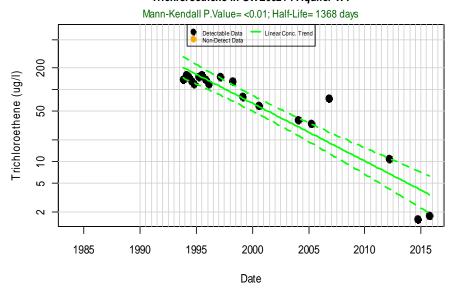



### Trichloroethene in SWL0015 : Aquifer-WT

### Themorecarene in OWE0010 . Aquiner Wi

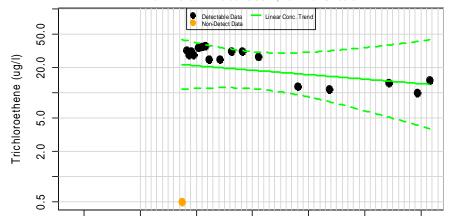



### Trichloroethene in SWL0016 : Aquifer-WT


Mann-Kendall P.Value = < 0.01; Half-Life > 5 Years



### Trichloroethene in SWL0017: Aquifer-WT



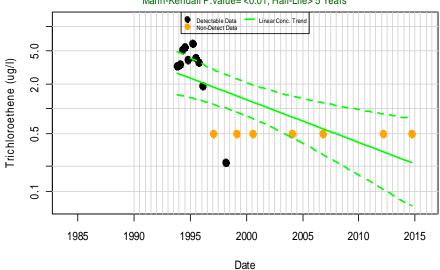

### Trichloroethene in SWL0021 : Aquifer-WT



### Trichloroethene in SWL0024 : Aquifer-WT

### Mann-Kendall P.Value= 0.0624; Half-Life> 5 Years




1995

1985

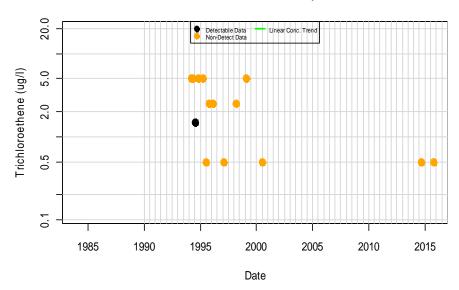
1990

### Trichloroethene in SWL0028: Aquifer-WT

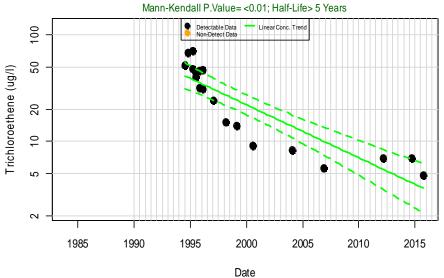
Mann-Kendall P.Value = < 0.01; Half-Life > 5 Years



### Trichloroethene in SWL0038 : Aquifer-WT


2000

Date

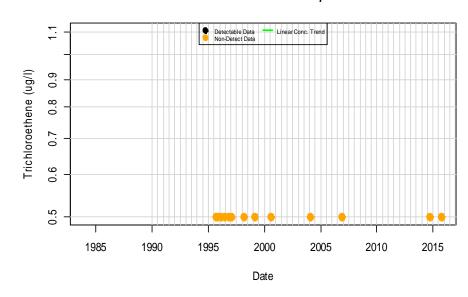

2005

2010

2015

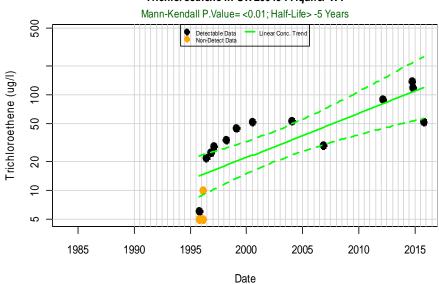


### Trichloroethene in SWL0042 : Aquifer-WT

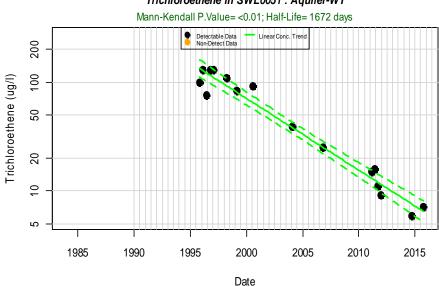



### Trichloroethene in SWL0044 : Aquifer-WT

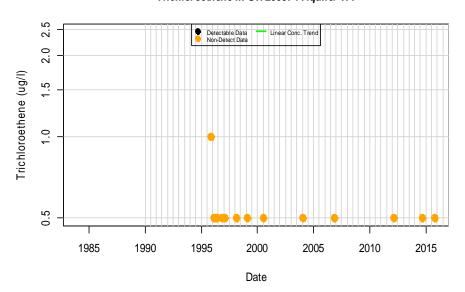
Trichloroethene (ug/I)


# Detectable Data Linear Conc. Trend Non-Detect Data

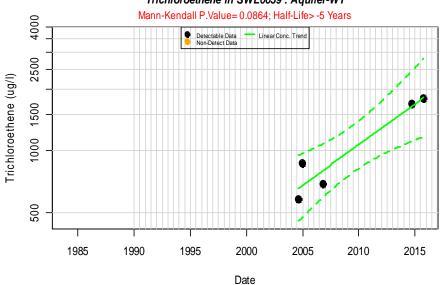
### Trichloroethene in SWL0046 : Aquifer-WT



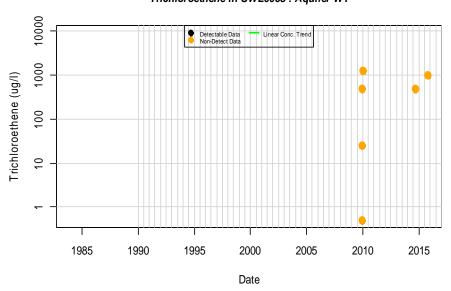

### Trichloroethene in SWL0049 : Aquifer-WT


Date

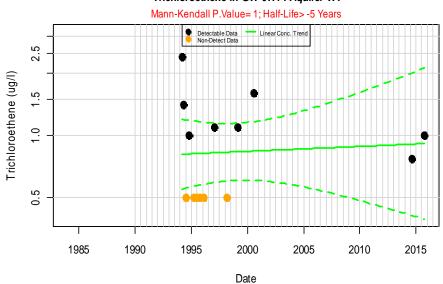


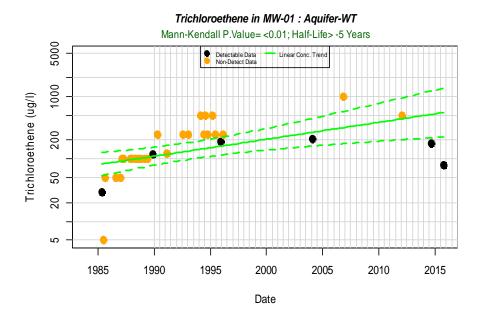

### Trichloroethene in SWL0051: Aquifer-WT

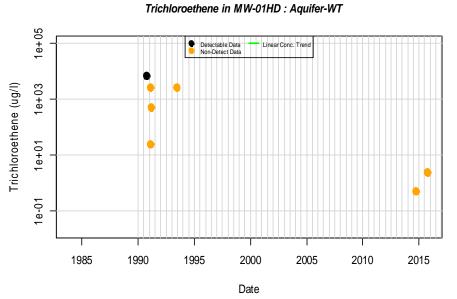



### Trichloroethene in SWL0057: Aquifer-WT

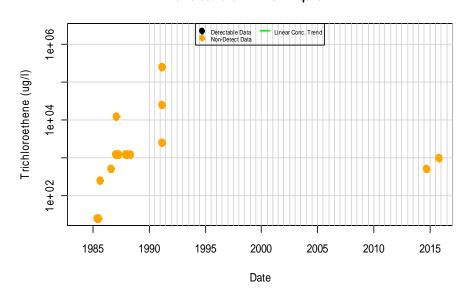



### Trichloroethene in SWL0059 : Aquifer-WT

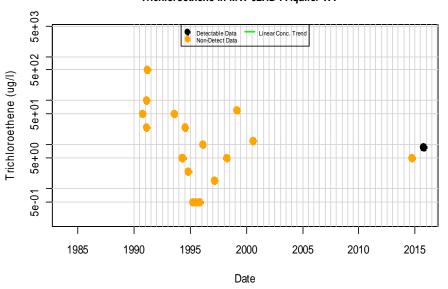


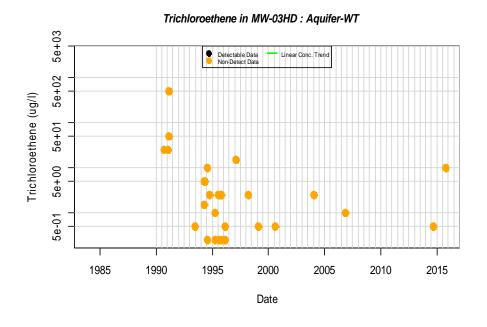


### Trichloroethene in SWL0068: Aquifer-WT

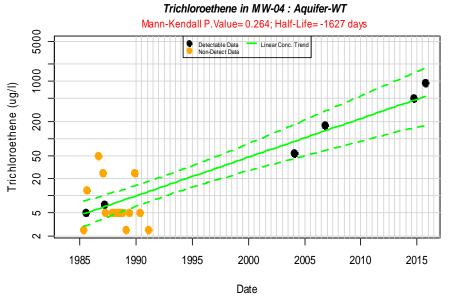


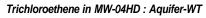

### Trichloroethene in GW-07A: Aquifer-WT

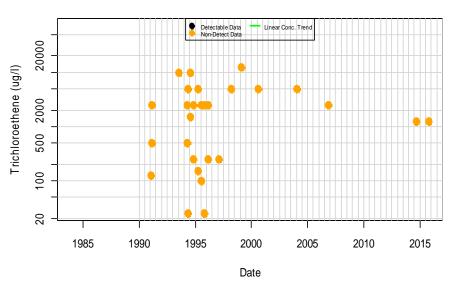




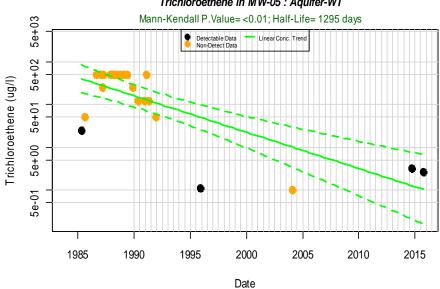





Trichloroethene in MW-02 : Aquifer-WT

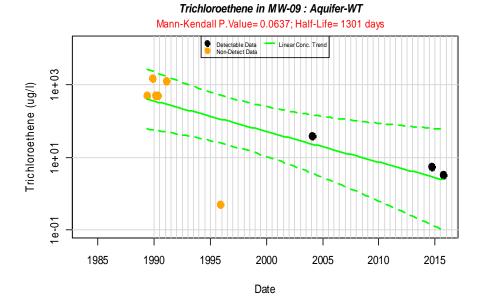


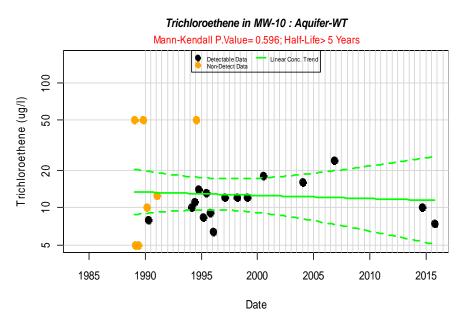


### Trichloroethene in MW-02HD : Aquifer-WT

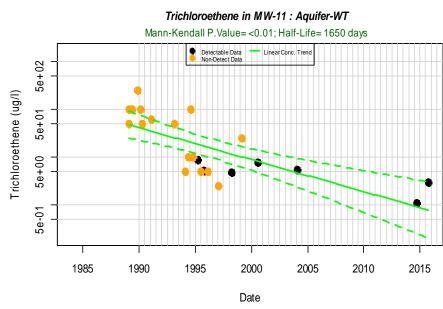






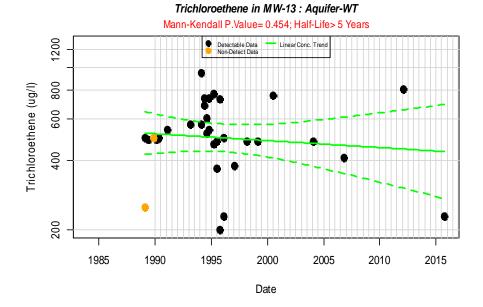



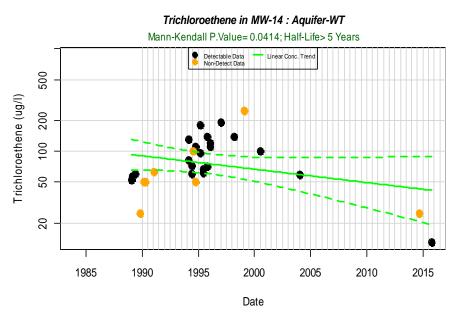



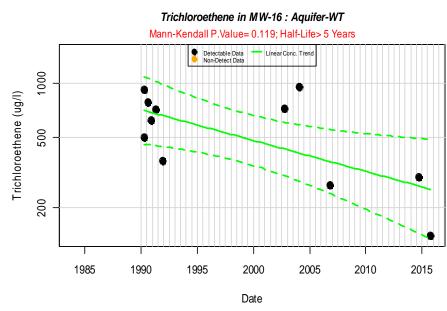


# Trichloroethene in MW-05: Aquifer-WT



### Trichloroethene in MW-06: Aquifer-WT Mann-Kendall P.Value = < 0.01; Half-Life > -5 Years Detectable Data Non-Detect Data Linear Conc. Trend Trichloroethene (ug/I) Date

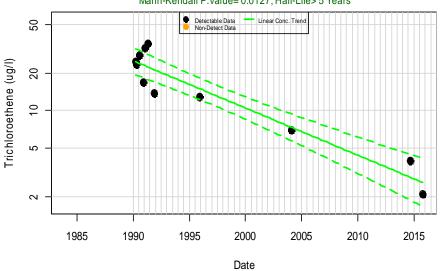


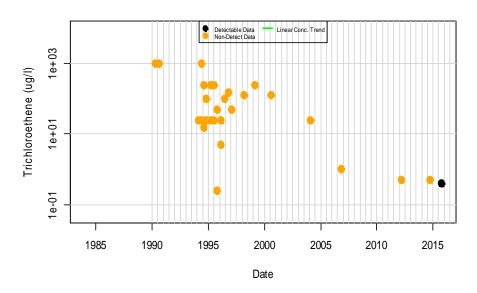




# Trichloroethene in MW-12 : Aquifer-WT Mann-Kendall P.Value = <0.01; Half-Life> 5 Years | Detectable Data | Linear Corc. Trend | Non-Detect Data | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend | Vene Corc. Trend

Date

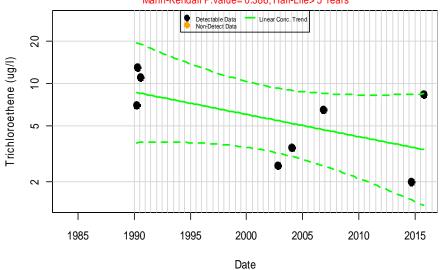




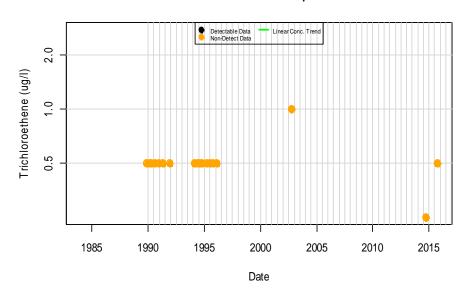




### Trichloroethene in MW-19 : Aquifer-WT

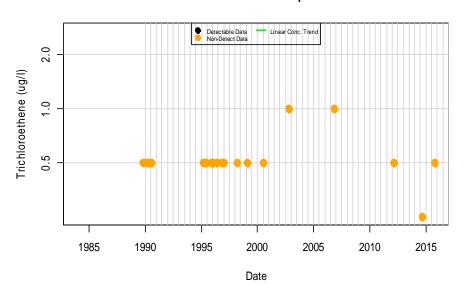
Mann-Kendall P.Value= 0.0127; Half-Life> 5 Years



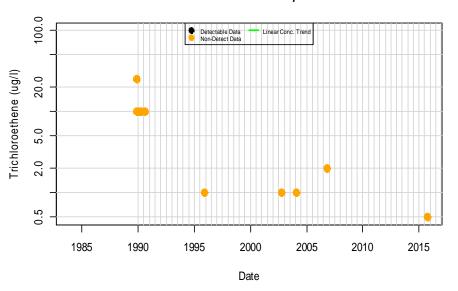

### Trichloroethene in MW-21 : Aquifer-WT



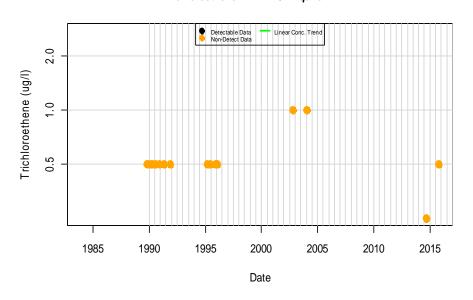

### Trichloroethene in MW-22 : Aquifer-WT


Mann-Kendall P.Value= 0.386; Half-Life> 5 Years

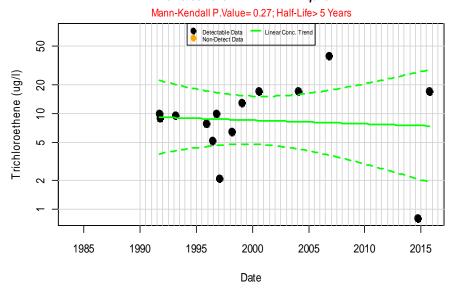



### Trichloroethene in MW-23: Aquifer-WT



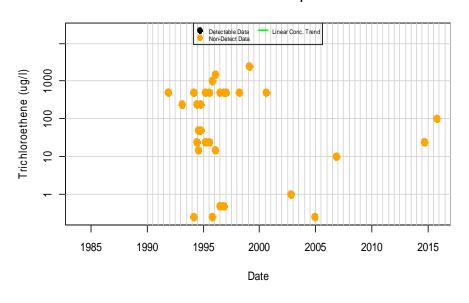

Trichloroethene in MW-24 : Aquifer-WT

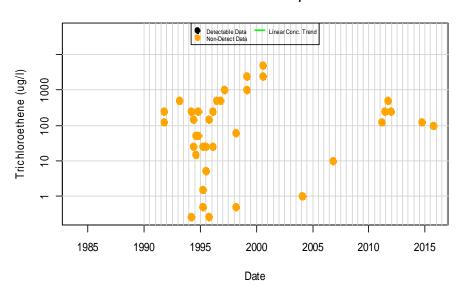



### Trichloroethene in MW-25 : Aquifer-WT

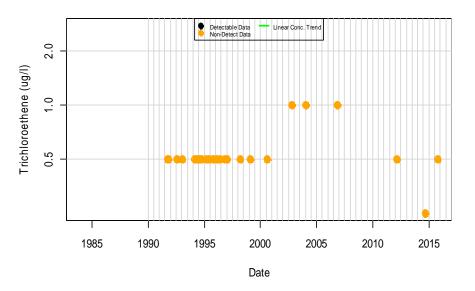


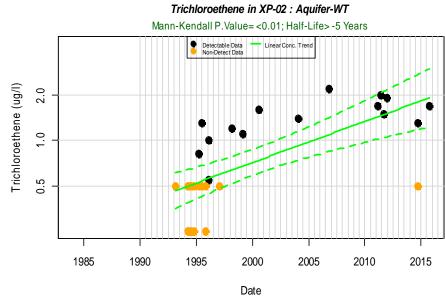
Trichloroethene in MW-26: Aquifer-WT



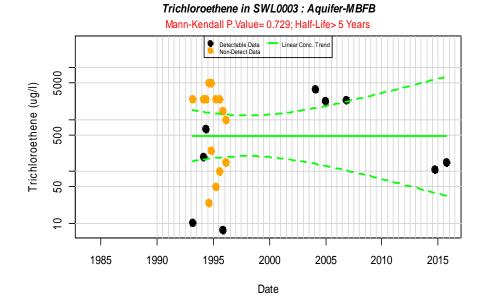


Trichloroethene in MW-27 : Aquifer-WT



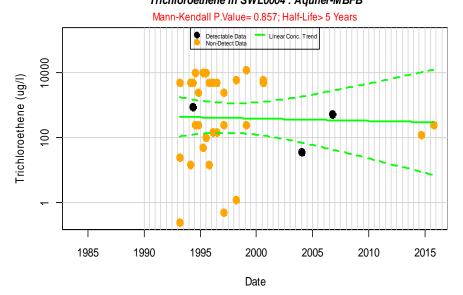

### Trichloroethene in MW-28: Aquifer-WT


### Trichloroethene in MW-29: Aquifer-WT

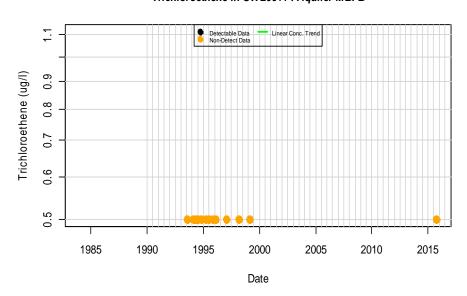





### Trichloroethene in MW-30 : Aquifer-WT

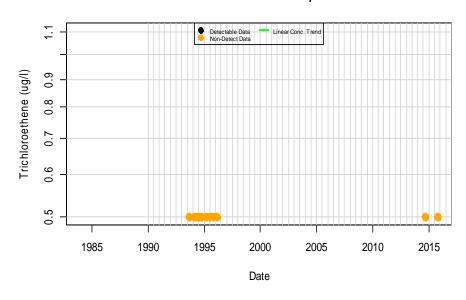


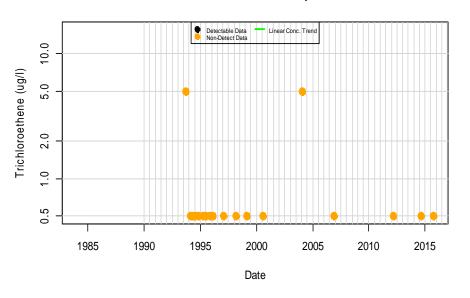




### Trichloroethene in SWL0002: Aquifer-MBFB Mann-Kendall P.Value= 0.0739; Half-Life> 5 Years 1e+05 Detectable Data Non-Detect Data Linear Conc. Trend 1e+04 Trichloroethene (ug/I) 1e+03 1e+02 1e+01 1985 1990 2005 1995 2000 2010 2015 Date

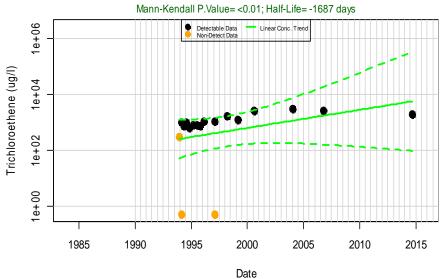


### Trichloroethene in SWL0004 : Aquifer-MBFB



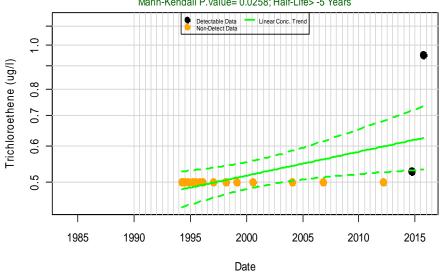


### Trichloroethene in SWL0011 : Aquifer-MBFB




### Trichloroethene in SWL0019: Aquifer-MBFB

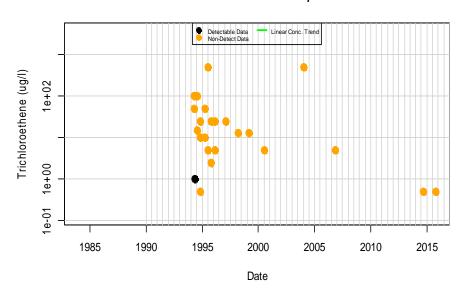
### Trichloroethene in SWL0023: Aquifer-MBFB

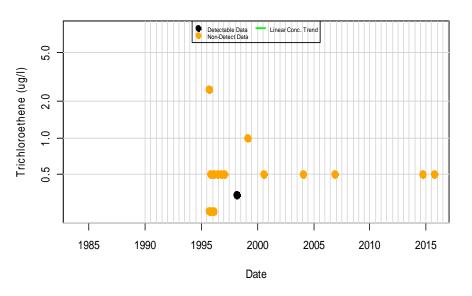





### Trichloroethene in SWL0029: Aquifer-MBFB




### Trichloroethene in SWL0037: Aquifer-MBFB


Mann-Kendall P.Value= 0.0258; Half-Life> -5 Years



### Trichloroethene in SWL0041: Aquifer-MBFB

### Trichloroethene in SWL0047 : Aquifer-MBFB





### Trichloroethene in SWL0048: Aquifer-MBFB

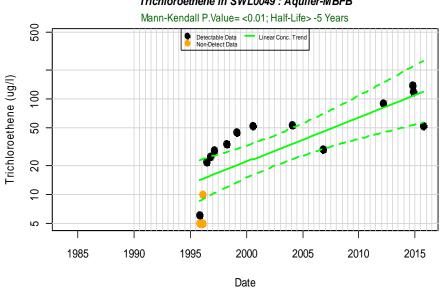
# 

2000

Date

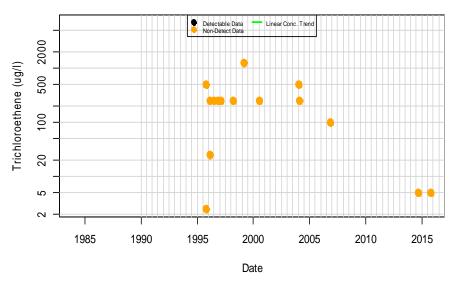
2005

2010


2015

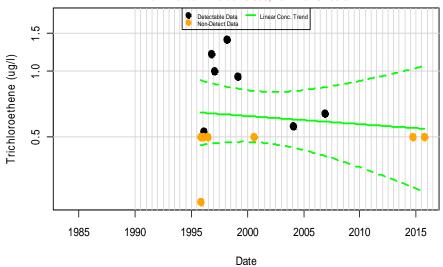
1995

1985

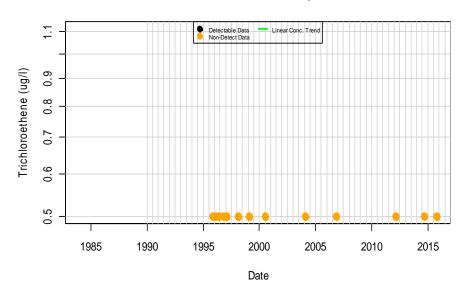

1990

### Trichloroethene in SWL0049 : Aquifer-MBFB

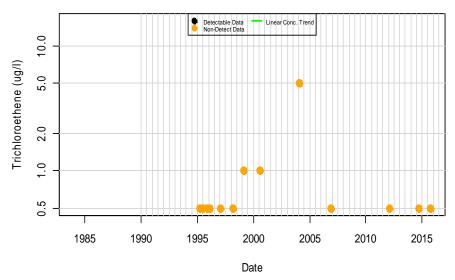



### Trichloroethene in SWL0050: Aquifer-MBFB

### Trichioroethene in SwE0000 . Aquilei-inbrb

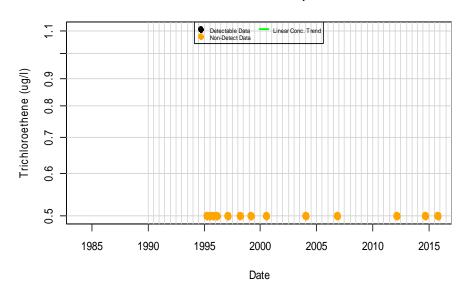


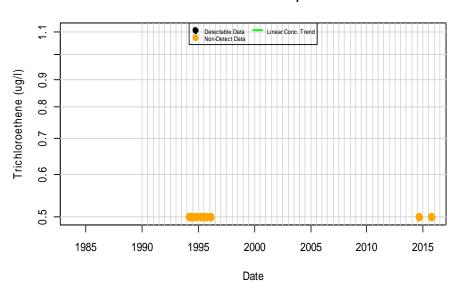

### Trichloroethene in SWL0052 : Aquifer-MBFB


Mann-Kendall P.Value= 0.606; Half-Life> 5 Years



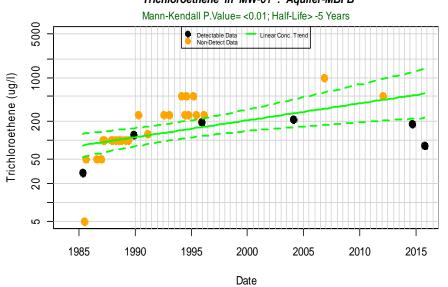
### Trichloroethene in SWL0056: Aquifer-MBFB

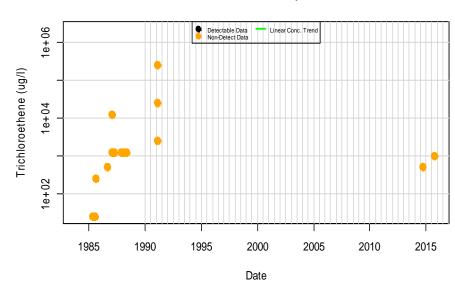


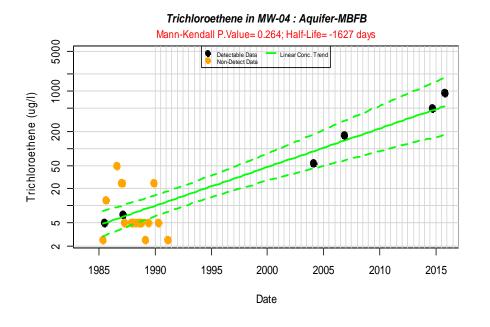


### Trichloroethene in G-01WC : Aquifer-MBFB

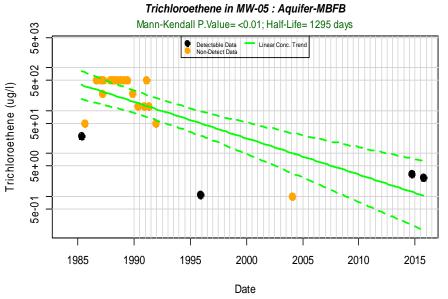


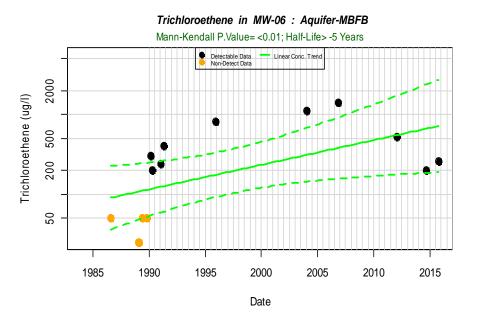
### Trichloroethene in G-02WC: Aquifer-MBFB

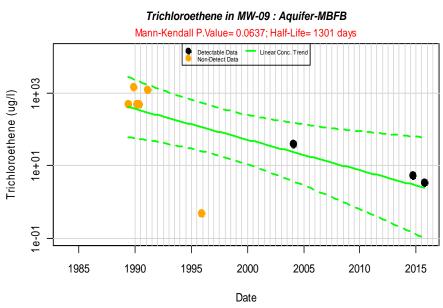

### Trichloroethene in GW-07C: Aquifer-MBFB



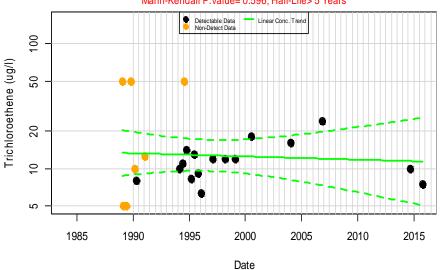


### Trichloroethene in MW-01 : Aquifer-MBFB


Trichloroethene in MW-02 : Aquifer-MBFB



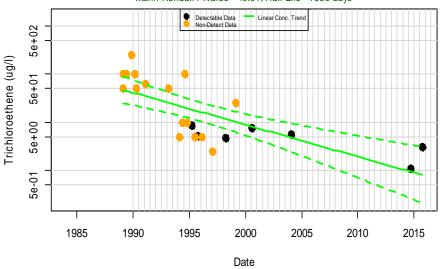




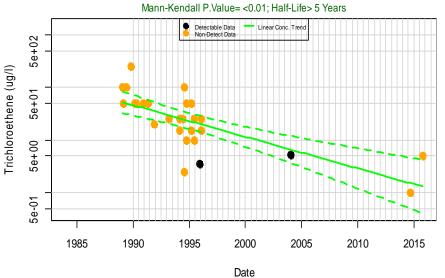





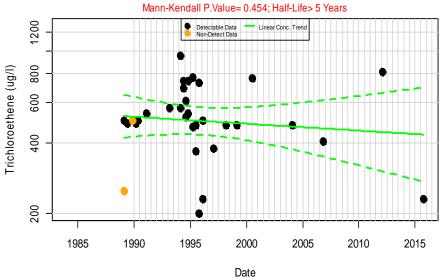




### Trichloroethene in MW-10 : Aquifer-MBFB

Mann-Kendall P.Value= 0.596; Half-Life> 5 Years




### Trichloroethene in MW-11: Aquifer-MBFB


Mann-Kendall P.Value= < 0.01; Half-Life= 1650 days

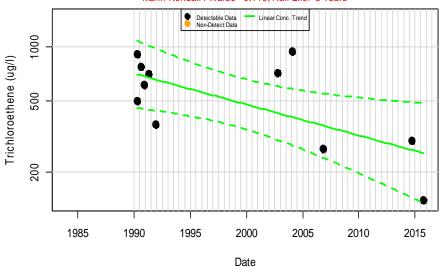


### Trichloroethene in MW-12: Aquifer-MBFB



### Trichloroethene in MW-13: Aquifer-MBFB

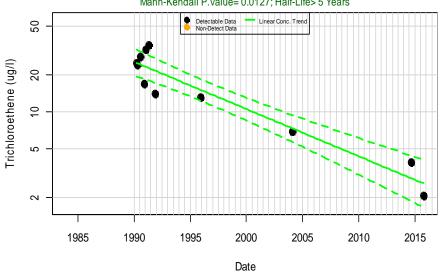



### Trichloroethene in MW-14: Aquifer-MBFB

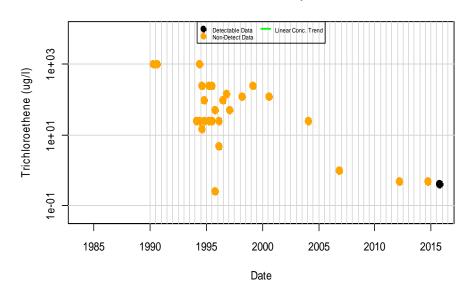
Mann-Kendall P.Value= 0.0414; Half-Life> 5 Years

### Detectable Data Non-Detect Data Linear Conc. Trend 500 Trichloroethene (ug/I) 200 100 20 20 1985 1990 2005 1995 2000 2010 2015

### Trichloroethene in MW-16: Aquifer-MBFB

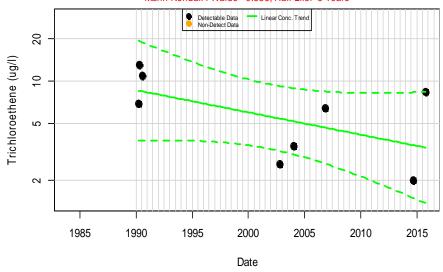

Mann-Kendall P.Value= 0.119; Half-Life> 5 Years



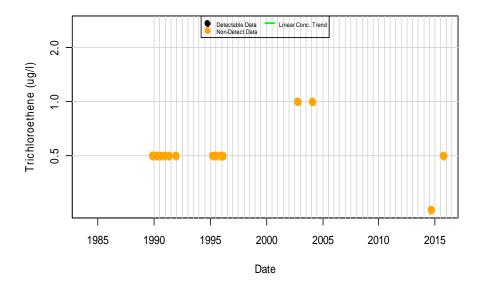

### Trichloroethene in MW-19 : Aquifer-MBFB

Date

Mann-Kendall P.Value= 0.0127; Half-Life> 5 Years

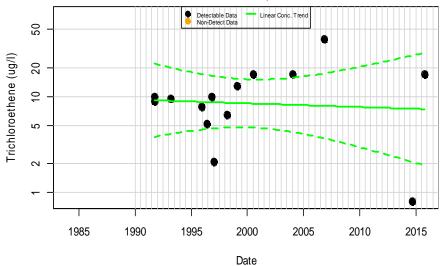



### Trichloroethene in MW-21: Aquifer-MBFB

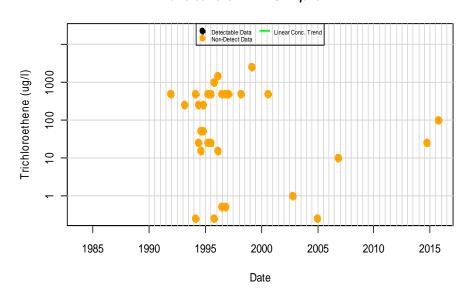



### Trichloroethene in MW-22 : Aquifer-MBFB

Mann-Kendall P.Value= 0.386; Half-Life> 5 Years

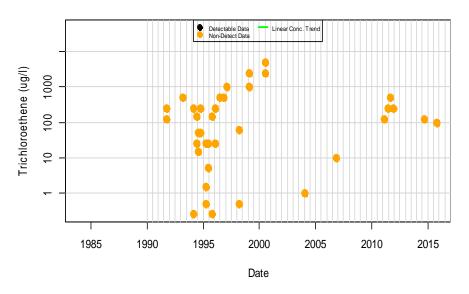


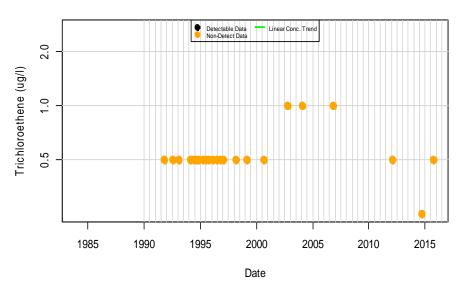

### Trichloroethene in MW-26: Aquifer-MBFB




### Trichloroethene in MW-27 : Aquifer-MBFB

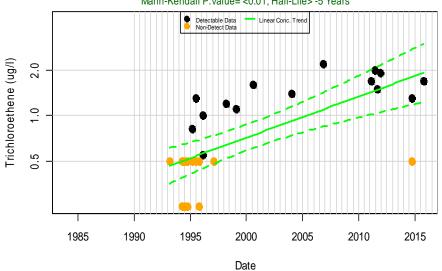
Mann-Kendall P.Value= 0.27; Half-Life> 5 Years



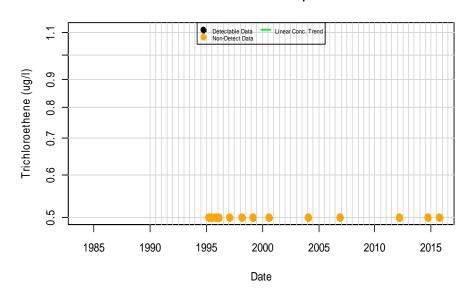


### Trichloroethene in MW-28 : Aquifer-MBFB



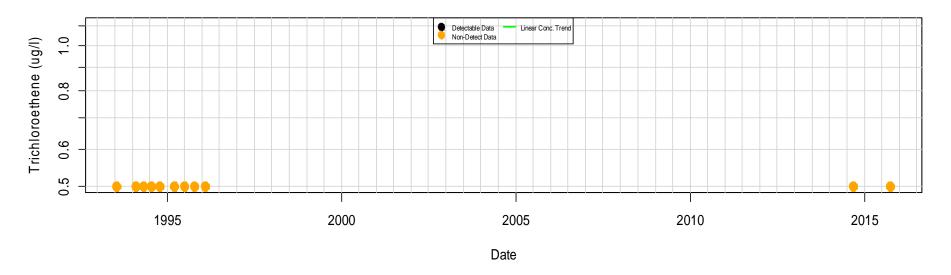
### Trichloroethene in MW-29: Aquifer-MBFB


### Trichloroethene in MW-30 : Aquifer-MBFB

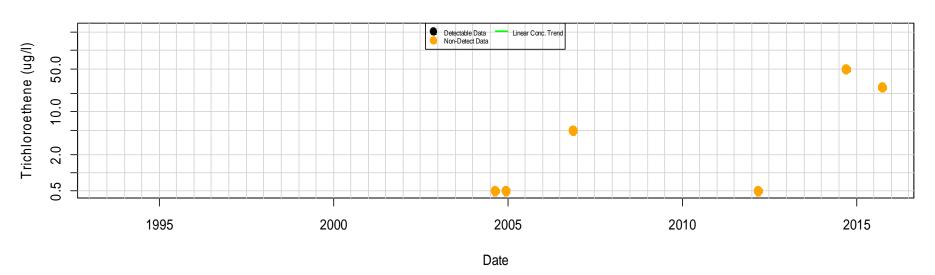





### Trichloroethene in XP-02 : Aquifer-MBFB

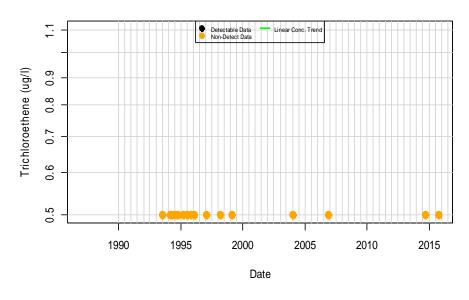

Mann-Kendall P.Value = < 0.01; Half-Life > -5 Years

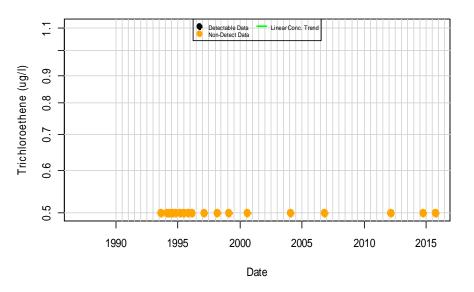



### Trichloroethene in XP-03 : Aquifer-MBFB



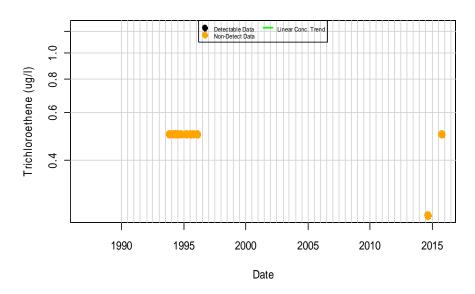
### Trichloroethene in SWL0010 : Aquifer-MBFB/MBFC

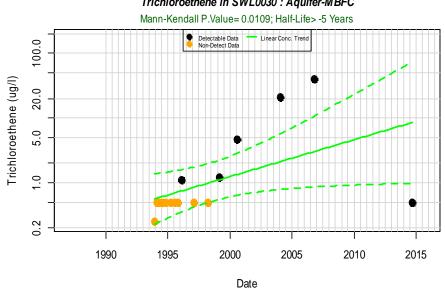




## Trichloroethene in SWL0060 : Aquifer-MBFB/MBFC



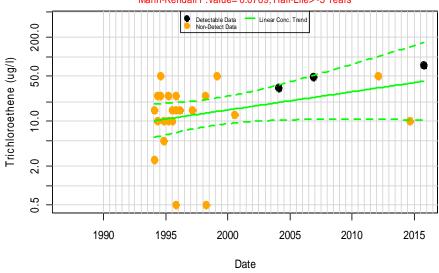
### Trichloroethene in SWL0013: Aquifer-MBFC


### Trichloroethene in SWL0018: Aquifer-MBFC

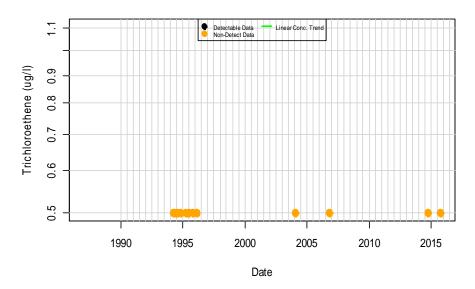




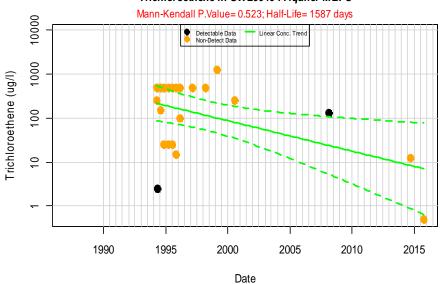

### Trichloroethene in SWL0027: Aquifer-MBFC


### Trichloroethene in SWL0030 : Aquifer-MBFC

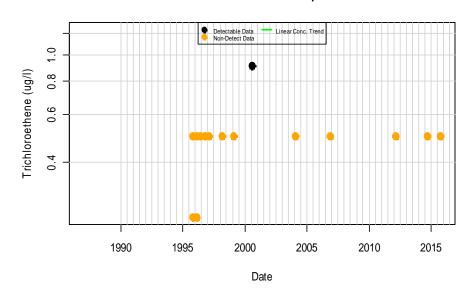





### Trichloroethene in SWL0033: Aquifer-MBFC

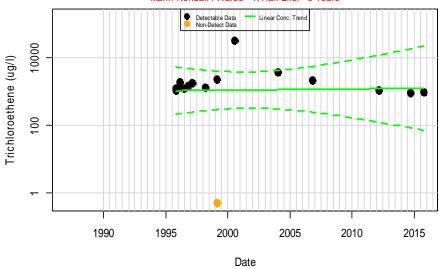

Mann-Kendall P.Value= 0.0769; Half-Life> -5 Years



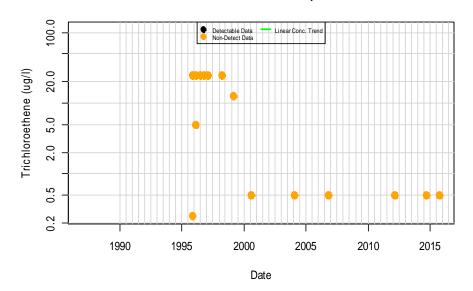

### Trichloroethene in SWL0035 : Aquifer-MBFC



### Trichloroethene in SWL0040 : Aquifer-MBFC

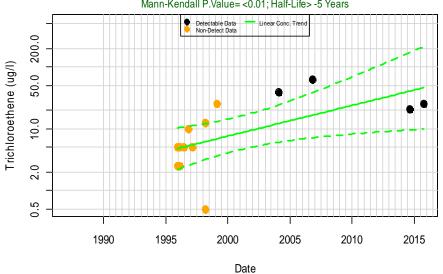



### Trichloroethene in SWL0053: Aquifer-MBFC



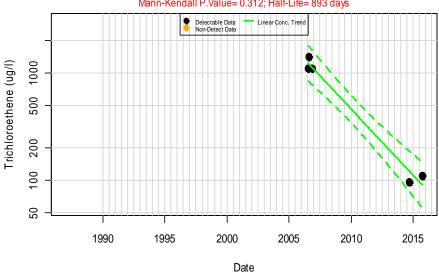

### Trichloroethene in SWL0054: Aquifer-MBFC

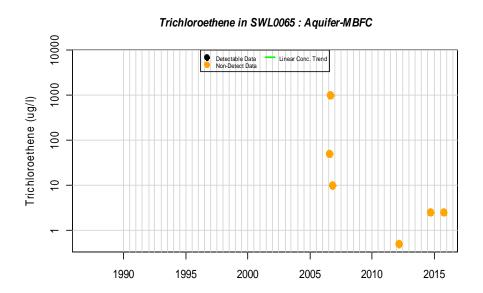
Mann-Kendall P.Value= 1; Half-Life> -5 Years



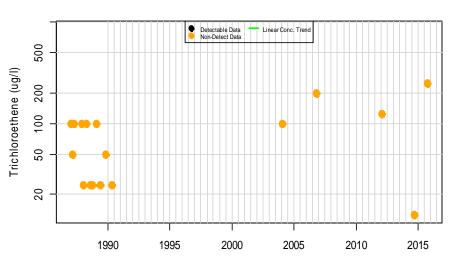

### Trichloroethene in SWL0055 : Aquifer-MBFC




### Trichloroethene in SWL0058: Aquifer-MBFC

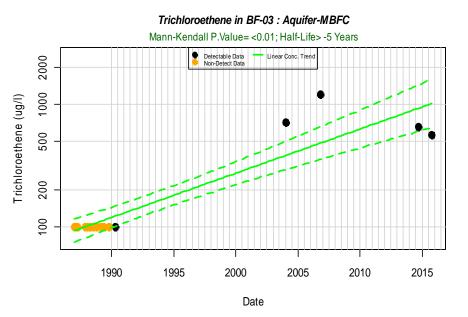

Mann-Kendall P.Value= < 0.01; Half-Life> -5 Years

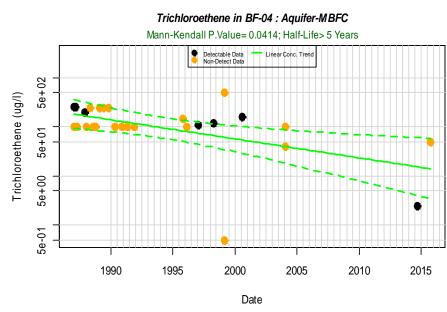



### Trichloroethene in SWL0064: Aquifer-MBFC

Mann-Kendall P.Value= 0.312; Half-Life= 893 days



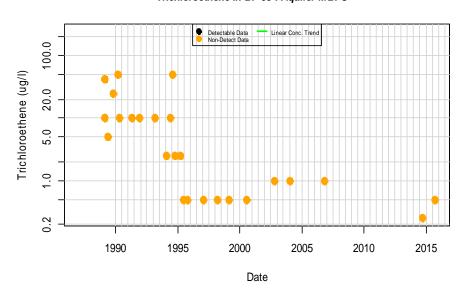


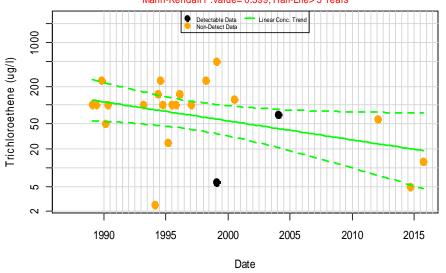


Date



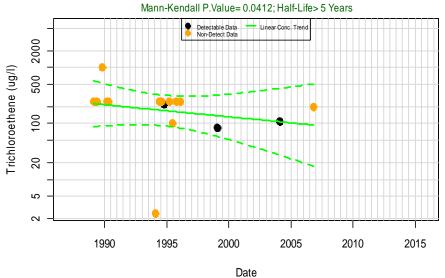
Date

Trichloroethene in BF-02 : Aquifer-MBFC



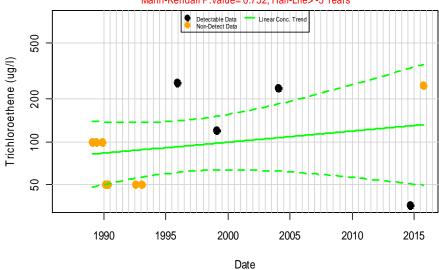




### Trichloroethene in BF-05: Aquifer-MBFC

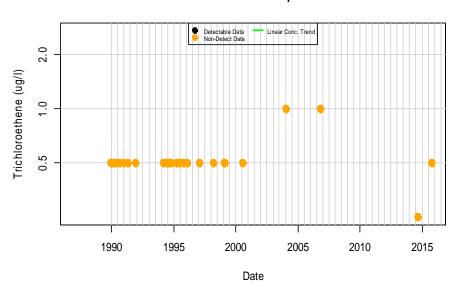

### Trichloroethene in BF-06: Aquifer-MBFC

Mann-Kendall P. Value = 0.399; Half-Life > 5 Years

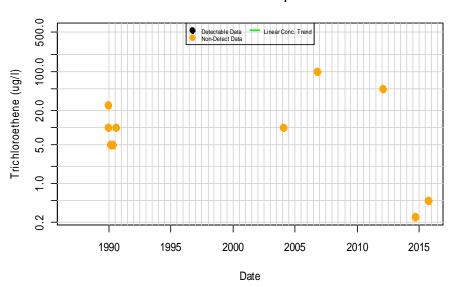




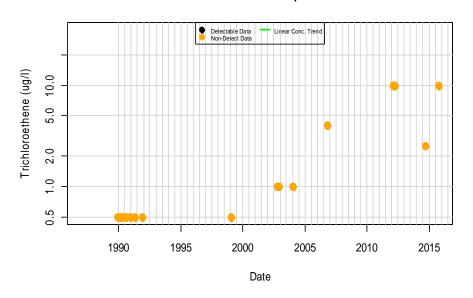

### Trichloroethene in BF-07: Aquifer-MBFC



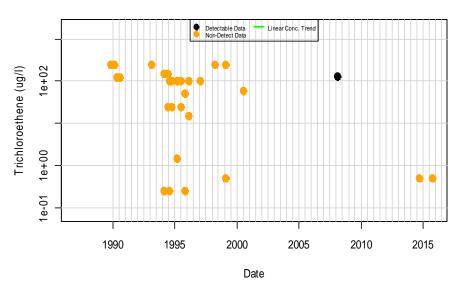

### Trichloroethene in BF-09 : Aquifer-MBFC


Mann-Kendall P.Value= 0.752; Half-Life> -5 Years




Trichloroethene in BF-10 : Aquifer-MBFC



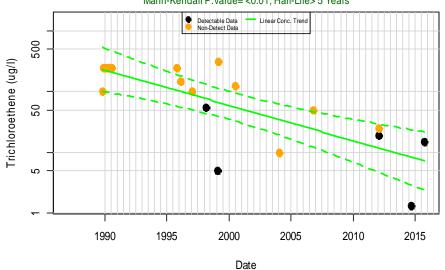

### Trichloroethene in BF-11 : Aquifer-MBFC



Trichloroethene in BF-12 : Aquifer-MBFC

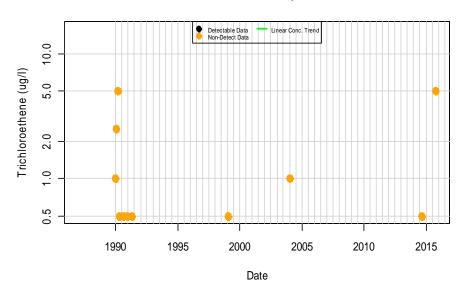


Trichloroethene in BF-13 : Aquifer-MBFC

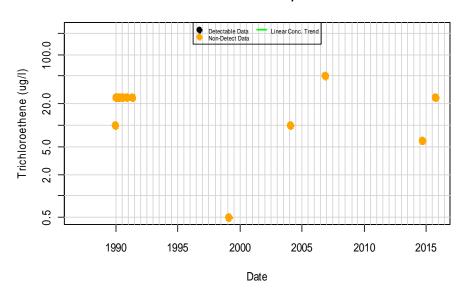



Trichloroethene in BF-14: Aquifer-MBFC

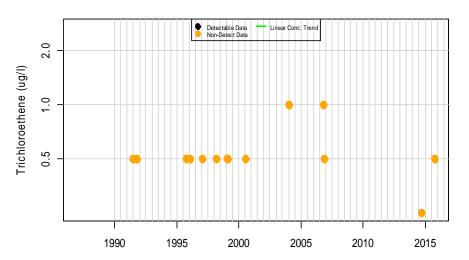
### 


### Trichloroethene in BF-15 : Aquifer-MBFC

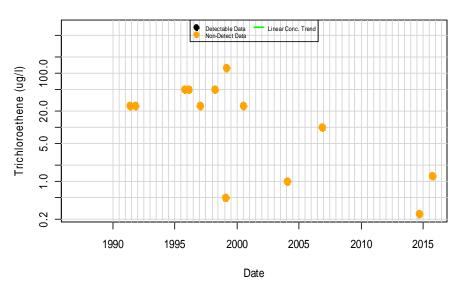
Mann-Kendall P.Value= < 0.01; Half-Life > 5 Years




Trichloroethene in BF-16: Aquifer-MBFC

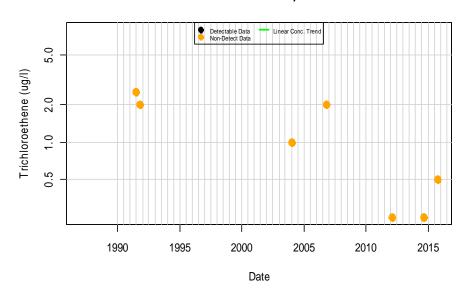

Date



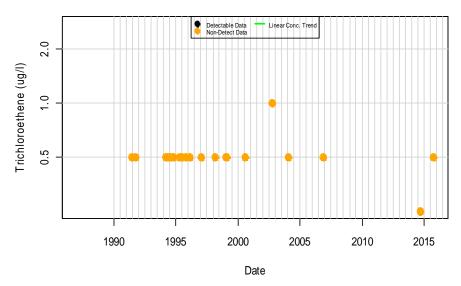

Trichloroethene in BF-17 : Aquifer-MBFC



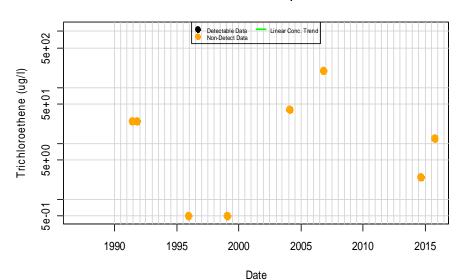
Trichloroethene in BF-19: Aquifer-MBFC




### Trichloroethene in BF-21 : Aquifer-MBFC



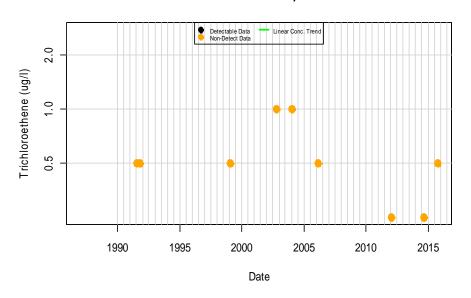

Trichloroethene in BF-22 : Aquifer-MBFC


Date

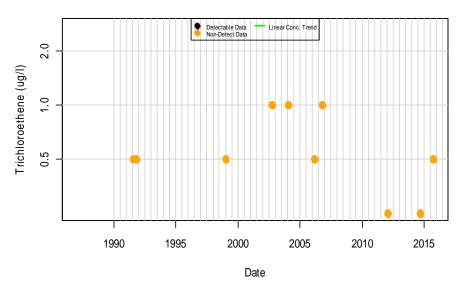


Trichloroethene in BF-23 : Aquifer-MBFC

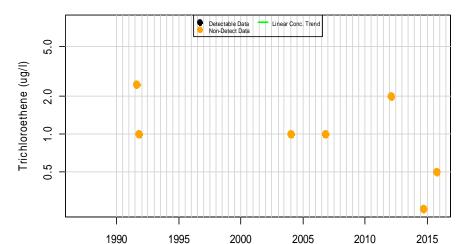



Trichloroethene in BF-24 : Aquifer-MBFC

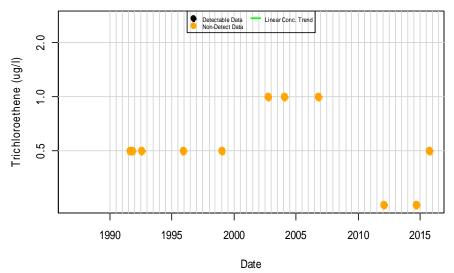



### Trichloroethene in BF-25 : Aquifer-MBFC



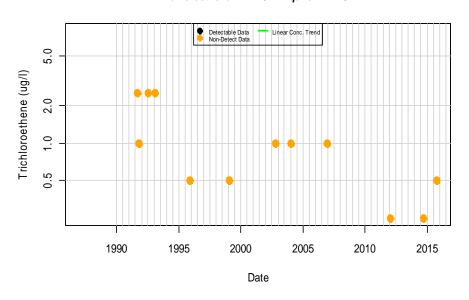

Trichloroethene in BF-27 : Aquifer-MBFC



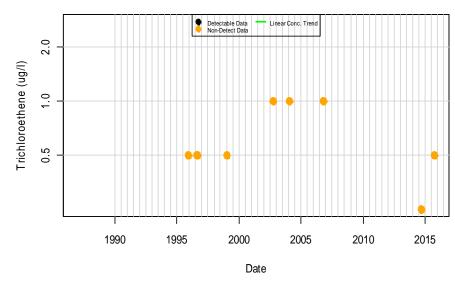

Trichloroethene in BF-28 : Aquifer-MBFC



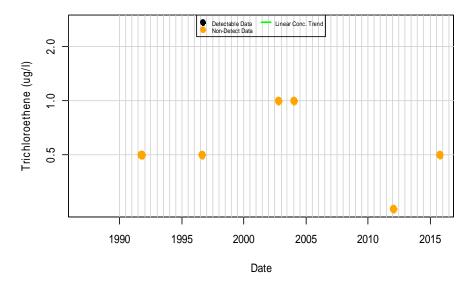
Trichloroethene in BF-29 : Aquifer-MBFC




### Trichloroethene in BF-30 : Aquifer-MBFC

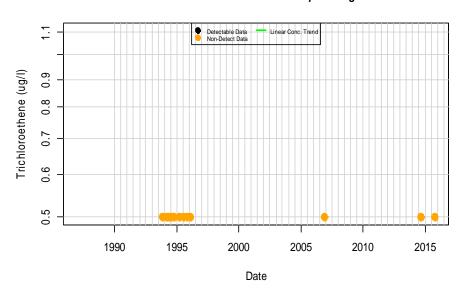


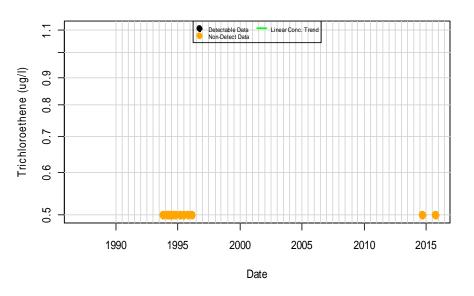

Trichloroethene in BF-31 : Aquifer-MBFC


Date



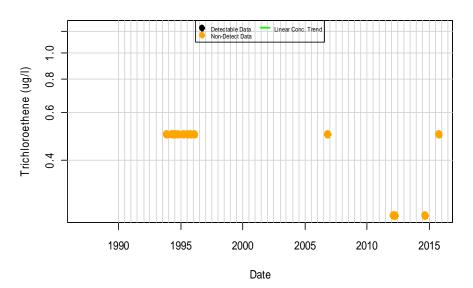
### Trichloroethene in BF-32A : Aquifer-MBFC

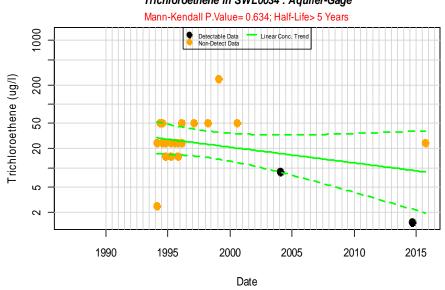




### Trichloroethene in BF-33 : Aquifer-MBFC



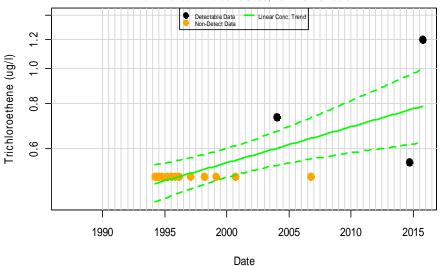
### Trichloroethene in SWL0022: Aquifer-Gage


### Trichloroethene in SWL0025 : Aquifer-Gage



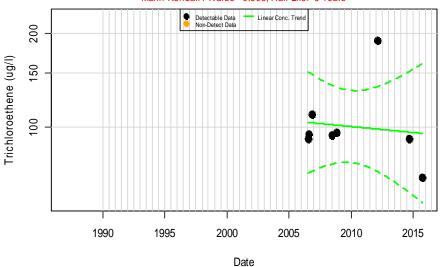



### Trichloroethene in SWL0026: Aquifer-Gage


### Trichloroethene in SWL0034 : Aquifer-Gage

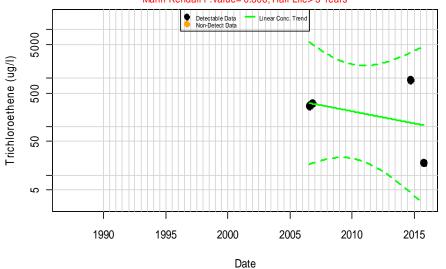




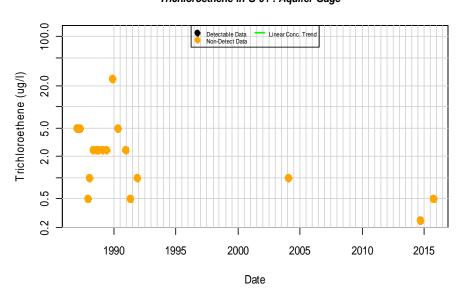

### Trichloroethene in SWL0036 : Aquifer-Gage

### Mann-Kendall P.Value= 0.0136; Half-Life> -5 Years



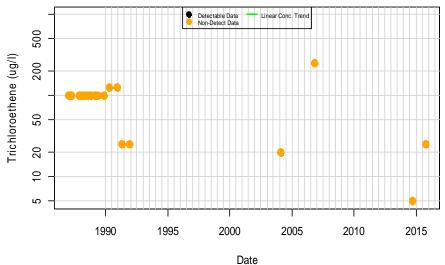

### Trichloroethene in SWL0063 : Aquifer-Gage

Mann-Kendall P.Value= 0.803; Half-Life> 5 Years

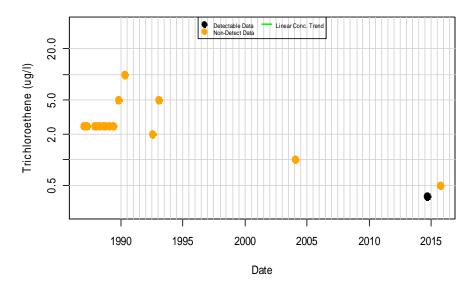



### Trichloroethene in SWL0066: Aquifer-Gage

Mann-Kendall P.Value= 0.806; Half-Life> 5 Years



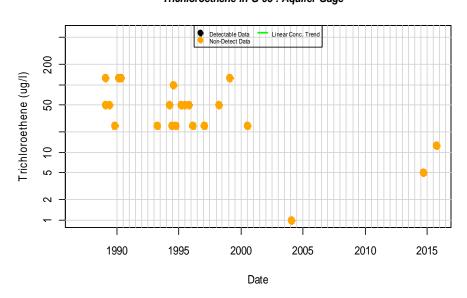

### Trichloroethene in G-01: Aquifer-Gage



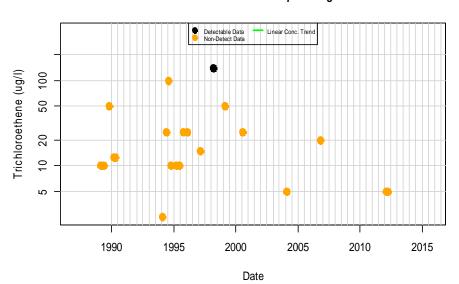

Trichloroethene in G-02 : Aquifer-Gage

# monorocarone in 0 02 : Aquirer Gage

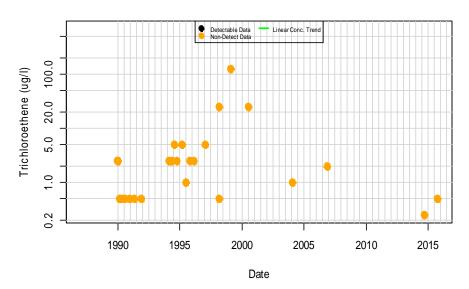



### Trichloroethene in G-03 : Aquifer-Gage

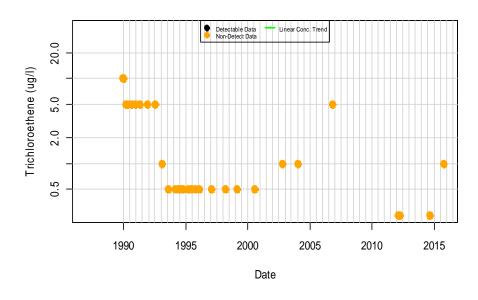



Trichloroethene in G-04 : Aquifer-Gage

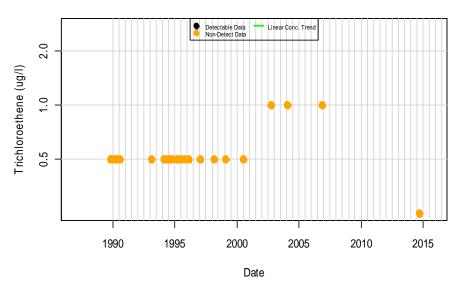
Date


Trichloroethene in G-05 : Aquifer-Gage

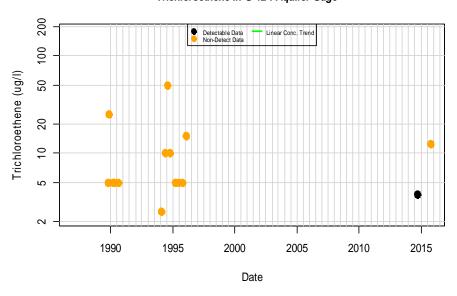



Trichloroethene in G-06: Aquifer-Gage

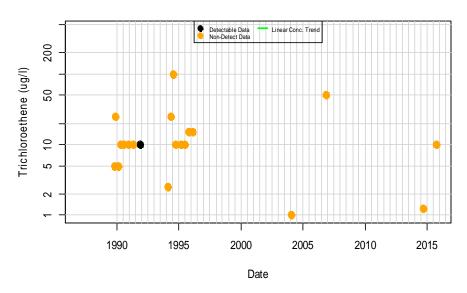



### Trichloroethene in G-08 : Aquifer-Gage

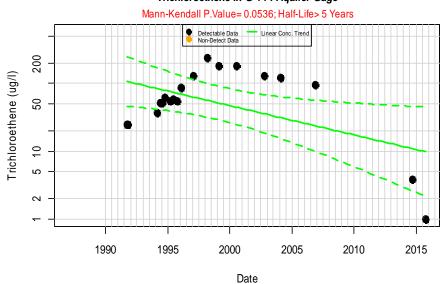



Trichloroethene in G-09 : Aquifer-Gage

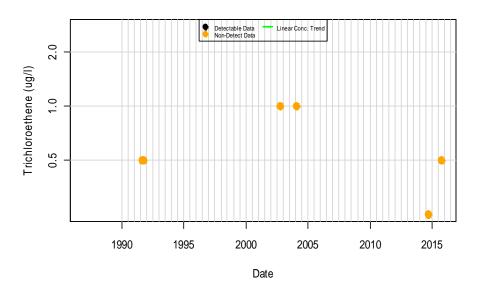



Trichloroethene in G-11 : Aquifer-Gage




Trichloroethene in G-12 : Aquifer-Gage




### Trichloroethene in G-13 : Aquifer-Gage



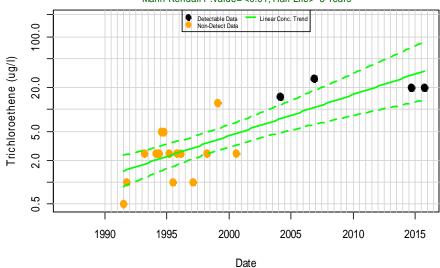
Trichloroethene in G-14 : Aquifer-Gage



Trichloroethene in G-15 : Aquifer-Gage



Trichloroethene in G-16: Aquifer-Gage


### Detectable Data Non-Detect Data Linear Conc. Trend 2.0 Trichloroethene (ug/I) 1.0 0.5

1990

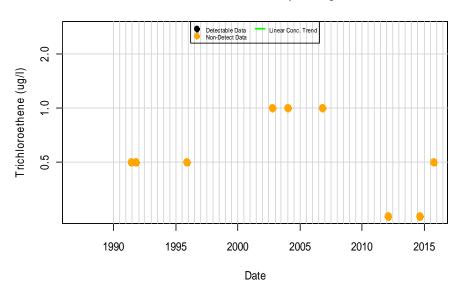
1995

### Trichloroethene in G-17: Aquifer-Gage

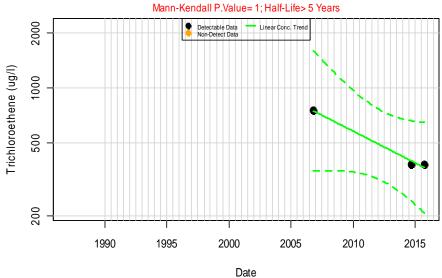
Mann-Kendall P.Value = < 0.01; Half-Life > -5 Years



Trichloroethene in G-18: Aquifer-Gage

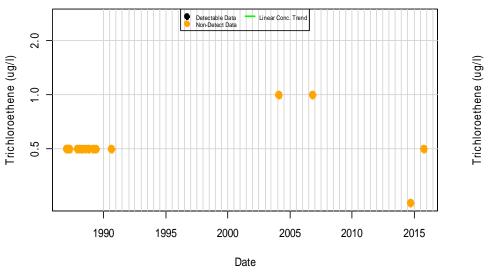

Date

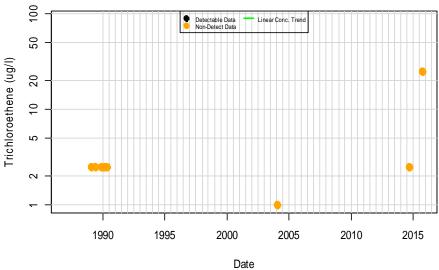
2000


2005

2010

2015





### Trichloroethene in G-21: Aquifer-Gage



### Trichloroethene in LG-01 : Aquifer-Gage

### Trichloroethene in LG-02 : Aquifer-Gage





# APPENDIX I DATA VALIDATION

### MONTROSE DATA VALIDATION

Laboratory SDG #	Sample lds.	No. of Samples	Sample Date	Parameter/ Analytical Method	Data Review Effort	QC Reviewed	Data Usability
15-08-1769	G20-082515, MW31-082515, BF34-082515, MW03-082515	4	8/25/2015				No data required qualification as a result of this review effort.
15-08-1833	GOW01-082615, BF01-082615, BFOW01-082615, MW08-082615, MBFBOW01-082615, MBFBOW01-082615, MW17-082615, BF20- 082615, BF20-082615, MW07-082615	10	8/26/2015				No data required qualification as a result of this review effort.
15-08-1944	BL13C-082715, P10-082715, P16C-082715, P26C-082715, P22- 082715	5	8/27/2015				No data required qualification as a result of this review effort.
15-09-0165	MWC021-090215, MWC017-090215, CMW001-090215, MWB029- 090215, CMW002-090215	5	9/2/2015				No data required qualification as a result of this review effort.
15-09-2371	PZL0025-093015, SWL0057-093015, SWL0037-093015, XMW27- 093015, SWL0035-093015, SWL0013-093015, XMW21-093015	7	9/3/2015	pCBSA/ EPA		Holding Times, Sample Receipt Conditions, MB,	No data required qualification as a result of this review effort.
15-10-0113	SWL0022-100115, SWL002200-100115, SWL0058-100115, SWL0010- 100115, SWL0036-100115, SWL0025-100115, XG02WC-100115, XG02WC00-100115, XBF13-100115, SWL0023-100115, SWL0033- 100115, SWL003300-100115, XG17-100115, XMW14-100115, XMW1400-100115	15	10/1/2015	- Method 314.0	Level 3	LCS/LCSD, MS/MSD (if available)	Results for pCBSA in SWL0022-100115, SWL002200- 100115, SWL0058-100115, XG02WC-100115, XG02WC00-100115, SWL0033-100115, SWL003300- 100115, XG17-100115, XMW14-100115, and XMW1400-100115 were qualified estimated (J) due to poor reproducibilty between duplicate results and based on professional judgement
15-10-0185	SWL0053-100215, XMW28-100215, XMW29-100215, XBF06-100215, XBF0600-100215, SWL0063-100215	6	10/2/2015				No data required qualification as a result of this review effort.
15-10-0283	SWL0052-100515	1	10/5/2015				No data required qualification as a result of this review effort.
15-09-2139	TB-20150928, EB-20150928, MW-23-20150928, BF-14-20150928, G-13-20150928, G-1300-20150928, G-08-20150928, BF-15-20150928, BF-05-20150928, MW-12-20150928, G-16-20150928, MW-26-20150928, MW-24-20150928, MW-30-20150928, MW-01-20150928, MW-04-20150928, MW-05-20150928, MW-0500-20150928	18	9/28/2015	VOAs/EPA Method 8260B	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for vinyl acetate in all samples were qualifed estimated due to a MS/MSD RPD excursion. Results for bromomethane and 2,2-dichloropropane in all samples were qualified estimated (J, UJ) due to poor MS/MSD and/or LCS % recoveries. Results for chlorobenzene in MW-23-20150928 and MW-30-20150928 and for carbon disulfide in TB-20150928 were qualified as not detected (U) at the sample-specific RL or reported values, whichever is greater, due to associated blank contamination. Although calibration data were included in the data package and the narrative identified excursions, the impact of these excursions is outside the scope of a Stage 2A review.
		16		pCBSA/ EPA Method 314.0		Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for pCBSA in all samples were qualified as estimated (J, UJ) due to unacceptable MS/MSD recoveries and/or MS/MSD RPD values.

Laboratory SDG #	Sample Ids.	No. of Samples	Sample Date	Parameter/ Analytical Method	Data Review Effort	QC Reviewed	Data Usability
SWL0049-20150928, SWL004900-20150928, SWL0026-20150928 15-09-2295 SWL0027-20150929, G-18-20150929, G-19A-20150929, BF-24- 20150929, G-0W-3-20150929, G-23-20150929, MW-10-2015092		23	9/282015, 9/29/2015	VOAs/EPA Method 8260B	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for bromomethane in all samples were qualified estimated (UJ) due to poor MS/MSD % recoveries. Although calibration data were included in the data package and the narrative identified excursions, the impact of these excursions is outside the scope of a Stage 2A review.
	MW-11-20150929, BF-10-20150929, G-09-20150929, BF-30- 20150929, BF-22-20150929, G-27-20150929, BF-16-20150929, G-24- 20150929, TB-20150929, EB-20150929, LW-06-20150929, LW-07- 20150929, MW-19-20150929, MW-09-20150929	21	21			Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	No data required qualification as a result of this review effort.
15-09-2375	BF-12-20150929, BF-1200-20150929, G-35-20150930, BF-28-20150930, BF-27-20150930, BF-36-20150930, G-32-20150930, G-15-20150930, BF-21-20150929, BF-0W-4-20150929, BF-32A-20150930, G-33-20150930, G-30-20150930, BF-31-20150930, G-26-20150930, G-2600-20150930, MW-22-20150930, TB-20150930, EB-20150930, BF-09-20150930, BF-03-20150930, MW-02-20150930, MW-0200-20150930, BF-02-20150930	24	9/29/2015, 9/30/2015	VOAs/EPA Method 8260B	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for bromomethane, tetrachloroethene, and carbon disulfide in all samples were qualified estimated (J, UJ) due to poor MS/MSD and/or LCS % recoveries. Results for chlorobenzene in G-35-20150930, BF-28-20150930, BF-36-20150930, G-32-2015-0930, BF-31-20150930, and MW-22-20150930 were qualified as not detected (U) at the sample-specific RL or reported value, whichever is greater due to blank contamination. Although calibration data were included in the data package and the narrative identified excursions, the impact of these excursions is outside the scope of a Stage 2A review.
		22		pCBSA/ EPA Method 314.0		Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	No data required qualification as a result of this review effort.

				Parameter/	Data			
Laboratory SDG #	Sample Ids.	No. of Samples	Sample Date	Analytical	Review	QC Reviewed	Data Usability	
,	·		·	Method	Effort	•	·	
15-10-0112	LW-05-20151001, LG-01-20151001, G-21-20151001, G-02-20151001, LG-02-20151001, LG-02-20151001, BF-04-20151001, BF-19-20151001, G-01-20151001, TB-20151001, LW-04-20150930, LW-0400-20150930, G-14-20150930, G-28-20151001, G-34-20151001, G-25-20151001, SWL0034-20151001, G-12-20151001, LW-01-20151001, BF-35-20151001, EB-20151001, BF-29-20150930, BF-33-20150930	23	9/302015, 10/1/2015	VOAs/EPA Method 8260B	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for bromomethane in all samples were qualified estimated (UJ) due to poor MS/MSD and/or LCS % recoveries. Results for naphthalene in BF-19-20151001, G-01-20151001, LW-04-20150930, LW-0400-20150930, G-14-20150930, G-28-20151001, G-34-20151001, G-25-20151001, SWL00034-20151001, G-12-20151001, LW-01-20151001, BF-35-20151001, and EB-20151001 were qualified as not detected (U) at the sample-specific RL or reported value, whichever is greater, due to blank contamination. Although calibration data were included in the data package and the narrative identified excursions, the impact of these excursions is outside the scope of a Stage 2A review.	
				pCBSA/ EPA Method 314.0	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	No data required qualification as a result of this review effort.	
						Holding Times, Sample	Results for t-Butylbenzene in all samples were	
					Level 4	Receipt Conditions, MB,	quailified as estimated (UJ) due to unacceptable IC	
		9				LCS/LCSD, MS/MSD (if	RSD. Results for chloromethane and	
				VOAs/EPA		available), calibration,	tetrachloroethene in G-05-20151002 and MW-16-	
	B-20151002, EB-20151002, G-05-20151002, MW-16-20151002,			Method		reported concentrations,	20151002 were qualified estimated (UJ) due to loss in	
	MW-6-20151002, MW-13-20151002, G-29-20151002, G-31-		10/2/2015	8260B		mass spectra	sensitivity from the IC.	
	20151002, LW-2-20151002	7		pCBSA/ EPA Method 314.0	Level 4	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available), calibration, reported concentrations	No data required qualification as a result of this review effort.	
15-10-0569	TB-20151007, EB-20151007, SWL0011-20151007, G-03-20151007, G- 04-20151007, MW-25-20151007, BF-23-20151007, BF-11-20151007,	8	10/7/2015	VOAs/EPA Method 8260B	Level 4	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available), calibration, reported concentrations, mass spectra	Results for bromomethane in all samples were qualified estimated (UJ) due to poor LCS % recoveries and loss of sensitivity from the IC. Results for PCE in all samples and for acetone in G-04-20151007 were qualified estimated (J, UJ) due to loss of sensitivity from the IC.	
	BF-17-20151007, BF-25-20151007	6	10/7/2015	pCBSA/ EPA Method 314.0		Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available), calibration, reported concentrations	No data required qualification as a result of this review effort.	

Laboratory SDG #	Sample Ids.	No. of Samples	Sample Date	Parameter/ Analytical Method	Data Review Effort	QC Reviewed	Data Usability
15-11-0053	TD 20151102 MDED FW 01 20151102 MDED FW 0100 20151102	3	11/2/2015	VOAs/EPA Method 8260B			No data required qualification as a result of this review effort.
15-11-0053	TB-20151102, MBFB-EW-01-20151102, MBFB-EW-0100-20151102	2	11/2/2015	pCBSA/ EPA Method 314.0	Level 3	Holding Times, Sample Receipt Conditions, MB, LCS/LCSD, MS/MSD (if available)	Results for p-CBSA were qualified estimated (J) due to poor %D between field duplicates.

## DEL AMO DATA VALIDATION



### **Data Validation Memorandum**

999 W Town and Country Road Orange, CA 92868

TO: Julie Doane-Allmon FILE: 29500877.05

**FROM:** Lily Bayati, Senior Project Chemist SITE: Del Amo - 2015

**GW** Sampling Event

**DATE:** February 10, 2016

SUBJECT: Summary of Data Validation for Eurofins/Calscience Reports: 15-09-2353, 15-09-2354,

15-09-2359, 15-09-2373, 15-09-2374, 15-10-0103, 15-10-0104, 15-10-0105, 15-10-0106, 15-10-0107, 15-10-0212, 15-10-0213, 15-10-0214, 15-10-0215, 15-10-0220, 15-10-0429,

15-10-0430, and 15-10-1583

#### Introduction

This report summarizes the findings of the data validation of 95 water samples (including nine field duplicates), 17 trip blanks, and 17 equipment blanks. These samples were collected between September 30, and October 21, 2015 as part of the 2015 Groundwater (GW) Sampling Event at Del Amo Superfund Site. Eurofins/Calscience Laboratories in Garden Grove, California performed all analyses. The samples are listed in Table 1 included at the end of this document. The data were reviewed in accordance with AECOM Standard Operating Procedures, and the principles presented in *USEPA National Functional Guidelines For Inorganics Superfund Data Review* (EPA, 2010, 2014), and *USEPA National Functional Guidelines for Superfund Organic Methods Data Review* (EPA, 2008, 2014).

### **Overall Assessment**

The data reported in these sample delivery groups (SDGs), as qualified, are considered to be usable for meeting project objectives. All results are considered to be valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the project is 100%. Additionally, because all samples in this data set were collected and analyzed under similar prescribed conditions, the data within this set are considered to be comparable.

### **Data Review Narratives**

Ninety-five (95) water samples were collectively analyzed for volatile organic compounds (VOCs; EPA method 8260B), methane (RSK-175M), alkalinity (Standard method; SM 2320B), nitrate, sulfate (EPA method 300.0), ferrous iron (SM 3500-FeB), carbon dioxide (SM 4500-CO2D), manganese (EPA method 6010B), polynuclear aromatic hydrocarbons (EPA method 8270C), gasoline range organics (GRO C6-C12; EPA method 8015B modified), TPH carbon range (C6-C44; EPA method 8015B), ignitability (EPA method 1010), and total metals (EPA methods 6010B, 747A). In addition, 17 trip blanks, and 17 equipment blanks were analyzed for VOCs (EPA method 8260B). The laboratory data were reviewed to evaluate compliance with these methods and the quality of the data reported (EPA Superfund Stage 2A/2B validation). Full validation including recalculation (EPA Superfund Stage 4A validation) was performed on more than 10% of the laboratory data. The following summarizes the results of this review.

The areas of review are listed below. A check mark  $(\checkmark)$  indicates an area of review in which all data were acceptable. A crossed circle  $(\otimes)$  signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Data Completeness
- ⊗ Holding Times and Preservation
- ✓ Calibrations (Full Validation)
- ✓ Internal Standards (Full Validation)
- ✓ GC/MS Instrument Performance Check Samples (Full Validation)
- ✓ Interference Check Samples; ICS (Full Validation)
- ⊗ Blanks
- ✓ System Monitoring Compounds (Surrogates)
- ✓ Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicate Samples (MS/MSD)
- ✓ Field Duplicates
- ✓ Laboratory Duplicates
- ✓ Analyte Identification and Quantitation

### 1. <u>Data Completeness</u>

All analyses were performed as requested on the chain-of-custody records (COCs). The laboratory reported all requested analyses and the deliverable data reports were complete.

### 2. Holding Times and Preservation

All analyses were performed within the method-specified holding times with the exceptions listed in the following table. In addition, all samples were collected and preserved appropriately.

Method	Sample	Analyte	<b>Date Sampled</b>	Date Prepared	Date Analyzed	Qualifier
SM 3500-FeB	GWS02530	Iron II	10/2/15	10/4/15	10/5/15	J
	GWS02584					
	GWS02539					
	GWS02556					
	GWS02510					
	GWS02546					
	GWS02533					
	GWS02531					
	GWS02536					
	GWS02563					
	GWS02509					

### 3. Calibration (Full Validation)

### 3.1 Initial Calibration (IC)

Appropriate initial calibrations were performed for each analyte for each method. Compliance requirements for each method were met and did not require data qualification.

### 3.2 <u>Initial Calibration Verification, Continuing Calibration Verification</u> (ICV, CCV) The acceptance criteria for all ICVs and CCVs were met or did not require qualification.

### 3.3 <u>Initial Calibration Blanks, Continuing Calibration Blanks</u> (ICB, CCB) Manganese was not detected in the ICBs and CCBs.

### 4. <u>Internal Standards</u> (Full Validation)

All internal standard retention times were within  $\pm 30$  seconds of the associated continuing calibration internal standard retention time. All internal standard area counts were within the acceptance criteria (>50% and <200%) of the associated continuing calibrations internal standard area counts.

### 5. GC/MS Instrument Performance Check Samples (Full Validation)

Compliance requirements for instrument performance check samples were met for all applicable analyses.

### 6. <u>Interference Check Samples; ICS</u> (Full Validation)

ICSs were analyzed at the proper frequency and location during the analytical runs for the manganese analyses. All ICS results met acceptance criteria.

### 7. Blanks

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed. Target analytes were either not detected in the associated method blanks, trip blanks, and equipment blanks or did not require data qualification with the following exceptions.

Method	Blank	Analyte	Concentration	Qualified Samples	Qualifier
EPA 8260B	MB151003L002	Benzene	0.20 ug/L	GWS02562, GWS02601 GWS02529, GWS02588	U
	MB151009I050	Carbon disulfide	0.71 ug/L	SWL0003, IWS00279	
Note: $MB = N$	Method Blank				

### 8. System Monitoring Compounds (Surrogates)

Appropriate numbers of surrogate compounds were spiked into each sample for the EPA 8260B, 8270C, and 8015B analyses. All surrogate compound recoveries were within the laboratory's statistically determined acceptance ranges.

### 9. <u>Laboratory Control Samples</u> (LCS)

LCSs were prepared and analyzed at the proper frequency for each analysis. All LCS and LCS duplicate (LCSD) recoveries reported and relative percent differences (RPDs) between the results (for applicable analytical batches) were within the laboratory's statistically determined acceptance ranges. These LCS results indicate that the level of accuracy demonstrated by the analytical method with respect to a clean sample matrix is acceptable.

### 10. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Several project samples were utilized for the MS/MSD analyses. The average recoveries of all MS/MSDs reported and the RPDs between the results were either within the laboratory's statistically determined acceptance ranges or did not require qualification with the following exceptions.

Method	Sample	Analyte	Average Recovery	RPD	Qualified Samples	Qualifier
EPA 300.0	GWS02555	Sulfate	173.5%*	1	GWS02555, GWS02553 GWS02598	J
	GWS02598	Sulfate	129.5%*	0	GWS02526, GWS02519, GWS02561	
	GWS02561	Sulfate	212%*	0	GWS02524, GWS02591 GWS02522 GWS02557 GWS02530, GWS02584	
	GWS02530	Sulfate	212%*	0	GWS02539, GWS02530, GWS02563	
	GWS02584	Sulfate	169%*	2	GWS02509, GWS02546	
Notes: * Out	lier	ı	ı			1

### 11. Field Duplicates

The following samples were submitted to the laboratory as field duplicate pairs.

Primary Sample	Field Duplicate
GWS02530	GWS02584
GWS02576	GWS02585
GWS02554	GWS02586
GWS02520	GWS02587
GWS02529	GWS02588
GWS02543	GWS02589
GWS02564	GWS02590
GWS02557	GWS02591
GWS02534	GWS02592

Acceptable field and analytical precision was demonstrated for all analytes for all field duplicate pairs.

### 12. Laboratory Duplicates

Acceptable analytical precision was demonstrated for all laboratory duplicate analyses.

### 13. Target Analyte Identification and Quantitation (Full Validation)

All analytes reported and the reporting limits obtained comply with project specifications. All dilutions were appropriate. In addition, this data review process included result recalculation and transcription error checking from the raw data for more than 10% of the data. All results checked were confirmed.

Table 1
Eurofins/ Calscience Laboratories

PA 8260B  PA 8260B  PA 8260B  10B, 300.0; RSK-175M  2D, 2320B, 3500-FeB  PA 8260B  PA 8260B  PA 8260B  PA 8260B
PA 8260B 10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB PA 8260B PA 8260B
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB PA 8260B PA 8260B
PA 8260B PA 8260B PA 8260B
PA 8260B PA 8260B
PA 8260B
PA 8260B
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB
PA 8260B
PA 8260B
PA 8260B
PA 8260B
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB
PA 8260B
10B, 300.0; RSK-175M 2D, 2320B, 3500-FeB
PA 8260B
PA 8260B
PA 8260B

Table 1
Eurofins/ Calscience Laboratories

		ilis/ Caiscience i		T
Sample	SDG	Sample Number	Date Sampled	Analysis Performed
GWS02572	15-10-0103	15-10-0103-8	10/1/15	EPA 8260B
FBS02069 (Trip Blank)	15-10-0104	15-10-0104-1	10/1/15	EPA 8260B
GWS02080	15-10-0104	15-10-0104-2	10/1/15	EPA 8260B
GWS02513	15-10-0104	15-10-0104-3	10/1/15	EPA 8260B
GWS02505	15-10-0104	15-10-0104-4	10/1/15	EPA 8260B
GWS02503	15-10-0104	15-10-0104-5	10/1/15	EPA 8260B
GWS02516	15-10-0104	15-10-0104-6	10/1/15	EPA 8260B
GWS02523	15-10-0104	15-10-0104-7	10/1/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02524	15-10-0104	15-10-0104-8	10/1/15	EPA 8260B
FBS02078 (Trip Blank)	15-0-0105	15-10-0105-1	10/1/15	EPA 8260B
FBS02067 (Equipment Blank)	15-0-0105	15-10-0105-2	10/1/15	EPA 8260B
GWS02573	15-0-0105	15-10-0105-3	10/1/15	EPA 8260B
GWS02548	15-0-0105	15-10-0105-4	10/1/15	EPA 8260B
GWS02580	15-0-0105	15-10-0105-5	10/1/15	EPA 8260B
GWS02527	15-0-0105	15-10-0105-6	10/1/15	EPA 8260B
GWS02578	15-0-0105	15-10-0105-7	10/1/15	EPA 8260B
GWS02593	15-0-0105	15-10-0105-8	10/1/15	EPA 8260B
GWS02544	15-0-0105	15-10-0105-9	10/1/15	EPA 8260B
FBS02081 (Trip Blank)	15-10-0106	15-10-0106-1	10/1/15	EPA 8260B
FBS02070 (Equipment Blank)	15-10-0106	15-10-0106-2	10/1/15	EPA 8260B
GWS02540	15-10-0106	15-10-0106-3	10/1/15	EPA 8260B
GWS02508	15-10-0106	15-10-0106-4	10/1/15	EPA 8260B
GWS02560	15-10-0106	15-10-0106-5	10/1/15	EPA 8260B
GWS02583	15-10-0106	15-10-0106-6	10/1/15	EPA 8260B
GWS02576	15-10-0106	15-10-0106-7	10/1/15	EPA 8260B
GWS02591 (Field Duplicate of GWS02557)	15-10-0106	15-10-0106-8	10/1/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02569	15-10-0106	15-10-0106-9	10/1/15	EPA 8260B
GWS02522	15-10-0106	15-10-0106-10	10/1/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02585 (Field Duplicate of GWS02576)	15-10-0106	15-10-0106-11	10/1/15	EPA 8260B
GWS02557	15-10-0106	15-10-0106-12	10/1/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
FBS02071 (Trip Blank)	15-10-0107	15-10-0107-1	10/1/15	EPA 8260B
FBS02077 (Equipment Blank)	15-10-0107	15-10-0107-2	10/1/15	EPA 8260B
GWS02579	15-10-0107	15-10-0107-3	10/1/15	EPA 8260B
GWS02581	15-10-0107	15-10-0107-4	10/1/15	EPA 8260B
GWS02562	15-10-0107	15-10-0107-5	10/1/15	EPA 8260B
GWS02550	15-10-0107	15-10-0107-6	10/1/15	EPA 8260B
1		I	l .	L

Table 1
Eurofins/ Calscience Laboratories

Sample	SDG	Sample Number	Date Sampled	Analysis Performed
GWS02601	15-10-0107	15-10-0107-7	10/1/15	EPA 8260B
GWS02529	15-10-0107	15-10-0107-8	10/1/15	EPA 8260B
GWS02529 GWS02588	15-10-0107	15-10-0107-9	10/1/15	EPA 8260B
(Field Duplicate of GWS02529)	15-10-0107	15-10-0107-9	10/1/15	EPA 8200B
FBS02103	15-10-0212	15-10-0212-1	10/2/15	EPA 8260B
(Trip Blank)	13 10 0212	13 10 0212 1	10/2/13	EFFT0200B
FBS02083	15-10-0212	15-10-0212-2	10/2/15	EPA 8260B
(Equipment Blank)				
GWS02549	15-10-0212	15-10-0212-3	10/2/15	EPA 8260B
GWS02594	15-10-0212	15-10-0212-4	10/2/15	EPA 8260B
GWS02571	15-10-0212	15-10-0212-5	10/2/15	EPA 8260B
GWS02574	15-10-0212	15-10-0212-6	10/2/15	EPA 8260B
GWS02554	15-10-0212	15-10-0212-7	10/2/15	EPA 8260B
GWS02586	15-10-0212	15-10-0212-8	10/2/15	EPA 8260B
(Field Duplicate of GWS02554)				
GWS02575	15-10-0212	15-10-0212-9	10/2/15	EPA 8260B
GWS02530	15-10-0212	15-10-0212-10	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02584 (Field Duplicate of GWS02530)	15-10-0212	15-10-0212-11	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
FBS02084 (Trip Blank)	15-10-0213	15-10-0213-1	10/2/15	EPA 8260B
FBS02106 (Equipment Blank)	15-10-0213	15-10-0213-2	10/2/15	EPA 8260B
GWS02539	15-10-0213	15-10-0213-3	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02556	15-10-0213	15-10-0213-4	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02515	15-10-0213	15-10-0213-5	10/2/15	EPA 8260B
GWS02510	15-10-0213	15-10-0213-6	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02543	15-10-0213	15-10-0213-7	10/2/15	EPA 8260B
GWS02589	15-10-0213	15-10-0213-8	10/2/15	EPA 8260B
FBS02102 (Trip Blank)	15-10-0214	15-10-0214-1	10/2/15	EPA 8260B
FBS02082 (Equipment Blank)	15-10-0214	15-10-0214-2	10/2/15	EPA 8260B
GWS02528	15-10-0214	15-10-0214-3	10/2/15	EPA 8260B
GWS02538	15-10-0214	15-10-0214-4	10/2/15	EPA 8260B
GWS02582	15-10-0214	15-10-0214-5	10/2/15	EPA 8260B
GWS02546	15-10-0214	15-10-0214-6	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02547	15-10-0214	15-10-0214-7	10/2/15	EPA 8260B
GWS02525	15-10-0214	15-10-0214-8	10/2/15	EPA 8260B
GWS02541	15-10-0214	15-10-0214-9	10/2/15	EPA 8260B
FBS02105 (Trip Blank)	15-10-0215	15-10-0215-1	10/2/15	EPA 8260B
FBS02085 (Equipment Blank)	15-10-0215	15-10-0215-2	10/2/15	EPA 8260B
GWS02517	15-10-0215	15-10-0215-3	10/2/15	EPA 8260B
			l i	

Table 1
Eurofins/ Calscience Laboratories

		Laboratories		
Sample	SDG	Sample Number	<b>Date Sampled</b>	Analysis Performed
GWS02533	15-10-0215	15-10-0215-4	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02531	15-10-0215	15-10-0215-5	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02536	15-10-0215	15-10-0215-6	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02595	15-10-0215	15-10-0215-7	10/2/15	EPA 8260B
GWS02563	15-10-0215	15-10-0215-8	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
GWS02512	15-10-0215	15-10-0215-9	10/2/15	EPA 8260B
GWS02509	15-10-0215	15-10-0215-10	10/2/15	EPA 8260B, 6010B, 300.0; RSK-175M SM 4500-CO2D, 2320B, 3500-FeB
FBS02101 (Trip Blank)	15-10-0220	15-10-0220-1	10/2/15	EPA 8260B
FBS02081 (Equipment Blank)	15-10-0220	15-10-0220-2	10/2/15	EPA 8260B
GWS02570	15-10-0220	15-10-0220-3	10/2/15	EPA 8260B
GWS02577	15-10-0220	15-10-0220-4	10/2/15	EPA 8260B
FBS02086 (Equipment Blank)	15-10-0220	15-10-0220-5	10/2/15	EPA 8260B
GWS02596	15-10-0220	15-10-0220-6	10/2/15	EPA 8260B
GWS02542	15-10-0220	15-10-0220-7	10/2/15	EPA 8260B
GWS02504	15-10-0220	15-10-0220-8	10/2/15	EPA 8260B
FBS02106 (Trip Blank)	15-10-0429	15-10-0429-1	10/5/15	EPA 8260B
FBS02087 (Equipment Blank)	15-10-0429	15-10-0429-2	10/5/15	EPA 8260B
GWS02520	15-10-0429	15-10-0429-3	10/5/15	EPA 8260B
GWS02587 (Field Duplicate of GWS02520)	15-10-0429	15-10-0429-4	10/5/15	EPA 8260B
GWS02558	15-10-0429	15-10-0429-5	10/5/15	EPA 8260B
GWS02534	15-10-0429	15-10-0429-6	10/5/15	EPA 8260B
GWS02592 (Field Duplicate of GWS02534)	15-10-0429	15-10-0429-7	10/5/15	EPA 8260B
GWS02535	15-10-0429	15-10-0429-8	10/5/15	EPA 8260B
TB-1 (Trip Blank)	15-10-0430	15-10-0430-1	10/6/15	EPA 8260B
EB-1 (Equipment Blank)	15-10-0430	15-10-0430-2	10/6/15	EPA 8260B
SWL0003	15-10-0430	15-10-0430-3	10/6/15	EPA 8260B
IWS00279	15-10-0430	15-10-0430-4	10/6/15	EPA 8260B, 8015B, 6010B, 7470A
NDS00003	15-10-1583	15-10-1583-1	10/21/15	EPA 8260B, 8270C
NLS00019	15-10-1583	15-10-1583-2	10/21/15	EPA 8260B, 8270C, 1010A

Notes:

SDG: Sample Delivery Group EPA 6010B: Manganese EPA 1010A: Flash Point EPA 8260B: Volatile Organic Compounds (VOCs) EPA 6010B¹: Total Metals RSK-175M: Methane

EPA 300.0: Nitrate, Sulfate EPA 1010A: Flash Point SM 3500-FeB: Ferrous Iron SM4500-CO2D: Carbon Dioxide

SM 2320B: Alkalinity EPA 8270C: Polynuclear Aromatic Hydrocarbons (PAHs)

EPA 8015B: Gasoline Range Organics (GRO C6-C12), TPH-Carbon Range (C13-C44)

# ATTACHMENT A DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by AECOM Data Review Team

#### DATA QUALIFIER DEFINITIONS FOR ORGANIC ANALYES

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

### DATA QUALIFIER DEFINITIONS FOR INORGANIC ANALYSES

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported sample quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control (QC) criteria. The analyte may or may not be present in the sample.

### AECOM DATA QUALIFIER DEFINITIONS — REASON CODE DEFINITIONS

- a Analytical sequence deficiency or omission.
- b Gross compound breakdown (4,4'-DDT/Endrin).
- c Calibration failure; poor or unstable response.
- d Laboratory duplicate imprecision.
- e Laboratory duplicate control sample imprecision.
- f Field duplicate imprecision.
- g Poor chromatography.
- h Holding time violation.
- i Internal standard failure.
- i Poor mass spectrographic performance.
- k Serial dilution imprecision.
- 1 Laboratory control sample recovery failure.
- m Matrix spike/matrix spike duplicate recovery failure.
- n Interference check sample recovery failure.
- o Calibration blank contamination (metals/inorganics only).
- p Preparation blank contamination (metals/inorganics only).
- q Quantitation outside linear range.
- r Linearity failure in initial calibration.
- s Surrogate spike recovery failure
  - (GC organics and GC/MS organics only).
- t Instrument tuning failure.
- u No valid confirmation column (GC Organics only).
- v Value is estimated below the MDA (Rads only).
- w Retention time (RT) outside of RT window.
- x Field blank contamination.
- y Trip blank contamination.
- z Method blank contamination.

### INTERPRETATION KEY

The following example shows how an analytical result which includes qualifiers assigned by both the AECOM data review team and the analytical laboratory could be displayed in the data tables:

### $<\!5.20~Uz\mid JB$

The qualifier assigned by the AECOM data review team precedes the "|"; the qualifier assigned by the laboratory follows it. In this example, the result is qualified as a nondetection data to the bias introduced by contamination of the associated method blank. Presence of the analyte in the method blank is indicated by the laboratory qualifier (B). The qualifier assigned by the AECOM data review team (Uz) indicates that the analyte concentration is considered to be the adjusted detection below limit (quantitation limit) based on the level of contamination in the method blank.

### APPENDIX J

### LABORATORY REPORTS

BY COMPACT DISC FOR HARD COPY REPORTS